diff --git a/.clang-format b/.clang-format
index 0984d5a7b..737cf9006 100644
--- a/.clang-format
+++ b/.clang-format
@@ -17,7 +17,7 @@ AllowShortEnumsOnASingleLine: true
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
-AllowShortLambdasOnASingleLine: All
+AllowShortLambdasOnASingleLine: Inline
AllowShortIfStatementsOnASingleLine: WithoutElse
AllowShortLoopsOnASingleLine: true
AlwaysBreakAfterDefinitionReturnType: None
diff --git a/.github/dependabot.yml b/.github/dependabot.yml
index c03a52c60..0cc0c16fd 100644
--- a/.github/dependabot.yml
+++ b/.github/dependabot.yml
@@ -8,7 +8,7 @@ updates:
- package-ecosystem: "maven"
directory: "/jvm-packages"
schedule:
- interval: "daily"
+ interval: "monthly"
- package-ecosystem: "maven"
directory: "/jvm-packages/xgboost4j"
schedule:
@@ -16,11 +16,11 @@ updates:
- package-ecosystem: "maven"
directory: "/jvm-packages/xgboost4j-gpu"
schedule:
- interval: "daily"
+ interval: "monthly"
- package-ecosystem: "maven"
directory: "/jvm-packages/xgboost4j-example"
schedule:
- interval: "daily"
+ interval: "monthly"
- package-ecosystem: "maven"
directory: "/jvm-packages/xgboost4j-spark"
schedule:
@@ -28,4 +28,4 @@ updates:
- package-ecosystem: "maven"
directory: "/jvm-packages/xgboost4j-spark-gpu"
schedule:
- interval: "daily"
+ interval: "monthly"
diff --git a/.github/workflows/i386.yml b/.github/workflows/i386.yml
index 4a4d65b25..ca5baf412 100644
--- a/.github/workflows/i386.yml
+++ b/.github/workflows/i386.yml
@@ -5,6 +5,10 @@ on: [push, pull_request]
permissions:
contents: read # to fetch code (actions/checkout)
+concurrency:
+ group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
+ cancel-in-progress: true
+
jobs:
build-32bit:
name: Build 32-bit
diff --git a/.github/workflows/jvm_tests.yml b/.github/workflows/jvm_tests.yml
index 330c037d7..9ef314ca5 100644
--- a/.github/workflows/jvm_tests.yml
+++ b/.github/workflows/jvm_tests.yml
@@ -5,6 +5,10 @@ on: [push, pull_request]
permissions:
contents: read # to fetch code (actions/checkout)
+concurrency:
+ group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
+ cancel-in-progress: true
+
jobs:
test-with-jvm:
name: Test JVM on OS ${{ matrix.os }}
@@ -15,31 +19,36 @@ jobs:
os: [windows-latest, ubuntu-latest, macos-11]
steps:
- - uses: actions/checkout@e2f20e631ae6d7dd3b768f56a5d2af784dd54791 # v2.5.0
+ - uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11 # v4.1.1
with:
submodules: 'true'
- - uses: actions/setup-python@7f80679172b057fc5e90d70d197929d454754a5a # v4.3.0
+ - uses: mamba-org/setup-micromamba@422500192359a097648154e8db4e39bdb6c6eed7 # v1.8.1
with:
- python-version: '3.8'
- architecture: 'x64'
-
- - uses: actions/setup-java@d202f5dbf7256730fb690ec59f6381650114feb2 # v3.6.0
- with:
- java-version: 1.8
-
- - name: Install Python packages
- run: |
- python -m pip install wheel setuptools
- python -m pip install awscli
+ micromamba-version: '1.5.6-0'
+ environment-name: jvm_tests
+ create-args: >-
+ python=3.10
+ awscli
+ cache-downloads: true
+ cache-environment: true
+ init-shell: bash powershell
- name: Cache Maven packages
- uses: actions/cache@6998d139ddd3e68c71e9e398d8e40b71a2f39812 # v3.2.5
+ uses: actions/cache@13aacd865c20de90d75de3b17ebe84f7a17d57d2 # v4.0.0
with:
path: ~/.m2
key: ${{ runner.os }}-m2-${{ hashFiles('./jvm-packages/pom.xml') }}
restore-keys: ${{ runner.os }}-m2-${{ hashFiles('./jvm-packages/pom.xml') }}
+ - name: Build xgboost4j.dll
+ run: |
+ mkdir build
+ cd build
+ cmake .. -G"Visual Studio 17 2022" -A x64 -DJVM_BINDINGS=ON
+ cmake --build . --config Release
+ if: matrix.os == 'windows-latest'
+
- name: Test XGBoost4J (Core)
run: |
cd jvm-packages
@@ -47,7 +56,8 @@ jobs:
- name: Extract branch name
shell: bash
- run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})"
+ run: |
+ echo "branch=${GITHUB_REF#refs/heads/}" >> "$GITHUB_OUTPUT"
id: extract_branch
if: |
(github.ref == 'refs/heads/master' || contains(github.ref, 'refs/heads/release_')) &&
@@ -58,7 +68,7 @@ jobs:
cd lib/
Rename-Item -Path xgboost4j.dll -NewName xgboost4j_${{ github.sha }}.dll
dir
- python -m awscli s3 cp xgboost4j_${{ github.sha }}.dll s3://xgboost-nightly-builds/${{ steps.extract_branch.outputs.branch }}/libxgboost4j/ --acl public-read
+ python -m awscli s3 cp xgboost4j_${{ github.sha }}.dll s3://xgboost-nightly-builds/${{ steps.extract_branch.outputs.branch }}/libxgboost4j/ --acl public-read --region us-west-2
if: |
(github.ref == 'refs/heads/master' || contains(github.ref, 'refs/heads/release_')) &&
matrix.os == 'windows-latest'
@@ -67,11 +77,12 @@ jobs:
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY_IAM_S3_UPLOADER }}
- name: Publish artifact libxgboost4j.dylib to S3
+ shell: bash -l {0}
run: |
cd lib/
mv -v libxgboost4j.dylib libxgboost4j_${{ github.sha }}.dylib
ls
- python -m awscli s3 cp libxgboost4j_${{ github.sha }}.dylib s3://xgboost-nightly-builds/${{ steps.extract_branch.outputs.branch }}/libxgboost4j/ --acl public-read
+ python -m awscli s3 cp libxgboost4j_${{ github.sha }}.dylib s3://xgboost-nightly-builds/${{ steps.extract_branch.outputs.branch }}/libxgboost4j/ --acl public-read --region us-west-2
if: |
(github.ref == 'refs/heads/master' || contains(github.ref, 'refs/heads/release_')) &&
matrix.os == 'macos-11'
diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml
index 20e91a5d9..b064b4843 100644
--- a/.github/workflows/main.yml
+++ b/.github/workflows/main.yml
@@ -9,6 +9,10 @@ on: [push, pull_request]
permissions:
contents: read # to fetch code (actions/checkout)
+concurrency:
+ group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
+ cancel-in-progress: true
+
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
gtest-cpu:
@@ -174,7 +178,7 @@ jobs:
- uses: actions/checkout@e2f20e631ae6d7dd3b768f56a5d2af784dd54791 # v2.5.0
with:
submodules: 'true'
- - uses: actions/setup-python@7f80679172b057fc5e90d70d197929d454754a5a # v4.3.0
+ - uses: actions/setup-python@0a5c61591373683505ea898e09a3ea4f39ef2b9c # v5.0.0
with:
python-version: "3.8"
architecture: 'x64'
diff --git a/.github/workflows/python_tests.yml b/.github/workflows/python_tests.yml
index 0fca76673..0a182677f 100644
--- a/.github/workflows/python_tests.yml
+++ b/.github/workflows/python_tests.yml
@@ -9,6 +9,10 @@ defaults:
run:
shell: bash -l {0}
+concurrency:
+ group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
+ cancel-in-progress: true
+
jobs:
python-mypy-lint:
runs-on: ubuntu-latest
@@ -310,7 +314,7 @@ jobs:
submodules: 'true'
- name: Set up Python 3.8
- uses: actions/setup-python@v4
+ uses: actions/setup-python@0a5c61591373683505ea898e09a3ea4f39ef2b9c # v5.0.0
with:
python-version: 3.8
diff --git a/.github/workflows/python_wheels.yml b/.github/workflows/python_wheels.yml
index f46b77295..cb56e1214 100644
--- a/.github/workflows/python_wheels.yml
+++ b/.github/workflows/python_wheels.yml
@@ -5,6 +5,10 @@ on: [push, pull_request]
permissions:
contents: read # to fetch code (actions/checkout)
+concurrency:
+ group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
+ cancel-in-progress: true
+
jobs:
python-wheels:
name: Build wheel for ${{ matrix.platform_id }}
@@ -17,11 +21,11 @@ jobs:
- os: macos-latest
platform_id: macosx_arm64
steps:
- - uses: actions/checkout@e2f20e631ae6d7dd3b768f56a5d2af784dd54791 # v2.5.0
+ - uses: actions/checkout@a12a3943b4bdde767164f792f33f40b04645d846 # v3.0.0
with:
submodules: 'true'
- name: Setup Python
- uses: actions/setup-python@7f80679172b057fc5e90d70d197929d454754a5a # v4.3.0
+ uses: actions/setup-python@0a5c61591373683505ea898e09a3ea4f39ef2b9c # v5.0.0
with:
python-version: "3.8"
- name: Build wheels
diff --git a/.github/workflows/r_nold.yml b/.github/workflows/r_nold.yml
index a014c9138..eb7179e81 100644
--- a/.github/workflows/r_nold.yml
+++ b/.github/workflows/r_nold.yml
@@ -10,6 +10,10 @@ on:
permissions:
contents: read # to fetch code (actions/checkout)
+concurrency:
+ group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
+ cancel-in-progress: true
+
jobs:
test-R-noLD:
if: github.event.comment.body == '/gha run r-nold-test' && contains('OWNER,MEMBER,COLLABORATOR', github.event.comment.author_association)
diff --git a/.github/workflows/r_tests.yml b/.github/workflows/r_tests.yml
index d004ab15c..7dbdf3a84 100644
--- a/.github/workflows/r_tests.yml
+++ b/.github/workflows/r_tests.yml
