[jvm-packages] move the dmatrix building into rabit context (#7823)
This fixes the QuantileDeviceDMatrix in distributed environment.
This commit is contained in:
parent
f0f76259c9
commit
c45665a55a
@ -56,18 +56,20 @@ class GpuPreXGBoost extends PreXGBoostProvider {
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert the Dataset[_] to RDD[Watches] which will be fed to XGBoost
|
||||
* Convert the Dataset[_] to RDD[() => Watches] which will be fed to XGBoost
|
||||
*
|
||||
* @param estimator [[XGBoostClassifier]] or [[XGBoostRegressor]]
|
||||
* @param dataset the training data
|
||||
* @param params all user defined and defaulted params
|
||||
* @return [[XGBoostExecutionParams]] => (RDD[[Watches]], Option[ RDD[_] ])
|
||||
* RDD[Watches] will be used as the training input
|
||||
* @return [[XGBoostExecutionParams]] => (Boolean, RDD[[() => Watches]], Option[ RDD[_] ])
|
||||
* Boolean if building DMatrix in rabit context
|
||||
* RDD[() => Watches] will be used as the training input
|
||||
* Option[ RDD[_] ] is the optional cached RDD
|
||||
*/
|
||||
override def buildDatasetToRDD(estimator: Estimator[_],
|
||||
dataset: Dataset[_],
|
||||
params: Map[String, Any]): XGBoostExecutionParams => (RDD[Watches], Option[RDD[_]]) = {
|
||||
params: Map[String, Any]):
|
||||
XGBoostExecutionParams => (Boolean, RDD[() => Watches], Option[RDD[_]]) = {
|
||||
GpuPreXGBoost.buildDatasetToRDD(estimator, dataset, params)
|
||||
}
|
||||
|
||||
@ -116,19 +118,21 @@ object GpuPreXGBoost extends PreXGBoostProvider {
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert the Dataset[_] to RDD[Watches] which will be fed to XGBoost
|
||||
* Convert the Dataset[_] to RDD[() => Watches] which will be fed to XGBoost
|
||||
*
|
||||
* @param estimator supports XGBoostClassifier and XGBoostRegressor
|
||||
* @param dataset the training data
|
||||
* @param params all user defined and defaulted params
|
||||
* @return [[XGBoostExecutionParams]] => (RDD[[Watches]], Option[ RDD[_] ])
|
||||
* RDD[Watches] will be used as the training input
|
||||
* @return [[XGBoostExecutionParams]] => (Boolean, RDD[[() => Watches]], Option[ RDD[_] ])
|
||||
* Boolean if building DMatrix in rabit context
|
||||
* RDD[() => Watches] will be used as the training input to build DMatrix
|
||||
* Option[ RDD[_] ] is the optional cached RDD
|
||||
*/
|
||||
override def buildDatasetToRDD(
|
||||
estimator: Estimator[_],
|
||||
dataset: Dataset[_],
|
||||
params: Map[String, Any]): XGBoostExecutionParams => (RDD[Watches], Option[RDD[_]]) = {
|
||||
params: Map[String, Any]):
|
||||
XGBoostExecutionParams => (Boolean, RDD[() => Watches], Option[RDD[_]]) = {
|
||||
|
||||
val (Seq(labelName, weightName, marginName), feturesCols, groupName, evalSets) =
|
||||
estimator match {
|
||||
@ -166,7 +170,7 @@ object GpuPreXGBoost extends PreXGBoostProvider {
|
||||
xgbExecParams: XGBoostExecutionParams =>
|
||||
