Fix skl nan tag. (#5538)

This commit is contained in:
Jiaming Yuan 2020-04-18 06:52:17 +08:00 committed by GitHub
parent cfee9fae91
commit c69a19e2b1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 25 additions and 3 deletions

View File

@ -112,6 +112,10 @@ def TestWin64CPU() {
bat """
conda activate && for /R %%i in (python-package\\dist\\*.whl) DO python -m pip install "%%i"
"""
echo "Installing Python dependencies..."
bat """
conda activate && conda upgrade scikit-learn pandas numpy
"""
echo "Running Python tests..."
bat "conda activate && python -m pytest -v -s --fulltrace tests\\python"
bat "conda activate && python -m pip uninstall -y xgboost"
@ -133,6 +137,10 @@ def TestWin64GPU(args) {
bat """
conda activate && for /R %%i in (python-package\\dist\\*.whl) DO python -m pip install "%%i"
"""
echo "Installing Python dependencies..."
bat """
conda activate && conda upgrade scikit-learn pandas numpy
"""
echo "Running Python tests..."
bat """
conda activate && python -m pytest -v -s --fulltrace -m "(not slow) and (not mgpu)" tests\\python-gpu

View File

@ -244,6 +244,10 @@ class XGBModel(XGBModelBase):
self.gpu_id = gpu_id
self.validate_parameters = validate_parameters
def _more_tags(self):
'''Tags used for scikit-learn data validation.'''
return {'allow_nan': True}
def get_booster(self):
"""Get the underlying xgboost Booster of this model.

View File

@ -719,7 +719,7 @@ def test_RFECV():
# Regression
X, y = load_boston(return_X_y=True)
bst = xgb.XGBClassifier(booster='gblinear', learning_rate=0.1,
n_estimators=10, n_jobs=1,
n_estimators=10,
objective='reg:squarederror',
random_state=0, verbosity=0)
rfecv = RFECV(
@ -729,7 +729,7 @@ def test_RFECV():
# Binary classification
X, y = load_breast_cancer(return_X_y=True)
bst = xgb.XGBClassifier(booster='gblinear', learning_rate=0.1,
n_estimators=10, n_jobs=1,
n_estimators=10,
objective='binary:logistic',
random_state=0, verbosity=0)
rfecv = RFECV(estimator=bst, step=1, cv=3, scoring='roc_auc')
@ -739,13 +739,23 @@ def test_RFECV():
X, y = load_iris(return_X_y=True)
bst = xgb.XGBClassifier(base_score=0.4, booster='gblinear',
learning_rate=0.1,
n_estimators=10, n_jobs=1,
n_estimators=10,
objective='multi:softprob',
random_state=0, reg_alpha=0.001, reg_lambda=0.01,
scale_pos_weight=0.5, verbosity=0)
rfecv = RFECV(estimator=bst, step=1, cv=3, scoring='neg_log_loss')
rfecv.fit(X, y)
X[0:4, :] = np.nan # verify scikit_learn doesn't throw with nan
reg = xgb.XGBRegressor()
rfecv = RFECV(estimator=reg)
rfecv.fit(X, y)
cls = xgb.XGBClassifier()
rfecv = RFECV(estimator=cls, step=1, cv=3,
scoring='neg_mean_squared_error')
rfecv.fit(X, y)
def test_XGBClassifier_resume():
from sklearn.datasets import load_breast_cancer