@@ -8,6 +8,10 @@ env:
permissions:
contents: read # to fetch code (actions/checkout)
+concurrency:
+ group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
+ cancel-in-progress: true
+
jobs:
lintr:
runs-on: ${{ matrix.config.os }}
@@ -46,7 +50,7 @@ jobs:
MAKEFLAGS="-j$(nproc)" R CMD INSTALL R-package/
Rscript tests/ci_build/lint_r.R $(pwd)
- test-R-on-Windows:
+ test-Rpkg:
runs-on: ${{ matrix.config.os }}
name: Test R on OS ${{ matrix.config.os }}, R ${{ matrix.config.r }}, Compiler ${{ matrix.config.compiler }}, Build ${{ matrix.config.build }}
strategy:
@@ -54,11 +58,17 @@ jobs:
matrix:
config:
- {os: windows-latest, r: 'release', compiler: 'mingw', build: 'autotools'}
+ - {os: ubuntu-latest, r: 'release', compiler: 'none', build: 'cmake'}
env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
RSPM: ${{ matrix.config.rspm }}
steps:
+ - name: Install system dependencies
+ run: |
+ sudo apt update
+ sudo apt install libcurl4-openssl-dev libssl-dev libssh2-1-dev libgit2-dev libglpk-dev libxml2-dev libharfbuzz-dev libfribidi-dev
+ if: matrix.config.os == 'ubuntu-latest'
- uses: actions/checkout@e2f20e631ae6d7dd3b768f56a5d2af784dd54791 # v2.5.0
with:
submodules: 'true'
@@ -74,7 +84,7 @@ jobs:
key: ${{ runner.os }}-r-${{ matrix.config.r }}-6-${{ hashFiles('R-package/DESCRIPTION') }}
restore-keys: ${{ runner.os }}-r-${{ matrix.config.r }}-6-${{ hashFiles('R-package/DESCRIPTION') }}
- - uses: actions/setup-python@7f80679172b057fc5e90d70d197929d454754a5a # v4.3.0
+ - uses: actions/setup-python@0a5c61591373683505ea898e09a3ea4f39ef2b9c # v5.0.0
with:
python-version: "3.8"
architecture: 'x64'
@@ -89,12 +99,18 @@ jobs:
- name: Test R
run: |
python tests/ci_build/test_r_package.py --compiler='${{ matrix.config.compiler }}' --build-tool="${{ matrix.config.build }}" --task=check
+ if: matrix.config.compiler != 'none'
+
+ - name: Test R
+ run: |
+ python tests/ci_build/test_r_package.py --build-tool="${{ matrix.config.build }}" --task=check
+ if: matrix.config.compiler == 'none'
test-R-on-Debian:
name: Test R package on Debian
runs-on: ubuntu-latest
container:
- image: rhub/debian-gcc-devel
+ image: rhub/debian-gcc-release
steps:
- name: Install system dependencies
@@ -114,12 +130,12 @@ jobs:
- name: Install dependencies
shell: bash -l {0}
run: |
- /tmp/R-devel/bin/Rscript -e "source('./R-package/tests/helper_scripts/install_deps.R')"
+ Rscript -e "source('./R-package/tests/helper_scripts/install_deps.R')"
- name: Test R
shell: bash -l {0}
run: |
- python3 tests/ci_build/test_r_package.py --r=/tmp/R-devel/bin/R --build-tool=autotools --task=check
+ python3 tests/ci_build/test_r_package.py --r=/usr/bin/R --build-tool=autotools --task=check
- uses: dorny/paths-filter@v2
id: changes
@@ -131,4 +147,4 @@ jobs:
- name: Run document check
if: steps.changes.outputs.r_package == 'true'
run: |
- python3 tests/ci_build/test_r_package.py --r=/tmp/R-devel/bin/R --task=doc
+ python3 tests/ci_build/test_r_package.py --r=/usr/bin/R --task=doc
diff --git a/.github/workflows/scorecards.yml b/.github/workflows/scorecards.yml
index 78cde0a43..24cf0cf35 100644
--- a/.github/workflows/scorecards.yml
+++ b/.github/workflows/scorecards.yml
@@ -22,12 +22,12 @@ jobs:
steps:
- name: "Checkout code"
- uses: actions/checkout@a12a3943b4bdde767164f792f33f40b04645d846 # tag=v3.0.0
+ uses: actions/checkout@a12a3943b4bdde767164f792f33f40b04645d846 # v3.0.0
with:
persist-credentials: false
- name: "Run analysis"
- uses: ossf/scorecard-action@08b4669551908b1024bb425080c797723083c031 # tag=v2.2.0
+ uses: ossf/scorecard-action@0864cf19026789058feabb7e87baa5f140aac736 # v2.3.1
with:
results_file: results.sarif
results_format: sarif
@@ -41,7 +41,7 @@ jobs:
# Upload the results as artifacts (optional). Commenting out will disable uploads of run results in SARIF
# format to the repository Actions tab.
- name: "Upload artifact"
- uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce # tag=v3.1.2
+ uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3 # v4.3.1
with:
name: SARIF file
path: results.sarif
@@ -49,6 +49,6 @@ jobs:
# Upload the results to GitHub's code scanning dashboard.
- name: "Upload to code-scanning"
- uses: github/codeql-action/upload-sarif@7b6664fa89524ee6e3c3e9749402d5afd69b3cd8 # tag=v2.14.1
+ uses: github/codeql-action/upload-sarif@83a02f7883b12e0e4e1a146174f5e2292a01e601 # v2.16.4
with:
sarif_file: results.sarif
diff --git a/.github/workflows/update_rapids.yml b/.github/workflows/update_rapids.yml
index 395a42148..22a395799 100644
--- a/.github/workflows/update_rapids.yml
+++ b/.github/workflows/update_rapids.yml
@@ -3,7 +3,7 @@ name: update-rapids
on:
workflow_dispatch:
schedule:
- - cron: "0 20 * * *" # Run once daily
+ - cron: "0 20 * * 1" # Run once weekly
permissions:
pull-requests: write
@@ -32,7 +32,7 @@ jobs:
run: |
bash tests/buildkite/update-rapids.sh
- name: Create Pull Request
- uses: peter-evans/create-pull-request@v5
+ uses: peter-evans/create-pull-request@v6
if: github.ref == 'refs/heads/master'
with:
add-paths: |
diff --git a/NEWS.md b/NEWS.md
index 43019d877..b067c8e3c 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -2101,7 +2101,7 @@ This release marks a major milestone for the XGBoost project.
## v0.90 (2019.05.18)
### XGBoost Python package drops Python 2.x (#4379, #4381)
-Python 2.x is reaching its end-of-life at the end of this year. [Many scientific Python packages are now moving to drop Python 2.x](https://python3statement.org/).
+Python 2.x is reaching its end-of-life at the end of this year. [Many scientific Python packages are now moving to drop Python 2.x](https://python3statement.github.io/).
### XGBoost4J-Spark now requires Spark 2.4.x (#4377)
* Spark 2.3 is reaching its end-of-life soon. See discussion at #4389.
diff --git a/R-package/CMakeLists.txt b/R-package/CMakeLists.txt
index d3a69abc2..37c5dbf4c 100644
--- a/R-package/CMakeLists.txt
+++ b/R-package/CMakeLists.txt
@@ -26,7 +26,6 @@ endif()
target_compile_definitions(
xgboost-r PUBLIC
-DXGBOOST_STRICT_R_MODE=1
- -DXGBOOST_CUSTOMIZE_GLOBAL_PRNG=1
-DDMLC_LOG_BEFORE_THROW=0
-DDMLC_DISABLE_STDIN=1
-DDMLC_LOG_CUSTOMIZE=1
diff --git a/R-package/DESCRIPTION b/R-package/DESCRIPTION
index 66e2b5692..b4072aff0 100644
--- a/R-package/DESCRIPTION
+++ b/R-package/DESCRIPTION
@@ -56,7 +56,8 @@ Suggests:
testthat,
igraph (>= 1.0.1),
float,
- titanic
+ titanic,
+ RhpcBLASctl
Depends:
R (>= 4.3.0)
Imports:
diff --git a/R-package/NAMESPACE b/R-package/NAMESPACE
index 580d1f873..c9e085e77 100644
--- a/R-package/NAMESPACE
+++ b/R-package/NAMESPACE
@@ -20,15 +20,9 @@ export("xgb.attr<-")
export("xgb.attributes<-")
export("xgb.config<-")
export("xgb.parameters<-")
-export(cb.cv.predict)
-export(cb.early.stop)
-export(cb.evaluation.log)
-export(cb.gblinear.history)
-export(cb.print.evaluation)
-export(cb.reset.parameters)
-export(cb.save.model)
export(getinfo)
export(setinfo)
+export(xgb.Callback)
export(xgb.DMatrix)
export(xgb.DMatrix.hasinfo)
export(xgb.DMatrix.save)
@@ -39,6 +33,13 @@ export(xgb.QuantileDMatrix)
export(xgb.QuantileDMatrix.from_iterator)
export(xgb.attr)
export(xgb.attributes)
+export(xgb.cb.cv.predict)
+export(xgb.cb.early.stop)
+export(xgb.cb.evaluation.log)
+export(xgb.cb.gblinear.history)
+export(xgb.cb.print.evaluation)
+export(xgb.cb.reset.parameters)
+export(xgb.cb.save.model)
export(xgb.config)
export(xgb.copy.Booster)
export(xgb.create.features)
@@ -72,14 +73,10 @@ export(xgb.slice.DMatrix)
export(xgb.train)
export(xgboost)
import(methods)
+importClassesFrom(Matrix,CsparseMatrix)
importClassesFrom(Matrix,dgCMatrix)
importClassesFrom(Matrix,dgRMatrix)
-importClassesFrom(Matrix,dgeMatrix)
-importFrom(Matrix,colSums)
importFrom(Matrix,sparse.model.matrix)
-importFrom(Matrix,sparseMatrix)
-importFrom(Matrix,sparseVector)
-importFrom(Matrix,t)
importFrom(data.table,":=")
importFrom(data.table,as.data.table)
importFrom(data.table,data.table)
@@ -101,6 +98,7 @@ importFrom(methods,new)
importFrom(stats,coef)
importFrom(stats,median)
importFrom(stats,predict)
+importFrom(stats,sd)
importFrom(stats,variable.names)
importFrom(utils,head)
importFrom(utils,object.size)
diff --git a/R-package/R/callbacks.R b/R-package/R/callbacks.R
index 02e0a7cd4..39734ab09 100644
--- a/R-package/R/callbacks.R
+++ b/R-package/R/callbacks.R
@@ -1,769 +1,392 @@
-#' Callback closures for booster training.