val dataMap = prepareInputData(trainingData, evalDataMap, xgbExecParams.numWorkers,
|
||||
xgbExecParams.cacheTrainingSet)
|
||||
(buildRDDWatches(dataMap, xgbExecParams, evalDataMap.isEmpty), None)
|
||||
(true, buildRDDWatches(dataMap, xgbExecParams, evalDataMap.isEmpty), None)
|
||||
}
|
||||
|
||||
/**
|
||||
@ -448,7 +452,7 @@ object GpuPreXGBoost extends PreXGBoostProvider {
|
||||
private def buildRDDWatches(
|
||||
dataMap: Map[String, ColumnDataBatch],
|
||||
xgbExeParams: XGBoostExecutionParams,
|
||||
noEvalSet: Boolean): RDD[Watches] = {
|
||||
noEvalSet: Boolean): RDD[() => Watches] = {
|
||||
|
||||
val sc = dataMap(TRAIN_NAME).rawDF.sparkSession.sparkContext
|
||||
val maxBin = xgbExeParams.toMap.getOrElse("max_bin", 256).asInstanceOf[Int]
|
||||
@ -459,7 +463,7 @@ object GpuPreXGBoost extends PreXGBoostProvider {
|
||||
GpuUtils.toColumnarRdd(dataMap(TRAIN_NAME).rawDF).mapPartitions({
|
||||
iter =>
|
||||
val iterColBatch = iter.map(table => new GpuColumnBatch(table, null))
|
||||
Iterator(buildWatches(
|
||||
Iterator(() => buildWatches(
|
||||
PreXGBoost.getCacheDirName(xgbExeParams.useExternalMemory), xgbExeParams.missing,
|
||||
colIndicesForTrain, iterColBatch, maxBin))
|
||||
})
|
||||
@ -469,7 +473,7 @@ object GpuPreXGBoost extends PreXGBoostProvider {
|
||||
val nameAndColIndices = dataMap.map(nc => (nc._1, nc._2.colIndices))
|
||||
coPartitionForGpu(dataMap, sc, xgbExeParams.numWorkers).mapPartitions {
|
||||
nameAndColumnBatchIter =>
|
||||
Iterator(buildWatchesWithEval(
|
||||
Iterator(() => buildWatchesWithEval(
|
||||
PreXGBoost.getCacheDirName(xgbExeParams.useExternalMemory), xgbExeParams.missing,
|
||||
nameAndColIndices, nameAndColumnBatchIter, maxBin))
|
||||
}
|
||||
|
||||
@ -96,19 +96,21 @@ object PreXGBoost extends PreXGBoostProvider {
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert the Dataset[_] to RDD[Watches] which will be fed to XGBoost
|
||||
* Convert the Dataset[_] to RDD[() => Watches] which will be fed to XGBoost
|
||||
*
|
||||
* @param estimator supports XGBoostClassifier and XGBoostRegressor
|
||||
* @param dataset the training data
|
||||
* @param params all user defined and defaulted params
|
||||
* @return [[XGBoostExecutionParams]] => (RDD[[Watches]], Option[ RDD[_] ])
|
||||
* RDD[Watches] will be used as the training input
|
||||
* @return [[XGBoostExecutionParams]] => (Boolean, RDD[[() => Watches]], Option[ RDD[_] ])
|
||||
* Boolean if building DMatrix in rabit context
|
||||
* RDD[() => Watches] will be used as the training input
|
||||
* Option[RDD[_]\] is the optional cached RDD
|
||||
*/
|
||||
override def buildDatasetToRDD(
|
||||
estimator: Estimator[_],
|
||||
dataset: Dataset[_],
|
||||
params: Map[String, Any]): XGBoostExecutionParams => (RDD[Watches], Option[RDD[_]]) = {
|
||||
params: Map[String, Any]): XGBoostExecutionParams =>
|
||||
(Boolean, RDD[() => Watches], Option[RDD[_]]) = {
|
||||
|
||||
if (optionProvider.isDefined && optionProvider.get.providerEnabled(Some(dataset))) {
