Remove benchmark scripts. (#9992)

This commit is contained in:
Jiaming Yuan 2024-01-17 13:19:34 +08:00 committed by GitHub
parent d07e8b503e
commit bde20dd897
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 1 additions and 245 deletions

View File

@ -10,9 +10,7 @@ facilities.
dependencies for tests, see conda files in `ci_build`. dependencies for tests, see conda files in `ci_build`.
* python-gpu: Similar to python tests, but for GPU. * python-gpu: Similar to python tests, but for GPU.
* travis: CI facilities for Travis. * travis: CI facilities for Travis.
* distributed: Test for distributed system. * test_distributed: Test for distributed systems including spark and dask.
* benchmark: Legacy benchmark code. There are a number of benchmark projects for
XGBoost with much better configurations.
# Others # Others
* pytest.ini: Describes the `pytest` marker for python tests, some markers are generated * pytest.ini: Describes the `pytest` marker for python tests, some markers are generated

View File

@ -1,69 +0,0 @@
#pylint: skip-file
import argparse
import xgboost as xgb
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
import time
import ast
rng = np.random.RandomState(1994)
def run_benchmark(args):
try:
dtest = xgb.DMatrix('dtest.dm')
dtrain = xgb.DMatrix('dtrain.dm')
if not (dtest.num_col() == args.columns \
and dtrain.num_col() == args.columns):
raise ValueError("Wrong cols")
if not (dtest.num_row() == args.rows * args.test_size \
and dtrain.num_row() == args.rows * (1-args.test_size)):
raise ValueError("Wrong rows")
except:
print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns))
print("{}/{} test/train split".format(args.test_size, 1.0 - args.test_size))
tmp = time.time()
X, y = make_classification(args.rows, n_features=args.columns, n_redundant=0, n_informative=args.columns, n_repeated=0, random_state=7)
if args.sparsity < 1.0:
X = np.array([[np.nan if rng.uniform(0, 1) < args.sparsity else x for x in x_row] for x_row in X])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=args.test_size, random_state=7)
print ("Generate Time: %s seconds" % (str(time.time() - tmp)))
tmp = time.time()
print ("DMatrix Start")
dtrain = xgb.DMatrix(X_train, y_train)
dtest = xgb.DMatrix(X_test, y_test, nthread=-1)
print ("DMatrix Time: %s seconds" % (str(time.time() - tmp)))
dtest.save_binary('dtest.dm')
dtrain.save_binary('dtrain.dm')
param = {'objective': 'binary:logistic','booster':'gblinear'}
if args.params != '':
param.update(ast.literal_eval(args.params))
param['updater'] = args.updater
print("Training with '%s'" % param['updater'])
tmp = time.time()
xgb.train(param, dtrain, args.iterations, evals=[(dtrain,"train")], early_stopping_rounds = args.columns)
print ("Train Time: %s seconds" % (str(time.time() - tmp)))
parser = argparse.ArgumentParser()
parser.add_argument('--updater', default='coord_descent')
parser.add_argument('--sparsity', type=float, default=0.0)
parser.add_argument('--lambda', type=float, default=1.0)
parser.add_argument('--tol', type=float, default=1e-5)
parser.add_argument('--alpha', type=float, default=1.0)
parser.add_argument('--rows', type=int, default=1000000)
parser.add_argument('--iterations', type=int, default=10000)
parser.add_argument('--columns', type=int, default=50)
parser.add_argument('--test_size', type=float, default=0.25)
parser.add_argument('--standardise', type=bool, default=False)
parser.add_argument('--params', default='', help='Provide additional parameters as a Python dict string, e.g. --params \"{\'max_depth\':2}\"')
args = parser.parse_args()
run_benchmark(args)