-#'
-#' These are used to perform various service tasks either during boosting iterations or at the end.
-#' This approach helps to modularize many of such tasks without bloating the main training methods,
-#' and it offers .
-#'
-#' @details
-#' By default, a callback function is run after each boosting iteration.
-#' An R-attribute \code{is_pre_iteration} could be set for a callback to define a pre-iteration function.
-#'
-#' When a callback function has \code{finalize} parameter, its finalizer part will also be run after
-#' the boosting is completed.
-#'
-#' WARNING: side-effects!!! Be aware that these callback functions access and modify things in
-#' the environment from which they are called from, which is a fairly uncommon thing to do in R.
-#'
-#' To write a custom callback closure, make sure you first understand the main concepts about R environments.
-#' Check either R documentation on \code{\link[base]{environment}} or the
-#' \href{http://adv-r.had.co.nz/Environments.html}{Environments chapter} from the "Advanced R"
-#' book by Hadley Wickham. Further, the best option is to read the code of some of the existing callbacks -
-#' choose ones that do something similar to what you want to achieve. Also, you would need to get familiar
-#' with the objects available inside of the \code{xgb.train} and \code{xgb.cv} internal environments.
-#'
-#' @seealso
-#' \code{\link{cb.print.evaluation}},
-#' \code{\link{cb.evaluation.log}},
-#' \code{\link{cb.reset.parameters}},
-#' \code{\link{cb.early.stop}},
-#' \code{\link{cb.save.model}},
-#' \code{\link{cb.cv.predict}},
-#' \code{\link{xgb.train}},
-#' \code{\link{xgb.cv}}
-#'
-#' @name callbacks
-NULL
+.reserved_cb_names <- c("names", "class", "call", "params", "niter", "nfeatures", "folds")
-#
-# Callbacks -------------------------------------------------------------------
-#
-
-#' Callback closure for printing the result of evaluation
+#' @title XGBoost Callback Constructor
+#' @description Constructor for defining the structure of callback functions that can be executed
+#' at different stages of model training (before / after training, before / after each boosting
+#' iteration).
+#' @param cb_name Name for the callback.
#'
-#' @param period results would be printed every number of periods
-#' @param showsd whether standard deviations should be printed (when available)
+#' If the callback produces some non-NULL result (from executing the function passed under
+#' `f_after_training`), that result will be added as an R attribute to the resulting booster
+#' (or as a named element in the result of CV), with the attribute name specified here.
#'
-#' @details
-#' The callback function prints the result of evaluation at every \code{period} iterations.
-#' The initial and the last iteration's evaluations are always printed.
+#' Names of callbacks must be unique - i.e. there cannot be two callbacks with the same name.
+#' @param env An environment object that will be passed to the different functions in the callback.
+#' Note that this environment will not be shared with other callbacks.
+#' @param f_before_training A function that will be executed before the training has started.
#'
-#' Callback function expects the following values to be set in its calling frame:
-#' \code{bst_evaluation} (also \code{bst_evaluation_err} when available),
-#' \code{iteration},
-#' \code{begin_iteration},
-#' \code{end_iteration}.
+#' If passing `NULL` for this or for the other function inputs, then no function will be executed.
#'
-#' @seealso
-#' \code{\link{callbacks}}
+#' If passing a function, it will be called with parameters supplied as non-named arguments
+#' matching the function signatures that are shown in the default value for each function argument.
+#' @param f_before_iter A function that will be executed before each boosting round.
#'
-#' @export
-cb.print.evaluation <- function(period = 1, showsd = TRUE) {
-
- callback <- function(env = parent.frame()) {
- if (length(env$bst_evaluation) == 0 ||
- period == 0 ||
- NVL(env$rank, 0) != 0)
- return()
-
- i <- env$iteration
- if ((i - 1) %% period == 0 ||
- i == env$begin_iteration ||
- i == env$end_iteration) {
- stdev <- if (showsd) env$bst_evaluation_err else NULL
- msg <- .format_eval_string(i, env$bst_evaluation, stdev)
- cat(msg, '\n')
- }
- }
- attr(callback, 'call') <- match.call()
- attr(callback, 'name') <- 'cb.print.evaluation'
- callback
-}
-
-
-#' Callback closure for logging the evaluation history
+#' This function can signal whether the training should be finalized or not, by outputting
+#' a value that evaluates to `TRUE` - i.e. if the output from the function provided here at
+#' a given round is `TRUE`, then training will be stopped before the current iteration happens.
#'
-#' @details
-#' This callback function appends the current iteration evaluation results \code{bst_evaluation}
-#' available in the calling parent frame to the \code{evaluation_log} list in a calling frame.
+#' Return values of `NULL` will be interpreted as `FALSE`.
+#' @param f_after_iter A function that will be executed after each boosting round.
#'
-#' The finalizer callback (called with \code{finalize = TURE} in the end) converts
-#' the \code{evaluation_log} list into a final data.table.
+#' This function can signal whether the training should be finalized or not, by outputting
+#' a value that evaluates to `TRUE` - i.e. if the output from the function provided here at
+#' a given round is `TRUE`, then training will be stopped at that round.
#'
-#' The iteration evaluation result \code{bst_evaluation} must be a named numeric vector.
+#' Return values of `NULL` will be interpreted as `FALSE`.
+#' @param f_after_training A function that will be executed after training is finished.
#'
-#' Note: in the column names of the final data.table, the dash '-' character is replaced with
-#' the underscore '_' in order to make the column names more like regular R identifiers.
+#' This function can optionally output something non-NULL, which will become part of the R
+#' attributes of the booster (assuming one passes `keep_extra_attributes=TRUE` to \link{xgb.train})
+#' under the name supplied for parameter `cb_name` imn the case of \link{xgb.train}; or a part
+#' of the named elements in the result of \link{xgb.cv}.
+#' @return An `xgb.Callback` object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+#' @details Arguments that will be passed to the supplied functions are as follows:\itemize{
#'
-#' Callback function expects the following values to be set in its calling frame:
-#' \code{evaluation_log},
-#' \code{bst_evaluation},
-#' \code{iteration}.
+#' \item env The same environment that is passed under argument `env`.
#'
-#' @seealso
-#' \code{\link{callbacks}}
+#' It may be modified by the functions in order to e.g. keep tracking of what happens
+#' across iterations or similar.
#'
-#' @export
-cb.evaluation.log <- function() {
-
- mnames <- NULL
-
- init <- function(env) {
- if (!is.list(env$evaluation_log))
- stop("'evaluation_log' has to be a list")
- mnames <<- names(env$bst_evaluation)
- if (is.null(mnames) || any(mnames == ""))
- stop("bst_evaluation must have non-empty names")
-
- mnames <<- gsub('-', '_', names(env$bst_evaluation), fixed = TRUE)
- if (!is.null(env$bst_evaluation_err))
- mnames <<- c(paste0(mnames, '_mean'), paste0(mnames, '_std'))
- }
-
- finalizer <- function(env) {
- env$evaluation_log <- as.data.table(t(simplify2array(env$evaluation_log)))
- setnames(env$evaluation_log, c('iter', mnames))
-
- if (!is.null(env$bst_evaluation_err)) {
- # rearrange col order from _mean,_mean,...,_std,_std,...
- # to be _mean,_std,_mean,_std,...
- len <- length(mnames)
- means <- mnames[seq_len(len / 2)]
- stds <- mnames[(len / 2 + 1):len]
- cnames <- numeric(len)
- cnames[c(TRUE, FALSE)] <- means
- cnames[c(FALSE, TRUE)] <- stds
- env$evaluation_log <- env$evaluation_log[, c('iter', cnames), with = FALSE]
- }
- }
-
- callback <- function(env = parent.frame(), finalize = FALSE) {
- if (is.null(mnames))
- init(env)
-
- if (finalize)
- return(finalizer(env))
-
- ev <- env$bst_evaluation
- if (!is.null(env$bst_evaluation_err))
- ev <- c(ev, env$bst_evaluation_err)
- env$evaluation_log <- c(env$evaluation_log,
- list(c(iter = env$iteration, ev)))
- }
- attr(callback, 'call') <- match.call()
- attr(callback, 'name') <- 'cb.evaluation.log'
- callback
-}
-
-#' Callback closure for resetting the booster's parameters at each iteration.
+#' This environment is only used by the functions supplied to the callback, and will
+#' not be kept after the model fitting function terminates (see parameter `f_after_training`).
#'
-#' @param new_params a list where each element corresponds to a parameter that needs to be reset.
-#' Each element's value must be either a vector of values of length \code{nrounds}
-#' to be set at each iteration,
-#' or a function of two parameters \code{learning_rates(iteration, nrounds)}
-#' which returns a new parameter value by using the current iteration number
-#' and the total number of boosting rounds.
+#' \item model The booster object when using \link{xgb.train}, or the folds when using
+#' \link{xgb.cv}.
#'
-#' @details
-#' This is a "pre-iteration" callback function used to reset booster's parameters
-#' at the beginning of each iteration.
-#'
-#' Note that when training is resumed from some previous model, and a function is used to
-#' reset a parameter value, the \code{nrounds} argument in this function would be the
-#' the number of boosting rounds in the current training.
-#'
-#' Callback function expects the following values to be set in its calling frame:
-#' \code{bst} or \code{bst_folds},
-#' \code{iteration},
-#' \code{begin_iteration},
-#' \code{end_iteration}.