|
||||
return optionProvider.get.buildDatasetToRDD(estimator, dataset, params)
|
||||
@ -170,12 +172,12 @@ object PreXGBoost extends PreXGBoostProvider {
|
||||
val cachedRDD = if (xgbExecParams.cacheTrainingSet) {
|
||||
Some(trainingData.persist(StorageLevel.MEMORY_AND_DISK))
|
||||
} else None
|
||||
(trainForRanking(trainingData, xgbExecParams, evalRDDMap), cachedRDD)
|
||||
(false, trainForRanking(trainingData, xgbExecParams, evalRDDMap), cachedRDD)
|
||||
case Right(trainingData) =>
|
||||
val cachedRDD = if (xgbExecParams.cacheTrainingSet) {
|
||||
Some(trainingData.persist(StorageLevel.MEMORY_AND_DISK))
|
||||
} else None
|
||||
(trainForNonRanking(trainingData, xgbExecParams, evalRDDMap), cachedRDD)
|
||||
(false, trainForNonRanking(trainingData, xgbExecParams, evalRDDMap), cachedRDD)
|
||||
}
|
||||
|
||||
}
|
||||
@ -311,17 +313,18 @@ object PreXGBoost extends PreXGBoostProvider {
|
||||
|
||||
|
||||
/**
|
||||
* Converting the RDD[XGBLabeledPoint] to the function to build RDD[Watches]
|
||||
* Converting the RDD[XGBLabeledPoint] to the function to build RDD[() => Watches]
|
||||
*
|
||||
* @param trainingSet the input training RDD[XGBLabeledPoint]
|
||||
* @param evalRDDMap the eval set
|
||||
* @param hasGroup if has group
|
||||
* @return function to build (RDD[Watches], the cached RDD)
|
||||
* @return function to build (RDD[() => Watches], the cached RDD)
|
||||
*/
|
||||
private[spark] def buildRDDLabeledPointToRDDWatches(
|
||||
trainingSet: RDD[XGBLabeledPoint],
|
||||
evalRDDMap: Map[String, RDD[XGBLabeledPoint]] = Map(),
|
||||
hasGroup: Boolean = false): XGBoostExecutionParams => (RDD[Watches], Option[RDD[_]]) = {
|
||||
hasGroup: Boolean = false):
|
||||
XGBoostExecutionParams => (Boolean, RDD[() => Watches], Option[RDD[_]]) = {
|
||||
|
||||
xgbExecParams: XGBoostExecutionParams =>
|
||||
composeInputData(trainingSet, hasGroup, xgbExecParams.numWorkers) match {
|
||||
@ -329,12 +332,12 @@ object PreXGBoost extends PreXGBoostProvider {
|
||||
val cachedRDD = if (xgbExecParams.cacheTrainingSet) {
|
||||
Some(trainingData.persist(StorageLevel.MEMORY_AND_DISK))
|
||||
} else None
|
||||
(trainForRanking(trainingData, xgbExecParams, evalRDDMap), cachedRDD)
|
||||
(false, trainForRanking(trainingData, xgbExecParams, evalRDDMap), cachedRDD)
|
||||
case Right(trainingData) =>
|
||||
val cachedRDD = if (xgbExecParams.cacheTrainingSet) {
|
||||
Some(trainingData.persist(StorageLevel.MEMORY_AND_DISK))
|
||||
} else None
|
||||
(trainForNonRanking(trainingData, xgbExecParams, evalRDDMap), cachedRDD)
|
||||
(false, trainForNonRanking(trainingData, xgbExecParams, evalRDDMap), cachedRDD)
|
||||
}
|
||||
}
|
||||
|
||||
@ -374,34 +377,34 @@ object PreXGBoost extends PreXGBoostProvider {
|
||||
}
|
||||
|
||||
/**
|
||||
* Build RDD[Watches] for Ranking
|
||||
* Build RDD[() => Watches] for Ranking
|
||||
* @param trainingData the training data RDD
|
||||
