Update Python documents. (#6376)

This commit is contained in:
Jiaming Yuan 2020-11-12 17:51:32 +08:00 committed by GitHub
parent c5645180a6
commit c90f968d92
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 18 additions and 11 deletions

View File

@ -14,15 +14,15 @@ print('running cross validation')
# std_value is standard deviation of the metric
xgb.cv(param, dtrain, num_round, nfold=5,
metrics={'error'}, seed=0,
callbacks=[xgb.callback.print_evaluation(show_stdv=True)])
callbacks=[xgb.callback.EvaluationMonitor(show_stdv=True)])
print('running cross validation, disable standard deviation display')
# do cross validation, this will print result out as
# [iteration] metric_name:mean_value
res = xgb.cv(param, dtrain, num_boost_round=10, nfold=5,
metrics={'error'}, seed=0,
callbacks=[xgb.callback.print_evaluation(show_stdv=False),
xgb.callback.early_stop(3)])
callbacks=[xgb.callback.EvaluationMonitor(show_stdv=False),
xgb.callback.EarlyStopping(3)])
print(res)
print('running cross validation, with preprocessing function')
# define the preprocessing function

View File

@ -69,13 +69,15 @@ Plotting API
Callback API
------------
.. autofunction:: xgboost.callback.print_evaluation
.. autofunction:: xgboost.callback.TrainingCallback
.. autofunction:: xgboost.callback.record_evaluation
.. autofunction:: xgboost.callback.EvaluationMonitor
.. autofunction:: xgboost.callback.reset_learning_rate
.. autofunction:: xgboost.callback.EarlyStopping
.. autofunction:: xgboost.callback.early_stop
.. autofunction:: xgboost.callback.LearningRateScheduler
.. autofunction:: xgboost.callback.TrainingCheckPoint
.. _dask_api:
@ -91,6 +93,8 @@ Dask API
.. autofunction:: xgboost.dask.predict
.. autofunction:: xgboost.dask.inplace_predict
.. autofunction:: xgboost.dask.DaskXGBClassifier
.. autofunction:: xgboost.dask.DaskXGBRegressor

View File

@ -510,7 +510,8 @@ class XGBModel(XGBModelBase):
.. code-block:: python
[xgb.callback.reset_learning_rate(custom_rates)]
callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
save_best=True)]
"""
self.n_features_in_ = X.shape[1]
@ -1249,7 +1250,8 @@ class XGBRanker(XGBModel):
.. code-block:: python
[xgb.callback.reset_learning_rate(custom_rates)]
callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
save_best=True)]
"""
# check if group information is provided

View File

@ -123,9 +123,10 @@ class TestCallbacks(unittest.TestCase):
X, y = load_breast_cancer(return_X_y=True)
cls = xgb.XGBClassifier()
early_stopping_rounds = 5
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds)
cls.fit(X, y, eval_set=[(X, y)],
early_stopping_rounds=early_stopping_rounds,
eval_metric=tm.eval_error_metric)
eval_metric=tm.eval_error_metric,
callbacks=[early_stop])
booster = cls.get_booster()
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1