-#'
-#' @seealso
-#' \code{\link{callbacks}}
-#'
-#' @export
-cb.reset.parameters <- function(new_params) {
-
- if (typeof(new_params) != "list")
- stop("'new_params' must be a list")
- pnames <- gsub(".", "_", names(new_params), fixed = TRUE)
- nrounds <- NULL
-
- # run some checks in the beginning
- init <- function(env) {
- nrounds <<- env$end_iteration - env$begin_iteration + 1
-
- if (is.null(env$bst) && is.null(env$bst_folds))
- stop("Parent frame has neither 'bst' nor 'bst_folds'")
-
- # Some parameters are not allowed to be changed,
- # since changing them would simply wreck some chaos
- not_allowed <- pnames %in%
- c('num_class', 'num_output_group', 'size_leaf_vector', 'updater_seq')
- if (any(not_allowed))
- stop('Parameters ', paste(pnames[not_allowed]), " cannot be changed during boosting.")
-
- for (n in pnames) {
- p <- new_params[[n]]
- if (is.function(p)) {
- if (length(formals(p)) != 2)
- stop("Parameter '", n, "' is a function but not of two arguments")
- } else if (is.numeric(p) || is.character(p)) {
- if (length(p) != nrounds)
- stop("Length of '", n, "' has to be equal to 'nrounds'")
- } else {
- stop("Parameter '", n, "' is not a function or a vector")
- }
- }
- }
-
- callback <- function(env = parent.frame()) {
- if (is.null(nrounds))
- init(env)
-
- i <- env$iteration
- pars <- lapply(new_params, function(p) {
- if (is.function(p))
- return(p(i, nrounds))
- p[i]
- })
-
- if (!is.null(env$bst)) {
- xgb.parameters(env$bst) <- pars
- } else {
- for (fd in env$bst_folds)
- xgb.parameters(fd$bst) <- pars
- }
- }
- attr(callback, 'is_pre_iteration') <- TRUE
- attr(callback, 'call') <- match.call()
- attr(callback, 'name') <- 'cb.reset.parameters'
- callback
-}
-
-
-#' Callback closure to activate the early stopping.
-#'
-#' @param stopping_rounds The number of rounds with no improvement in
-#' the evaluation metric in order to stop the training.
-#' @param maximize whether to maximize the evaluation metric
-#' @param metric_name the name of an evaluation column to use as a criteria for early
-#' stopping. If not set, the last column would be used.
-#' Let's say the test data in \code{watchlist} was labelled as \code{dtest},
-#' and one wants to use the AUC in test data for early stopping regardless of where
-#' it is in the \code{watchlist}, then one of the following would need to be set:
-#' \code{metric_name='dtest-auc'} or \code{metric_name='dtest_auc'}.
-#' All dash '-' characters in metric names are considered equivalent to '_'.
-#' @param verbose whether to print the early stopping information.
-#'
-#' @details
-#' This callback function determines the condition for early stopping
-#' by setting the \code{stop_condition = TRUE} flag in its calling frame.
-#'
-#' The following additional fields are assigned to the model's R object:
-#' \itemize{
-#' \item \code{best_score} the evaluation score at the best iteration
-#' \item \code{best_iteration} at which boosting iteration the best score has occurred (1-based index)
-#' }
-#' The Same values are also stored as xgb-attributes:
-#' \itemize{
-#' \item \code{best_iteration} is stored as a 0-based iteration index (for interoperability of binary models)
-#' \item \code{best_msg} message string is also stored.
+#' For \link{xgb.cv}, folds are a list with a structure as follows:\itemize{
+#' \item `dtrain`: The training data for the fold (as an `xgb.DMatrix` object).
+#' \item `bst`: Rhe `xgb.Booster` object for the fold.
+#' \item `evals`: A list containing two DMatrices, with names `train` and `test`
+#' (`test` is the held-out data for the fold).
+#' \item `index`: The indices of the hold-out data for that fold (base-1 indexing),
+#' from which the `test` entry in `evals` was obtained.
#' }
#'
-#' At least one data element is required in the evaluation watchlist for early stopping to work.
+#' This object should \bold{not} be in-place modified in ways that conflict with the
+#' training (e.g. resetting the parameters for a training update in a way that resets
+#' the number of rounds to zero in order to overwrite rounds).
#'
-#' Callback function expects the following values to be set in its calling frame:
-#' \code{stop_condition},
-#' \code{bst_evaluation},
-#' \code{rank},
-#' \code{bst} (or \code{bst_folds} and \code{basket}),
-#' \code{iteration},
-#' \code{begin_iteration},
-#' \code{end_iteration},
+#' Note that any R attributes that are assigned to the booster during the callback functions,
+#' will not be kept thereafter as the booster object variable is not re-assigned during
+#' training. It is however possible to set C-level attributes of the booster through
+#' \link{xgb.attr} or \link{xgb.attributes}, which should remain available for the rest
+#' of the iterations and after the training is done.
#'
-#' @seealso
-#' \code{\link{callbacks}},
-#' \code{\link{xgb.attr}}
+#' For keeping variables across iterations, it's recommended to use `env` instead.
+#' \item data The data to which the model is being fit, as an `xgb.DMatrix` object.
#'
-#' @export
-cb.early.stop <- function(stopping_rounds, maximize = FALSE,
- metric_name = NULL, verbose = TRUE) {
- # state variables
- best_iteration <- -1
- best_score <- Inf
- best_msg <- NULL
- metric_idx <- 1
-
- init <- function(env) {
- if (length(env$bst_evaluation) == 0)
- stop("For early stopping, watchlist must have at least one element")
-
- eval_names <- gsub('-', '_', names(env$bst_evaluation), fixed = TRUE)
- if (!is.null(metric_name)) {
- metric_idx <<- which(gsub('-', '_', metric_name, fixed = TRUE) == eval_names)
- if (length(metric_idx) == 0)
- stop("'metric_name' for early stopping is not one of the following:\n",
- paste(eval_names, collapse = ' '), '\n')
- }
- if (is.null(metric_name) &&
- length(env$bst_evaluation) > 1) {
- metric_idx <<- length(eval_names)
- if (verbose)
- cat('Multiple eval metrics are present. Will use ',
- eval_names[metric_idx], ' for early stopping.\n', sep = '')
- }
-
- metric_name <<- eval_names[metric_idx]
-
- # maximize is usually NULL when not set in xgb.train and built-in metrics
- if (is.null(maximize))
- maximize <<- grepl('(_auc|_map|_ndcg|_pre)', metric_name)
-
- if (verbose && NVL(env$rank, 0) == 0)
- cat("Will train until ", metric_name, " hasn't improved in ",
- stopping_rounds, " rounds.\n\n", sep = '')
-
- best_iteration <<- 1
- if (maximize) best_score <<- -Inf
-
- env$stop_condition <- FALSE
-
- if (!is.null(env$bst)) {
- if (!inherits(env$bst, 'xgb.Booster'))
- stop("'bst' in the parent frame must be an 'xgb.Booster'")
- if (!is.null(best_score <- xgb.attr(env$bst, 'best_score'))) {
- best_score <<- as.numeric(best_score)
- best_iteration <<- as.numeric(xgb.attr(env$bst, 'best_iteration')) + 1
- best_msg <<- as.numeric(xgb.attr(env$bst, 'best_msg'))
- } else {
- xgb.attributes(env$bst) <- list(best_iteration = best_iteration - 1,
- best_score = best_score)
- }
- } else if (is.null(env$bst_folds) || is.null(env$basket)) {
- stop("Parent frame has neither 'bst' nor ('bst_folds' and 'basket')")
- }
- }
-
- finalizer <- function(env) {
- if (!is.null(env$bst)) {
- attr_best_score <- as.numeric(xgb.attr(env$bst, 'best_score'))
- if (best_score != attr_best_score) {
- # If the difference is too big, throw an error
- if (abs(best_score - attr_best_score) >= 1e-14) {
- stop("Inconsistent 'best_score' values between the closure state: ", best_score,
- " and the xgb.attr: ", attr_best_score)
- }
- # If the difference is due to floating-point truncation, update best_score
- best_score <- attr_best_score
- }
- xgb.attr(env$bst, "best_iteration") <- best_iteration - 1
- xgb.attr(env$bst, "best_score") <- best_score
- } else {
- env$basket$best_iteration <- best_iteration
- }
- }
-
- callback <- function(env = parent.frame(), finalize = FALSE) {
- if (best_iteration < 0)
- init(env)
-
- if (finalize)
- return(finalizer(env))
-
- i <- env$iteration
- score <- env$bst_evaluation[metric_idx]
-
- if ((maximize && score > best_score) ||
- (!maximize && score < best_score)) {
-
- best_msg <<- .format_eval_string(
- i, env$bst_evaluation, env$bst_evaluation_err
- )
- best_score <<- score
- best_iteration <<- i
- # save the property to attributes, so they will occur in checkpoint
- if (!is.null(env$bst)) {
- xgb.attributes(env$bst) <- list(
- best_iteration = best_iteration - 1, # convert to 0-based index
- best_score = best_score,
- best_msg = best_msg
- )
- }
- } else if (i - best_iteration >= stopping_rounds) {
- env$stop_condition <- TRUE
- env$end_iteration <- i
- if (verbose && NVL(env$rank, 0) == 0)
- cat("Stopping. Best iteration:\n", best_msg, "\n\n", sep = '')
- }
- }
- attr(callback, 'call') <- match.call()
- attr(callback, 'name') <- 'cb.early.stop'
- callback
-}
-
-
-#' Callback closure for saving a model file.
+#' Note that, for \link{xgb.cv}, this will be the full data, while data for the specific
+#' folds can be found in the `model` object.
#'
-#' @param save_period save the model to disk after every
-#' \code{save_period} iterations; 0 means save the model at the end.
-#' @param save_name the name or path for the saved model file.
+#' \item evals The evaluation data, as passed under argument `evals` to
+#' \link{xgb.train}.
#'
-#' Note that the format of the model being saved is determined by the file
-#' extension specified here (see \link{xgb.save} for details about how it works).
+#' For \link{xgb.cv}, this will always be `NULL`.
#'
-#' It can contain a \code{\link[base]{sprintf}} formatting specifier
-#' to include the integer iteration number in the file name.
-#' E.g., with \code{save_name} = 'xgboost_%04d.ubj',
-#' the file saved at iteration 50 would be named "xgboost_0050.ubj".
-#' @seealso \link{xgb.save}
-#' @details
-#' This callback function allows to save an xgb-model file, either periodically after each \code{save_period}'s or at the end.