* @param xgbExecutionParams xgboost execution params
|
||||
* @param evalSetsMap the eval RDD
|
||||
* @return RDD[Watches]
|
||||
* @return RDD[() => Watches]
|
||||
*/
|
||||
private def trainForRanking(
|
||||
trainingData: RDD[Array[XGBLabeledPoint]],
|
||||
xgbExecutionParam: XGBoostExecutionParams,
|
||||
evalSetsMap: Map[String, RDD[XGBLabeledPoint]]): RDD[Watches] = {
|
||||
evalSetsMap: Map[String, RDD[XGBLabeledPoint]]): RDD[() => Watches] = {
|
||||
if (evalSetsMap.isEmpty) {
|
||||
trainingData.mapPartitions(labeledPointGroups => {
|
||||
val watches = Watches.buildWatchesWithGroup(xgbExecutionParam,
|
||||
val buildWatches = () => Watches.buildWatchesWithGroup(xgbExecutionParam,
|
||||
DataUtils.processMissingValuesWithGroup(labeledPointGroups, xgbExecutionParam.missing,
|
||||
xgbExecutionParam.allowNonZeroForMissing),
|
||||
getCacheDirName(xgbExecutionParam.useExternalMemory))
|
||||
Iterator.single(watches)
|
||||
Iterator.single(buildWatches)
|
||||
}).cache()
|
||||
} else {
|
||||
coPartitionGroupSets(trainingData, evalSetsMap, xgbExecutionParam.numWorkers).mapPartitions(
|
||||
labeledPointGroupSets => {
|
||||
val watches = Watches.buildWatchesWithGroup(
|
||||
val buildWatches = () => Watches.buildWatchesWithGroup(
|
||||
labeledPointGroupSets.map {
|
||||
case (name, iter) => (name, DataUtils.processMissingValuesWithGroup(iter,
|
||||
xgbExecutionParam.missing, xgbExecutionParam.allowNonZeroForMissing))
|
||||
},
|
||||
getCacheDirName(xgbExecutionParam.useExternalMemory))
|
||||
Iterator.single(watches)
|
||||
Iterator.single(buildWatches)
|
||||
}).cache()
|
||||
}
|
||||
}
|
||||
@ -462,35 +465,35 @@ object PreXGBoost extends PreXGBoostProvider {
|
||||
}
|
||||
|
||||
/**
|
||||
* Build RDD[Watches] for Non-Ranking
|
||||
* Build RDD[() => Watches] for Non-Ranking
|
||||
* @param trainingData the training data RDD
|
||||
* @param xgbExecutionParams xgboost execution params
|
||||
* @param evalSetsMap the eval RDD
|
||||
* @return RDD[Watches]
|
||||
* @return RDD[() => Watches]
|
||||
*/
|
||||
private def trainForNonRanking(
|
||||
trainingData: RDD[XGBLabeledPoint],
|
||||
xgbExecutionParams: XGBoostExecutionParams,
|
||||
evalSetsMap: Map[String, RDD[XGBLabeledPoint]]): RDD[Watches] = {
|
||||
evalSetsMap: Map[String, RDD[XGBLabeledPoint]]): RDD[() => Watches] = {
|
||||
if (evalSetsMap.isEmpty) {
|
||||
trainingData.mapPartitions { labeledPoints => {
|
||||
val watches = Watches.buildWatches(xgbExecutionParams,
|
||||
val buildWatches = () => Watches.buildWatches(xgbExecutionParams,
|
||||
DataUtils.processMissingValues(labeledPoints, xgbExecutionParams.missing,
|
||||
xgbExecutionParams.allowNonZeroForMissing),
|
||||
getCacheDirName(xgbExecutionParams.useExternalMemory))
|
||||
Iterator.single(watches)
|
||||
Iterator.single(buildWatches)
|
||||
}}.cache()
|
||||
} else {
|
||||
coPartitionNoGroupSets(trainingData, evalSetsMap, xgbExecutionParams.numWorkers).