View File

@ -1,86 +0,0 @@
"""Run benchmark on the tree booster."""
import argparse
import ast
import time
import numpy as np
import xgboost as xgb
RNG = np.random.RandomState(1994)
def run_benchmark(args):
"""Runs the benchmark."""
try:
dtest = xgb.DMatrix('dtest.dm')
dtrain = xgb.DMatrix('dtrain.dm')
if not (dtest.num_col() == args.columns
and dtrain.num_col() == args.columns):
raise ValueError("Wrong cols")
if not (dtest.num_row() == args.rows * args.test_size
and dtrain.num_row() == args.rows * (1 - args.test_size)):
raise ValueError("Wrong rows")
except:
print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns))
print("{}/{} test/train split".format(args.test_size, 1.0 - args.test_size))
tmp = time.time()
X = RNG.rand(args.rows, args.columns)
y = RNG.randint(0, 2, args.rows)
if 0.0 < args.sparsity < 1.0:
X = np.array([[np.nan if RNG.uniform(0, 1) < args.sparsity else x for x in x_row]
for x_row in X])
train_rows = int(args.rows * (1.0 - args.test_size))
test_rows = int(args.rows * args.test_size)
X_train = X[:train_rows, :]
X_test = X[-test_rows:, :]
y_train = y[:train_rows]
y_test = y[-test_rows:]
print("Generate Time: %s seconds" % (str(time.time() - tmp)))
del X, y
tmp = time.time()
print("DMatrix Start")
dtrain = xgb.DMatrix(X_train, y_train, nthread=-1)
dtest = xgb.DMatrix(X_test, y_test, nthread=-1)
print("DMatrix Time: %s seconds" % (str(time.time() - tmp)))
del X_train, y_train, X_test, y_test
dtest.save_binary('dtest.dm')
dtrain.save_binary('dtrain.dm')
param = {'objective': 'binary:logistic'}
if args.params != '':
param.update(ast.literal_eval(args.params))
param['tree_method'] = args.tree_method
print("Training with '%s'" % param['tree_method'])
tmp = time.time()
xgb.train(param, dtrain, args.iterations, evals=[(dtest, "test")])
print("Train Time: %s seconds" % (str(time.time() - tmp)))
def main():
"""The main function.
Defines and parses command line arguments and calls the benchmark.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--tree_method', default='gpu_hist')
parser.add_argument('--sparsity', type=float, default=0.0)
parser.add_argument('--rows', type=int, default=1000000)
parser.add_argument('--columns', type=int, default=50)
parser.add_argument('--iterations', type=int, default=500)
parser.add_argument('--test_size', type=float, default=0.25)
parser.add_argument('--params', default='',
help='Provide additional parameters as a Python dict string, e.g. --params '
'\"{\'max_depth\':2}\"')
args = parser.parse_args()
run_benchmark(args)
if __name__ == '__main__':
main()

View File

@ -1,87 +0,0 @@
"""Generate synthetic data in LIBSVM format."""
import argparse
import io
import time
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
RNG = np.random.RandomState(2019)
def generate_data(args):
"""Generates the data."""
print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns))
print("Sparsity {}".format(args.sparsity))
print("{}/{} train/test split".format(1.0 - args.test_size, args.test_size))
tmp = time.time()
n_informative = args.columns * 7 // 10
n_redundant = args.columns // 10
n_repeated = args.columns // 10
print("n_informative: {}, n_redundant: {}, n_repeated: {}".format(n_informative, n_redundant,
n_repeated))
x, y = make_classification(n_samples=args.rows, n_features=args.columns,
n_informative=n_informative, n_redundant=n_redundant,
n_repeated=n_repeated, shuffle=False, random_state=RNG)
print("Generate Time: {} seconds".format(time.time() - tmp))
tmp = time.time()
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=args.test_size,
random_state=RNG, shuffle=False)
print("Train/Test Split Time: {} seconds".format(time.time() - tmp))
tmp = time.time()
write_file('train.libsvm', x_train, y_train, args.sparsity)
print("Write Train Time: {} seconds".format(time.time() - tmp))
tmp = time.time()
write_file('test.libsvm', x_test, y_test, args.sparsity)
print("Write Test Time: {} seconds".format(time.time() - tmp))
def write_file(filename, x_data, y_data, sparsity):
with open(filename, 'w') as f:
for x, y in zip(x_data, y_data):
write_line(f, x, y, sparsity)
def write_line(f, x, y, sparsity):
with io.StringIO() as line:
line.write(str(y))
for i, col in enumerate(x):
if 0.0 < sparsity < 1.0:
if RNG.uniform(0, 1) > sparsity:
write_feature(line, i, col)
else:
write_feature(line, i, col)
line.write('\n')
f.write(line.getvalue())
def write_feature(line, index, feature):
line.write(' ')
line.write(str(index))
line.write(':')
line.write(str(feature))
def main():
"""The main function.
Defines and parses command line arguments and calls the generator.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--rows', type=int, default=1000000)
parser.add_argument('--columns', type=int, default=50)
parser.add_argument('--sparsity', type=float, default=0.0)
parser.add_argument('--test_size', type=float, default=0.01)
args = parser.parse_args()
generate_data(args)
if __name__ == '__main__':
main()