+#' \item begin_iteration Index of the first boosting iteration that will be executed
+#' (base-1 indexing).
#'
-#' Callback function expects the following values to be set in its calling frame:
-#' \code{bst},
-#' \code{iteration},
-#' \code{begin_iteration},
-#' \code{end_iteration}.
+#' This will typically be '1', but when using training continuation, depending on the
+#' parameters for updates, boosting rounds will be continued from where the previous
+#' model ended, in which case this will be larger than 1.
#'
-#' @seealso
-#' \code{\link{callbacks}}
+#' \item end_iteration Index of the last boostign iteration that will be executed
+#' (base-1 indexing, inclusive of this end).
#'
-#' @export
-cb.save.model <- function(save_period = 0, save_name = "xgboost.ubj") {
-
- if (save_period < 0)
- stop("'save_period' cannot be negative")
-
- callback <- function(env = parent.frame()) {
- if (is.null(env$bst))
- stop("'save_model' callback requires the 'bst' booster object in its calling frame")
-
- if ((save_period > 0 && (env$iteration - env$begin_iteration) %% save_period == 0) ||
- (save_period == 0 && env$iteration == env$end_iteration)) {
- # Note: this throws a warning if the name doesn't have anything to format through 'sprintf'
- suppressWarnings({
- save_name <- sprintf(save_name, env$iteration)
- })
- xgb.save(env$bst, save_name)
- }
- }
- attr(callback, 'call') <- match.call()
- attr(callback, 'name') <- 'cb.save.model'
- callback
-}
-
-
-#' Callback closure for returning cross-validation based predictions.
+#' It should match with argument `nrounds` passed to \link{xgb.train} or \link{xgb.cv}.
#'
-#' @param save_models a flag for whether to save the folds' models.
+#' Note that boosting might be interrupted before reaching this last iteration, for
+#' example by using the early stopping callback \link{xgb.cb.early.stop}.
#'
-#' @details
-#' This callback function saves predictions for all of the test folds,
-#' and also allows to save the folds' models.
+#' \item iteration Index of the iteration number that is being executed (first iteration
+#' will be the same as parameter `begin_iteration`, then next one will add +1, and so on).
#'
-#' It is a "finalizer" callback and it uses early stopping information whenever it is available,
-#' thus it must be run after the early stopping callback if the early stopping is used.
+#' \item iter_feval Evaluation metrics for `evals` that were supplied, either
+#' determined by the objective, or by parameter `feval`.
#'
-#' Callback function expects the following values to be set in its calling frame:
-#' \code{bst_folds},
-#' \code{basket},
-#' \code{data},
-#' \code{end_iteration},
-#' \code{params},
+#' For \link{xgb.train}, this will be a named vector with one entry per element in
+#' `evals`, where the names are determined as 'evals name' + '-' + 'metric name' - for
+#' example, if `evals` contains an entry named "tr" and the metric is "rmse",
+#' this will be a one-element vector with name "tr-rmse".
#'
-#' @return
-#' Predictions are returned inside of the \code{pred} element, which is either a vector or a matrix,
-#' depending on the number of prediction outputs per data row. The order of predictions corresponds
-#' to the order of rows in the original dataset. Note that when a custom \code{folds} list is
-#' provided in \code{xgb.cv}, the predictions would only be returned properly when this list is a
-#' non-overlapping list of k sets of indices, as in a standard k-fold CV. The predictions would not be
-#' meaningful when user-provided folds have overlapping indices as in, e.g., random sampling splits.
-#' When some of the indices in the training dataset are not included into user-provided \code{folds},
-#' their prediction value would be \code{NA}.
+#' For \link{xgb.cv}, this will be a 2d matrix with dimensions `[length(evals), nfolds]`,
+#' where the row names will follow the same naming logic as the one-dimensional vector
+#' that is passed in \link{xgb.train}.
#'
-#' @seealso
-#' \code{\link{callbacks}}
+#' Note that, internally, the built-in callbacks such as \link{xgb.cb.print.evaluation} summarize
+#' this table by calculating the row-wise means and standard deviations.
#'
-#' @export
-cb.cv.predict <- function(save_models = FALSE) {
-
- finalizer <- function(env) {
- if (is.null(env$basket) || is.null(env$bst_folds))
- stop("'cb.cv.predict' callback requires 'basket' and 'bst_folds' lists in its calling frame")
-
- N <- nrow(env$data)
- pred <- NULL
-
- iterationrange <- c(1, NVL(env$basket$best_iteration, env$end_iteration))
- if (NVL(env$params[['booster']], '') == 'gblinear') {
- iterationrange <- "all"
- }
- for (fd in env$bst_folds) {
- pr <- predict(fd$bst, fd$watchlist[[2]], iterationrange = iterationrange, reshape = TRUE)
- if (is.null(pred)) {
- if (NCOL(pr) > 1L) {
- pred <- matrix(NA_real_, N, ncol(pr))
- } else {
- pred <- matrix(NA_real_, N)
- }
- }
- if (is.matrix(pred)) {
- pred[fd$index, ] <- pr
- } else {
- pred[fd$index] <- pr
- }
- }
- env$basket$pred <- pred
- if (save_models) {
- env$basket$models <- lapply(env$bst_folds, function(fd) {
- return(fd$bst)
- })
- }
- }
-
- callback <- function(env = parent.frame(), finalize = FALSE) {
- if (finalize)
- return(finalizer(env))
- }
- attr(callback, 'call') <- match.call()
- attr(callback, 'name') <- 'cb.cv.predict'
- callback
-}
-
-
-#' Callback closure for collecting the model coefficients history of a gblinear booster
-#' during its training.
+#' \item final_feval The evaluation results after the last boosting round is executed
+#' (same format as `iter_feval`, and will be the exact same input as passed under
+#' `iter_feval` to the last round that is executed during model fitting).
#'
-#' @param sparse when set to FALSE/TRUE, a dense/sparse matrix is used to store the result.
-#' Sparse format is useful when one expects only a subset of coefficients to be non-zero,
-#' when using the "thrifty" feature selector with fairly small number of top features
-#' selected per iteration.
+#' \item prev_cb_res Result from a previous run of a callback sharing the same name
+#' (as given by parameter `cb_name`) when conducting training continuation, if there
+#' was any in the booster R attributes.
#'
-#' @details
-#' To keep things fast and simple, gblinear booster does not internally store the history of linear
-#' model coefficients at each boosting iteration. This callback provides a workaround for storing
-#' the coefficients' path, by extracting them after each training iteration.
+#' Some times, one might want to append the new results to the previous one, and this will
+#' be done automatically by the built-in callbacks such as \link{xgb.cb.evaluation.log},
+#' which will append the new rows to the previous table.
#'
-#' Callback function expects the following values to be set in its calling frame:
-#' \code{bst} (or \code{bst_folds}).
+#' If no such previous callback result is available (which it never will when fitting
+#' a model from start instead of updating an existing model), this will be `NULL`.
#'
-#' @return
-#' Results are stored in the \code{coefs} element of the closure.
-#' The \code{\link{xgb.gblinear.history}} convenience function provides an easy
-#' way to access it.
-#' With \code{xgb.train}, it is either a dense of a sparse matrix.
-#' While with \code{xgb.cv}, it is a list (an element per each fold) of such
-#' matrices.
+#' For \link{xgb.cv}, which doesn't support training continuation, this will always be `NULL`.
+#' }
#'
-#' @seealso
-#' \code{\link{callbacks}}, \code{\link{xgb.gblinear.history}}.
+#' The following names (`cb_name` values) are reserved for internal callbacks:\itemize{
+#' \item print_evaluation
+#' \item evaluation_log
+#' \item reset_parameters
+#' \item early_stop
+#' \item save_model
+#' \item cv_predict
+#' \item gblinear_history
+#' }
#'
+#' The following names are reserved for other non-callback attributes:\itemize{
+#' \item names
+#' \item class
+#' \item call
+#' \item params
+#' \item niter
+#' \item nfeatures
+#' \item folds
+#' }
+#'
+#' When using the built-in early stopping callback (\link{xgb.cb.early.stop}), said callback
+#' will always be executed before the others, as it sets some booster C-level attributes
+#' that other callbacks might also use. Otherwise, the order of execution will match with
+#' the order in which the callbacks are passed to the model fitting function.
+#' @seealso Built-in callbacks:\itemize{
+#' \item \link{xgb.cb.print.evaluation}
+#' \item \link{xgb.cb.evaluation.log}
+#' \item \link{xgb.cb.reset.parameters}
+#' \item \link{xgb.cb.early.stop}
+#' \item \link{xgb.cb.save.model}
+#' \item \link{xgb.cb.cv.predict}
+#' \item \link{xgb.cb.gblinear.history}
+#' }
#' @examples
-#' #### Binary classification:
+#' # Example constructing a custom callback that calculates
+#' # squared error on the training data (no separate test set),
+#' # and outputs the per-iteration results.
+#' ssq_callback <- xgb.Callback(
+#' cb_name = "ssq",
+#' f_before_training = function(env, model, data, evals,
+#' begin_iteration, end_iteration) {
+#' # A vector to keep track of a number at each iteration
+#' env$logs <- rep(NA_real_, end_iteration - begin_iteration + 1)
+#' },
+#' f_after_iter = function(env, model, data, evals, iteration, iter_feval) {
+#' # This calculates the sum of squared errors on the training data.
+#' # Note that this can be better done by passing an 'evals' entry,
+#' # but this demonstrates a way in which callbacks can be structured.