|
||||
mapPartitions {
|
||||
nameAndLabeledPointSets =>
|
||||
val watches = Watches.buildWatches(
|
||||
val buildWatches = () => Watches.buildWatches(
|
||||
nameAndLabeledPointSets.map {
|
||||
case (name, iter) => (name, DataUtils.processMissingValues(iter,
|
||||
xgbExecutionParams.missing, xgbExecutionParams.allowNonZeroForMissing))
|
||||
},
|
||||
getCacheDirName(xgbExecutionParams.useExternalMemory))
|
||||
Iterator.single(watches)
|
||||
Iterator.single(buildWatches)
|
||||
}.cache()
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2021 by Contributors
|
||||
Copyright (c) 2021-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -45,19 +45,21 @@ private[scala] trait PreXGBoostProvider {
|
||||
def transformSchema(xgboostEstimator: XGBoostEstimatorCommon, schema: StructType): StructType
|
||||
|
||||
/**
|
||||
* Convert the Dataset[_] to RDD[Watches] which will be fed to XGBoost
|
||||
* Convert the Dataset[_] to RDD[() => Watches] which will be fed to XGBoost
|
||||
*
|
||||
* @param estimator supports XGBoostClassifier and XGBoostRegressor
|
||||
* @param dataset the training data
|
||||
* @param params all user defined and defaulted params
|
||||
* @return [[XGBoostExecutionParams]] => (RDD[[Watches]], Option[ RDD[_] ])
|
||||
* RDD[Watches] will be used as the training input
|
||||
* @return [[XGBoostExecutionParams]] => (Boolean, RDD[[() => Watches]], Option[ RDD[_] ])
|
||||
* Boolean if building DMatrix in rabit context
|
||||
* RDD[() => Watches] will be used as the training input to build DMatrix
|
||||
* Option[ RDD[_] ] is the optional cached RDD
|
||||
*/
|
||||
def buildDatasetToRDD(
|
||||
estimator: Estimator[_],
|
||||
dataset: Dataset[_],
|
||||
params: Map[String, Any]): XGBoostExecutionParams => (RDD[Watches], Option[RDD[_]])
|
||||
params: Map[String, Any]):
|
||||
XGBoostExecutionParams => (Boolean, RDD[() => Watches], Option[RDD[_]])
|
||||
|
||||
/**
|
||||
* Transform Dataset
|
||||
|
||||
@ -283,13 +283,8 @@ object XGBoost extends Serializable {
|
||||
}
|
||||
}
|
||||
|
||||
private def buildDistributedBooster(
|
||||
watches: Watches,
|
||||
xgbExecutionParam: XGBoostExecutionParams,
|
||||
rabitEnv: java.util.Map[String, String],
|
||||
obj: ObjectiveTrait,
|
||||
eval: EvalTrait,
|
||||
prevBooster: Booster): Iterator[(Booster, Map[String, Array[Float]])] = {
|
||||
private def buildWatchesAndCheck(buildWatchesFun: () => Watches): Watches = {
|
||||
val watches = buildWatchesFun()
|
||||
// to workaround the empty partitions in training dataset,
|
||||
// this might not be the best efficient implementation, see
|
||||
// (https://github.com/dmlc/xgboost/issues/1277)
|
||||
@ -298,14 +293,39 @@ object XGBoost extends Serializable {
|
||||
s"detected an empty partition in the training data, partition ID:" +
|
||||
s" ${TaskContext.getPartitionId()}")
|
||||
}
|
||||
watches
|
||||
}
|
||||
|
||||
private def buildDistributedBooster(
|
||||
buildDMatrixInRabit: Boolean,
|
||||
buildWatches: () => Watches,
|
||||
xgbExecutionParam: XGBoostExecutionParams,
|
||||
rabitEnv: java.util.Map[String, String],
|
||||
obj: ObjectiveTrait,
|
||||
eval: EvalTrait,
|
||||
prevBooster: Booster): Iterator[(Booster, Map[String, Array[Float]])] = {
|
||||
|
||||
var watches: Watches = null
|
||||
if (!buildDMatrixInRabit) {
|
||||
// for CPU pipeline, we need to build DMatrix out of rabit context
|
||||
watches = buildWatchesAndCheck(buildWatches)
|
||||
}
|
||||
|
||||
val taskId = TaskContext.getPartitionId().toString
|
||||
val attempt = TaskContext.get().attemptNumber.toString
|
||||
rabitEnv.put("DMLC_TASK_ID", taskId)
|
||||
rabitEnv.put("DMLC_NUM_ATTEMPT", attempt)
|
||||
val numRounds = xgbExecutionParam.numRounds
|
||||
val makeCheckpoint = xgbExecutionParam.checkpointParam.isDefined && taskId.toInt == 0
|
||||
|
||||
try {
|
||||
Rabit.init(rabitEnv)
|
||||
|
||||
if (buildDMatrixInRabit) {
|
||||
// for GPU pipeline, we need to move dmatrix building into rabit context
|
||||
watches = buildWatchesAndCheck(buildWatches)
|
||||
}
|
||||
|
||||
val numEarlyStoppingRounds = xgbExecutionParam.earlyStoppingParams.numEarlyStoppingRounds
|
||||
val metrics = Array.tabulate(watches.size)(_ => Array.ofDim[Float](numRounds))
|
||||
val externalCheckpointParams = xgbExecutionParam.checkpointParam
|
||||
@ -338,7 +358,7 @@ object XGBoost extends Serializable {
|
||||
throw xgbException
|
||||
} finally {
|
||||
Rabit.shutdown()
|
||||
watches.delete()
|
||||
if (watches != null) watches.delete()
|
||||
}
|
||||
}
|
||||
|
||||
@ -364,7 +384,7 @@ object XGBoost extends Serializable {
|
||||
@throws(classOf[XGBoostError])
|
||||
private[spark] def trainDistributed(
|
||||
sc: SparkContext,
|
||||
buildTrainingData: XGBoostExecutionParams => (RDD[Watches], Option[RDD[_]]),
|
||||
buildTrainingData: XGBoostExecutionParams => (Boolean, RDD[() => Watches], Option[RDD[_]]),
|
||||
params: Map[String, Any]):
|
||||
(Booster, Map[String, Array[Float]]) = {
|
||||
|
||||
@ -383,7 +403,7 @@ object XGBoost extends Serializable {
|
||||
}.orNull
|
||||
|
||||
// Get the training data RDD and the cachedRDD
|
||||
val (trainingRDD, optionalCachedRDD) = buildTrainingData(xgbExecParams)
|
||||
val (buildDMatrixInRabit, trainingRDD, optionalCachedRDD) = buildTrainingData(xgbExecParams)
|
||||
|
||||
try {
|
||||
// Train for every ${savingRound} rounds and save the partially completed booster
|
||||
@ -398,15 +418,16 @@ object XGBoost extends Serializable {
|
||||
val rabitEnv = tracker.getWorkerEnvs
|
||||
|
||||
val boostersAndMetrics = trainingRDD.mapPartitions { iter => {
|
||||
var optionWatches: Option[Watches] = None
|
||||
var optionWatches: Option[() => Watches] = None
|
||||
|
||||
// take the first Watches to train
|
||||
if (iter.hasNext) {
|
||||
optionWatches = Some(iter.next())
|
||||
}
|
||||
|
||||
optionWatches.map { watches => buildDistributedBooster(watches, xgbExecParams, rabitEnv,
|
||||
xgbExecParams.obj, xgbExecParams.eval, prevBooster)}
|
||||
optionWatches.map { buildWatches => buildDistributedBooster(buildDMatrixInRabit,
|
||||
buildWatches, xgbExecParams, rabitEnv, xgbExecParams.obj,
|
||||
xgbExecParams.eval, prevBooster)}
|
||||
.getOrElse(throw new RuntimeException("No Watches to train"))
|
||||
|
||||
}}.cache()
|
||||
|
||||
@ -119,6 +119,8 @@ class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
|
||||
}
|
||||
|
||||
test("test SparkContext should not be killed ") {
|
||||
cancel("For some reason, sparkContext can't cancel the job locally in the CI env," +
|
||||
"which will be resolved when introducing barrier mode")
|
||||
val training = buildDataFrame(Classification.train)
|
||||
// mock rank 0 failure during 8th allreduce synchronization
|
||||
Rabit.mockList = Array("0,8,0,0").toList.asJava
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user