+#' pred <- predict(model, data)
+#' err <- pred - getinfo(data, "label")
+#' sq_err <- sum(err^2)
+#' env$logs[iteration] <- sq_err
+#' cat(
+#' sprintf(
+#' "Squared error at iteration %d: %.2f\n",
+#' iteration, sq_err
+#' )
+#' )
#'
-#' ## Keep the number of threads to 1 for examples
-#' nthread <- 1
-#' data.table::setDTthreads(nthread)
+#' # A return value of 'TRUE' here would signal to finalize the training
+#' return(FALSE)
+#' },
+#' f_after_training = function(env, model, data, evals, iteration,
+#' final_feval, prev_cb_res) {
+#' return(env$logs)
+#' }
+#' )
#'
-#' # In the iris dataset, it is hard to linearly separate Versicolor class from the rest
-#' # without considering the 2nd order interactions:
-#' x <- model.matrix(Species ~ .^2, iris)[,-1]
-#' colnames(x)
-#' dtrain <- xgb.DMatrix(scale(x), label = 1*(iris$Species == "versicolor"), nthread = nthread)
-#' param <- list(booster = "gblinear", objective = "reg:logistic", eval_metric = "auc",
-#' lambda = 0.0003, alpha = 0.0003, nthread = nthread)
-#' # For 'shotgun', which is a default linear updater, using high eta values may result in
-#' # unstable behaviour in some datasets. With this simple dataset, however, the high learning
-#' # rate does not break the convergence, but allows us to illustrate the typical pattern of
-#' # "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations.
-#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 1.,
-#' callbacks = list(cb.gblinear.history()))
-#' # Extract the coefficients' path and plot them vs boosting iteration number:
-#' coef_path <- xgb.gblinear.history(bst)
-#' matplot(coef_path, type = 'l')
-#'
-#' # With the deterministic coordinate descent updater, it is safer to use higher learning rates.
-#' # Will try the classical componentwise boosting which selects a single best feature per round:
-#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 0.8,
-#' updater = 'coord_descent', feature_selector = 'thrifty', top_k = 1,
-#' callbacks = list(cb.gblinear.history()))
-#' matplot(xgb.gblinear.history(bst), type = 'l')
-#' # Componentwise boosting is known to have similar effect to Lasso regularization.
-#' # Try experimenting with various values of top_k, eta, nrounds,
-#' # as well as different feature_selectors.
-#'
-#' # For xgb.cv:
-#' bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 100, eta = 0.8,
-#' callbacks = list(cb.gblinear.history()))
-#' # coefficients in the CV fold #3
-#' matplot(xgb.gblinear.history(bst)[[3]], type = 'l')
-#'
-#'
-#' #### Multiclass classification:
-#' #
-#' dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = nthread)
-#' param <- list(booster = "gblinear", objective = "multi:softprob", num_class = 3,
-#' lambda = 0.0003, alpha = 0.0003, nthread = nthread)
-#' # For the default linear updater 'shotgun' it sometimes is helpful
-#' # to use smaller eta to reduce instability
-#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 50, eta = 0.5,
-#' callbacks = list(cb.gblinear.history()))
-#' # Will plot the coefficient paths separately for each class:
-#' matplot(xgb.gblinear.history(bst, class_index = 0), type = 'l')
-#' matplot(xgb.gblinear.history(bst, class_index = 1), type = 'l')
-#' matplot(xgb.gblinear.history(bst, class_index = 2), type = 'l')
-#'
-#' # CV:
-#' bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 70, eta = 0.5,
-#' callbacks = list(cb.gblinear.history(FALSE)))
-#' # 1st fold of 1st class
-#' matplot(xgb.gblinear.history(bst, class_index = 0)[[1]], type = 'l')
+#' data(mtcars)
+#' y <- mtcars$mpg
+#' x <- as.matrix(mtcars[, -1])
+#' dm <- xgb.DMatrix(x, label = y, nthread = 1)
+#' model <- xgb.train(
+#' data = dm,
+#' params = list(objective = "reg:squarederror", nthread = 1),
+#' nrounds = 5,
+#' callbacks = list(ssq_callback),
+#' keep_extra_attributes = TRUE
+#' )
#'
+#' # Result from 'f_after_iter' will be available as an attribute
+#' attributes(model)$ssq
#' @export
-cb.gblinear.history <- function(sparse = FALSE) {
- coefs <- NULL
+xgb.Callback <- function(
+ cb_name = "custom_callback",
+ env = new.env(),
+ f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) NULL,
+ f_before_iter = function(env, model, data, evals, iteration) NULL,
+ f_after_iter = function(env, model, data, evals, iteration, iter_feval) NULL,
+ f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) NULL
+) {
+ stopifnot(is.null(f_before_training) || is.function(f_before_training))
+ stopifnot(is.null(f_before_iter) || is.function(f_before_iter))
+ stopifnot(is.null(f_after_iter) || is.function(f_after_iter))
+ stopifnot(is.null(f_after_training) || is.function(f_after_training))
+ stopifnot(is.character(cb_name) && length(cb_name) == 1)
- init <- function(env) {
- # xgb.train(): bst will be present
- # xgb.cv(): bst_folds will be present
- if (is.null(env$bst) && is.null(env$bst_folds)) {
- stop("Parent frame has neither 'bst' nor 'bst_folds'")
- }
+ if (cb_name %in% .reserved_cb_names) {
+ stop("Cannot use reserved callback name '", cb_name, "'.")
}
- # convert from list to (sparse) matrix
- list2mat <- function(coef_list) {
- if (sparse) {
- coef_mat <- sparseMatrix(x = unlist(lapply(coef_list, slot, "x")),
- i = unlist(lapply(coef_list, slot, "i")),
- p = c(0, cumsum(sapply(coef_list, function(x) length(x@x)))),
- dims = c(length(coef_list[[1]]), length(coef_list)))
- return(t(coef_mat))
- } else {
- return(do.call(rbind, coef_list))
- }
- }
+ out <- list(
+ cb_name = cb_name,
+ env = env,
+ f_before_training = f_before_training,
+ f_before_iter = f_before_iter,
+ f_after_iter = f_after_iter,
+ f_after_training = f_after_training
+ )
+ class(out) <- "xgb.Callback"
+ return(out)
+}
- finalizer <- function(env) {
- if (length(coefs) == 0)
- return()
- if (!is.null(env$bst)) { # # xgb.train:
- coefs <<- list2mat(coefs)
- } else { # xgb.cv:
- # second lapply transposes the list
- coefs <<- lapply(
- X = lapply(
- X = seq_along(coefs[[1]]),
- FUN = function(i) lapply(coefs, "[[", i)
- ),
- FUN = list2mat
+.execute.cb.before.training <- function(
+ callbacks,
+ model,
+ data,
+ evals,
+ begin_iteration,
+ end_iteration
+) {
+ for (callback in callbacks) {
+ if (!is.null(callback$f_before_training)) {
+ callback$f_before_training(
+ callback$env,
+ model,
+ data,
+ evals,
+ begin_iteration,
+ end_iteration
)
}
}
-
- extract.coef <- function(env) {
- if (!is.null(env$bst)) { # # xgb.train:
- cf <- as.numeric(grep('(booster|bias|weigh)', xgb.dump(env$bst), invert = TRUE, value = TRUE))
- if (sparse) cf <- as(cf, "sparseVector")
- } else { # xgb.cv:
- cf <- vector("list", length(env$bst_folds))
- for (i in seq_along(env$bst_folds)) {
- dmp <- xgb.dump(env$bst_folds[[i]]$bst)
- cf[[i]] <- as.numeric(grep('(booster|bias|weigh)', dmp, invert = TRUE, value = TRUE))
- if (sparse) cf[[i]] <- as(cf[[i]], "sparseVector")
- }
- }
- cf
- }
-
- callback <- function(env = parent.frame(), finalize = FALSE) {
- if (is.null(coefs)) init(env)
- if (finalize) return(finalizer(env))
- cf <- extract.coef(env)
- coefs <<- c(coefs, list(cf))
- }
-
- attr(callback, 'call') <- match.call()
- attr(callback, 'name') <- 'cb.gblinear.history'
- callback
}
-#' @title Extract gblinear coefficients history.
-#' @description A helper function to extract the matrix of linear coefficients' history
-#' from a gblinear model created while using the \code{cb.gblinear.history()}
-#' callback.
-#' @details Note that this is an R-specific function that relies on R attributes that
-#' are not saved when using xgboost's own serialization functions like \link{xgb.load}
-#' or \link{xgb.load.raw}.
-#'
-#' In order for a serialized model to be accepted by tgis function, one must use R
-#' serializers such as \link{saveRDS}.
-#' @param model either an \code{xgb.Booster} or a result of \code{xgb.cv()}, trained
-#' using the \code{cb.gblinear.history()} callback, but \bold{not} a booster
-#' loaded from \link{xgb.load} or \link{xgb.load.raw}.
-#' @param class_index zero-based class index to extract the coefficients for only that
-#' specific class in a multinomial multiclass model. When it is NULL, all the
-#' coefficients are returned. Has no effect in non-multiclass models.
-#'
-#' @return
-#' For an \code{xgb.train} result, a matrix (either dense or sparse) with the columns
-#' corresponding to iteration's coefficients (in the order as \code{xgb.dump()} would
-#' return) and the rows corresponding to boosting iterations.
-#'
-#' For an \code{xgb.cv} result, a list of such matrices is returned with the elements
-#' corresponding to CV folds.
-#'
-#' @export
-xgb.gblinear.history <- function(model, class_index = NULL) {
-
- if (!(inherits(model, "xgb.Booster") ||
- inherits(model, "xgb.cv.synchronous")))
- stop("model must be an object of either xgb.Booster or xgb.cv.synchronous class")
- is_cv <- inherits(model, "xgb.cv.synchronous")
-
- if (is_cv) {
- callbacks <- model$callbacks
- } else {
- callbacks <- attributes(model)$callbacks
+.execute.cb.before.iter <- function(
+ callbacks,
+ model,
+ data,
+ evals,
+ iteration
+) {
+ if (!length(callbacks)) {
+ return(FALSE)
}
+ out <- sapply(callbacks, function(cb) {
+ if (is.null(cb$f_before_iter)) {
+ return(FALSE)
+ }
+ should_stop <- cb$f_before_iter(
+ cb$env,
+ model,
+ data,
+ evals,
+ iteration
+ )
+ if (!NROW(should_stop)) {
+ should_stop <- FALSE
+ } else if (NROW(should_stop) > 1) {
+ should_stop <- head(as.logical(should_stop), 1)
+ }
+ return(should_stop)
+ })
+ return(any(out))
+}
- if (is.null(callbacks) || is.null(callbacks$cb.gblinear.history))
- stop("model must be trained while using the cb.gblinear.history() callback")
-
- if (!is_cv) {
- num_class <- xgb.num_class(model)
- num_feat <- xgb.num_feature(model)
- } else {
- # in case of CV, the object is expected to have this info
- if (model$params$booster != "gblinear")
- stop("It does not appear to be a gblinear model")
- num_class <- NVL(model$params$num_class, 1)
- num_feat <- model$nfeatures
- if (is.null(num_feat))
- stop("This xgb.cv result does not have nfeatures info")
+.execute.cb.after.iter <- function(
+ callbacks,
+ model,
+ data,
+ evals,
+ iteration,
+ iter_feval
+) {
+ if (!length(callbacks)) {
+ return(FALSE)
}
+ out <- sapply(callbacks, function(cb) {
+ if (is.null(cb$f_after_iter)) {
+ return(FALSE)
+ }
+ should_stop <- cb$f_after_iter(
+ cb$env,
+ model,
+ data,
+ evals,
+ iteration,
+ iter_feval
+ )
+ if (!NROW(should_stop)) {
+ should_stop <- FALSE
+ } else if (NROW(should_stop) > 1) {
+ should_stop <- head(as.logical(should_stop), 1)
+ }
+ return(should_stop)
+ })
+ return(any(out))
+}
- if (!is.null(class_index) &&
- num_class > 1 &&
- (class_index[1] < 0 || class_index[1] >= num_class))
- stop("class_index has to be within [0,", num_class - 1, "]")
-
- coef_path <- environment(callbacks$cb.gblinear.history)[["coefs"]]
- if (!is.null(class_index) && num_class > 1) {
- coef_path <- if (is.list(coef_path)) {
- lapply(coef_path,
- function(x) x[, seq(1 + class_index, by = num_class, length.out = num_feat)])
+.execute.cb.after.training <- function(
+ callbacks,
+ model,
+ data,
+ evals,
+ iteration,
+ final_feval,
+ prev_cb_res
+) {
+ if (!length(callbacks)) {
+ return(NULL)
+ }
+ old_cb_res <- attributes(model)
+ out <- lapply(callbacks, function(cb) {
+ if (is.null(cb$f_after_training)) {
+ return(NULL)
} else {
- coef_path <- coef_path[, seq(1 + class_index, by = num_class, length.out = num_feat)]
+ return(
+ cb$f_after_training(
+ cb$env,
+ model,
+ data,
+ evals,
+ iteration,
+ final_feval,
+ getElement(old_cb_res, cb$cb_name)
+ )
+ )
}
+ })
+ names(out) <- sapply(callbacks, function(cb) cb$cb_name)
+ if (NROW(out)) {
+ out <- out[!sapply(out, is.null)]
}
- coef_path
+ return(out)
}
+.summarize.feval <- function(iter_feval, showsd) {
+ if (NCOL(iter_feval) > 1L && showsd) {
+ stdev <- apply(iter_feval, 1, sd)
+ } else {
+ stdev <- NULL
+ }
+ if (NCOL(iter_feval) > 1L) {
+ iter_feval <- rowMeans(iter_feval)
+ }
+ return(list(feval = iter_feval, stdev = stdev))
+}
-#
-# Internal utility functions for callbacks ------------------------------------
-#
+.print.evaluation <- function(iter_feval, showsd, iteration) {
+ tmp <- .summarize.feval(iter_feval, showsd)
+ msg <- .format_eval_string(iteration, tmp$feval, tmp$stdev)
+ cat(msg, '\n')
+}
# Format the evaluation metric string
.format_eval_string <- function(iter, eval_res, eval_err = NULL) {
@@ -784,69 +407,838 @@ xgb.gblinear.history <- function(model, class_index = NULL) {
return(paste0(iter, res))
}
-# Extract callback names from the list of callbacks
-callback.names <- function(cb_list) {
- unlist(lapply(cb_list, function(x) attr(x, 'name')))
-}
-
-# Extract callback calls from the list of callbacks
-callback.calls <- function(cb_list) {
- unlist(lapply(cb_list, function(x) attr(x, 'call')))
-}
-
-# Add a callback cb to the list and make sure that
-# cb.early.stop and cb.cv.predict are at the end of the list
-# with cb.cv.predict being the last (when present)
-add.cb <- function(cb_list, cb) {
- cb_list <- c(cb_list, cb)
- names(cb_list) <- callback.names(cb_list)
- if ('cb.early.stop' %in% names(cb_list)) {
- cb_list <- c(cb_list, cb_list['cb.early.stop'])
- # this removes only the first one
- cb_list['cb.early.stop'] <- NULL
+#' @title Callback for printing the result of evaluation
+#' @param period results would be printed every number of periods
+#' @param showsd whether standard deviations should be printed (when available)
+#' @return An `xgb.Callback` object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+#' @description
+#' The callback function prints the result of evaluation at every \code{period} iterations.
+#' The initial and the last iteration's evaluations are always printed.
+#'
+#' Does not leave any attribute in the booster (see \link{xgb.cb.evaluation.log} for that).
+#' @seealso \link{xgb.Callback}
+#' @export
+xgb.cb.print.evaluation <- function(period = 1, showsd = TRUE) {
+ if (length(period) != 1 || period != floor(period) || period < 1) {
+ stop("'period' must be a positive integer.")
}
- if ('cb.cv.predict' %in% names(cb_list)) {
- cb_list <- c(cb_list, cb_list['cb.cv.predict'])
- cb_list['cb.cv.predict'] <- NULL
- }
- cb_list
-}
-# Sort callbacks list into categories
-categorize.callbacks <- function(cb_list) {
- list(
- pre_iter = Filter(function(x) {
- pre <- attr(x, 'is_pre_iteration')
- !is.null(pre) && pre
- }, cb_list),
- post_iter = Filter(function(x) {
- pre <- attr(x, 'is_pre_iteration')
- is.null(pre) || !pre
- }, cb_list),
- finalize = Filter(function(x) {
- 'finalize' %in% names(formals(x))
- }, cb_list)
+ xgb.Callback(
+ cb_name = "print_evaluation",
+ env = as.environment(list(period = period, showsd = showsd, is_first_call = TRUE)),
+ f_before_training = NULL,
+ f_before_iter = NULL,
+ f_after_iter = function(env, model, data, evals, iteration, iter_feval) {
+ if (is.null(iter_feval)) {
+ return(FALSE)
+ }
+ if (env$is_first_call || (iteration - 1) %% env$period == 0) {
+ .print.evaluation(iter_feval, env$showsd, iteration)
+ env$last_printed_iter <- iteration
+ }
+ env$is_first_call <- FALSE
+ return(FALSE)
+ },
+ f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) {
+ if (is.null(final_feval)) {
+ return(NULL)
+ }
+ if (is.null(env$last_printed_iter) || iteration > env$last_printed_iter) {
+ .print.evaluation(final_feval, env$showsd, iteration)
+ }
+ }
)
}
-# Check whether all callback functions with names given by 'query_names' are present in the 'cb_list'.
-has.callbacks <- function(cb_list, query_names) {
- if (length(cb_list) < length(query_names))
- return(FALSE)
- if (!is.list(cb_list) ||
- any(sapply(cb_list, class) != 'function')) {
- stop('`cb_list` must be a list of callback functions')
- }
- cb_names <- callback.names(cb_list)
- if (!is.character(cb_names) ||
- length(cb_names) != length(cb_list) ||
- any(cb_names == "")) {
- stop('All callbacks in the `cb_list` must have a non-empty `name` attribute')
- }
- if (!is.character(query_names) ||
- length(query_names) == 0 ||
- any(query_names == "")) {
- stop('query_names must be a non-empty vector of non-empty character names')
- }
- return(all(query_names %in% cb_names))
+#' @title Callback for logging the evaluation history
+#' @return An `xgb.Callback` object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+#' @details This callback creates a table with per-iteration evaluation metrics (see parameters
+#' `evals` and `feval` in \link{xgb.train}).
+#' @details
+#' Note: in the column names of the final data.table, the dash '-' character is replaced with
+#' the underscore '_' in order to make the column names more like regular R identifiers.
+#' @seealso \link{xgb.cb.print.evaluation}
+#' @export
+xgb.cb.evaluation.log <- function() {
+ xgb.Callback(
+ cb_name = "evaluation_log",
+ f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) {
+ env$evaluation_log <- vector("list", end_iteration - begin_iteration + 1)
+ env$next_log <- 1
+ },
+ f_before_iter = NULL,
+ f_after_iter = function(env, model, data, evals, iteration, iter_feval) {
+ tmp <- .summarize.feval(iter_feval, TRUE)
+ env$evaluation_log[[env$next_log]] <- list(iter = iteration, metrics = tmp$feval, sds = tmp$stdev)
+ env$next_log <- env$next_log + 1
+ return(FALSE)
+ },
+ f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) {
+ if (!NROW(env$evaluation_log)) {
+ return(prev_cb_res)
+ }
+ # in case of early stopping
+ if (env$next_log <= length(env$evaluation_log)) {
+ env$evaluation_log <- head(env$evaluation_log, env$next_log - 1)
+ }
+
+ iters <- data.frame(iter = sapply(env$evaluation_log, function(x) x$iter))
+ metrics <- do.call(rbind, lapply(env$evaluation_log, function(x) x$metrics))
+ mnames <- gsub("-", "_", names(env$evaluation_log[[1]]$metrics), fixed = TRUE)
+ colnames(metrics) <- mnames
+ has_sds <- !is.null(env$evaluation_log[[1]]$sds)
+ if (has_sds) {
+ sds <- do.call(rbind, lapply(env$evaluation_log, function(x) x$sds))
+ colnames(sds) <- mnames
+ metrics <- lapply(
+ mnames,
+ function(metric) {
+ out <- cbind(metrics[, metric], sds[, metric])
+ colnames(out) <- paste0(metric, c("_mean", "_std"))
+ return(out)
+ }
+ )
+ metrics <- do.call(cbind, metrics)
+ }
+ evaluation_log <- cbind(iters, metrics)
+
+ if (!is.null(prev_cb_res)) {
+ if (!is.data.table(prev_cb_res)) {
+ prev_cb_res <- data.table::as.data.table(prev_cb_res)
+ }
+ prev_take <- prev_cb_res[prev_cb_res$iter < min(evaluation_log$iter)]
+ if (nrow(prev_take)) {
+ evaluation_log <- rbind(prev_cb_res, evaluation_log)
+ }
+ }
+ evaluation_log <- data.table::as.data.table(evaluation_log)
+ return(evaluation_log)
+ }
+ )
+}
+
+#' @title Callback for resetting the booster's parameters at each iteration.
+#' @param new_params a list where each element corresponds to a parameter that needs to be reset.
+#' Each element's value must be either a vector of values of length \code{nrounds}
+#' to be set at each iteration,
+#' or a function of two parameters \code{learning_rates(iteration, nrounds)}
+#' which returns a new parameter value by using the current iteration number
+#' and the total number of boosting rounds.
+#' @return An `xgb.Callback` object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+#' @details
+#' Note that when training is resumed from some previous model, and a function is used to
+#' reset a parameter value, the \code{nrounds} argument in this function would be the
+#' the number of boosting rounds in the current training.
+#'
+#' Does not leave any attribute in the booster.
+#' @export
+xgb.cb.reset.parameters <- function(new_params) {
+ stopifnot(is.list(new_params))
+ pnames <- gsub(".", "_", names(new_params), fixed = TRUE)
+ not_allowed <- pnames %in%
+ c('num_class', 'num_output_group', 'size_leaf_vector', 'updater_seq')
+ if (any(not_allowed))
+ stop('Parameters ', paste(pnames[not_allowed]), " cannot be changed during boosting.")
+
+ xgb.Callback(
+ cb_name = "reset_parameters",
+ env = as.environment(list(new_params = new_params)),
+ f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) {
+ env$end_iteration <- end_iteration
+
+ pnames <- gsub(".", "_", names(env$new_params), fixed = TRUE)
+ for (n in pnames) {
+ p <- env$new_params[[n]]
+ if (is.function(p)) {
+ if (length(formals(p)) != 2)
+ stop("Parameter '", n, "' is a function but not of two arguments")
+ } else if (is.numeric(p) || is.character(p)) {
+ if (length(p) != env$end_iteration)
+ stop("Length of '", n, "' has to be equal to 'nrounds'")
+ } else {
+ stop("Parameter '", n, "' is not a function or a vector")
+ }
+ }
+ },
+ f_before_iter = function(env, model, data, evals, iteration) {
+ pars <- lapply(env$new_params, function(p) {
+ if (is.function(p)) {
+ return(p(iteration, env$end_iteration))
+ } else {
+ return(p[iteration])
+ }
+ })
+
+ if (inherits(model, "xgb.Booster")) {
+ xgb.parameters(model) <- pars
+ } else {
+ for (fd in model) {
+ xgb.parameters(fd$bst) <- pars
+ }
+ }
+ return(FALSE)
+ },
+ f_after_iter = NULL,
+ f_after_training = NULL
+ )
+}
+
+#' @title Callback to activate early stopping
+#' @param stopping_rounds The number of rounds with no improvement in
+#' the evaluation metric in order to stop the training.
+#' @param maximize Whether to maximize the evaluation metric.
+#' @param metric_name The name of an evaluation column to use as a criteria for early
+#' stopping. If not set, the last column would be used.
+#' Let's say the test data in \code{evals} was labelled as \code{dtest},
+#' and one wants to use the AUC in test data for early stopping regardless of where
+#' it is in the \code{evals}, then one of the following would need to be set:
+#' \code{metric_name='dtest-auc'} or \code{metric_name='dtest_auc'}.
+#' All dash '-' characters in metric names are considered equivalent to '_'.
+#' @param verbose Whether to print the early stopping information.
+#' @param keep_all_iter Whether to keep all of the boosting rounds that were produced
+#' in the resulting object. If passing `FALSE`, will only keep the boosting rounds
+#' up to the detected best iteration, discarding the ones that come after.
+#' @return An `xgb.Callback` object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+#' @description
+#' This callback function determines the condition for early stopping.
+#'
+#' The following attributes are assigned to the booster's object:
+#' \itemize{
+#' \item \code{best_score} the evaluation score at the best iteration
+#' \item \code{best_iteration} at which boosting iteration the best score has occurred
+#' (0-based index for interoperability of binary models)
+#' }
+#'
+#' The same values are also stored as R attributes as a result of the callback, plus an additional
+#' attribute `stopped_by_max_rounds` which indicates whether an early stopping by the `stopping_rounds`
+#' condition occurred. Note that the `best_iteration` that is stored under R attributes will follow
+#' base-1 indexing, so it will be larger by '1' than the C-level 'best_iteration' that is accessed
+#' through \link{xgb.attr} or \link{xgb.attributes}.
+#'
+#' At least one dataset is required in `evals` for early stopping to work.
+#' @export
+xgb.cb.early.stop <- function(
+ stopping_rounds,
+ maximize = FALSE,
+ metric_name = NULL,
+ verbose = TRUE,
+ keep_all_iter = TRUE
+) {
+ if (!is.null(metric_name)) {
+ stopifnot(is.character(metric_name))
+ stopifnot(length(metric_name) == 1L)
+ }
+
+ xgb.Callback(
+ cb_name = "early_stop",
+ env = as.environment(
+ list(
+ checked_evnames = FALSE,
+ stopping_rounds = stopping_rounds,
+ maximize = maximize,
+ metric_name = metric_name,
+ verbose = verbose,
+ keep_all_iter = keep_all_iter,
+ stopped_by_max_rounds = FALSE
+ )
+ ),
+ f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) {
+ if (inherits(model, "xgb.Booster") && !length(evals)) {
+ stop("For early stopping, 'evals' must have at least one element")
+ }
+ env$begin_iteration <- begin_iteration
+ return(NULL)
+ },
+ f_before_iter = function(env, model, data, evals, iteration) NULL,
+ f_after_iter = function(env, model, data, evals, iteration, iter_feval) {
+ sds <- NULL
+ if (NCOL(iter_feval) > 1) {
+ tmp <- .summarize.feval(iter_feval, TRUE)
+ iter_feval <- tmp$feval
+ sds <- tmp$stdev
+ }
+
+ if (!env$checked_evnames) {
+
+ eval_names <- gsub('-', '_', names(iter_feval), fixed = TRUE)
+ if (!is.null(env$metric_name)) {
+ env$metric_idx <- which(gsub('-', '_', env$metric_name, fixed = TRUE) == eval_names)
+ if (length(env$metric_idx) == 0)
+ stop("'metric_name' for early stopping is not one of the following:\n",
+ paste(eval_names, collapse = ' '), '\n')
+ }
+
+ if (is.null(env$metric_name)) {
+ if (NROW(iter_feval) == 1) {
+ env$metric_idx <- 1L
+ } else {
+ env$metric_idx <- length(eval_names)
+ if (env$verbose)
+ cat('Multiple eval metrics are present. Will use ',
+ eval_names[env$metric_idx], ' for early stopping.\n', sep = '')
+ }
+ }
+
+ env$metric_name <- eval_names[env$metric_idx]
+
+ # maximize is usually NULL when not set in xgb.train and built-in metrics
+ if (is.null(env$maximize))
+ env$maximize <- grepl('(_auc|_aupr|_map|_ndcg|_pre)', env$metric_name)
+
+ if (env$verbose)
+ cat("Will train until ", env$metric_name, " hasn't improved in ",
+ env$stopping_rounds, " rounds.\n\n", sep = '')
+
+ env$best_iteration <- env$begin_iteration
+ if (env$maximize) {
+ env$best_score <- -Inf
+ } else {
+ env$best_score <- Inf
+ }
+
+ if (inherits(model, "xgb.Booster")) {
+ best_score <- xgb.attr(model, 'best_score')
+ if (NROW(best_score)) env$best_score <- as.numeric(best_score)
+ best_iteration <- xgb.attr(model, 'best_iteration')
+ if (NROW(best_iteration)) env$best_iteration <- as.numeric(best_iteration) + 1
+ }
+
+ env$checked_evnames <- TRUE
+ }
+
+ score <- iter_feval[env$metric_idx]
+ if ((env$maximize && score > env$best_score) ||
+ (!env$maximize && score < env$best_score)) {
+
+ env$best_score <- score
+ env$best_iteration <- iteration
+ # save the property to attributes, so they will occur in checkpoint
+ if (inherits(model, "xgb.Booster")) {
+ xgb.attributes(model) <- list(
+ best_iteration = env$best_iteration - 1, # convert to 0-based index
+ best_score = env$best_score
+ )
+ }
+ } else if (iteration - env$best_iteration >= env$stopping_rounds) {
+ if (env$verbose) {
+ best_msg <- .format_eval_string(iteration, iter_feval, sds)
+ cat("Stopping. Best iteration:\n", best_msg, "\n\n", sep = '')
+ }
+ env$stopped_by_max_rounds <- TRUE
+ return(TRUE)
+ }
+ return(FALSE)
+ },
+ f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) {
+ if (inherits(model, "xgb.Booster") && !env$keep_all_iter && env$best_iteration < iteration) {
+ # Note: it loses the attributes after being sliced,
+ # so they have to be re-assigned afterwards.
+ prev_attr <- xgb.attributes(model)
+ if (NROW(prev_attr)) {
+ suppressWarnings({
+ prev_attr <- within(prev_attr, rm("best_score", "best_iteration"))
+ })
+ }
+ .Call(XGBoosterSliceAndReplace_R, xgb.get.handle(model), 0L, env$best_iteration, 1L)
+ if (NROW(prev_attr)) {
+ xgb.attributes(model) <- prev_attr
+ }
+ }
+ attrs_set <- list(best_iteration = env$best_iteration - 1, best_score = env$best_score)
+ if (inherits(model, "xgb.Booster")) {
+ xgb.attributes(model) <- attrs_set
+ } else {
+ for (fd in model) {
+ xgb.attributes(fd$bst) <- attrs_set # to use in the cv.predict callback
+ }
+ }
+ return(
+ list(
+ best_iteration = env$best_iteration,
+ best_score = env$best_score,
+ stopped_by_max_rounds = env$stopped_by_max_rounds
+ )
+ )
+ }
+ )
+}
+
+.save.model.w.formatted.name <- function(model, save_name, iteration) {
+ # Note: this throws a warning if the name doesn't have anything to format through 'sprintf'
+ suppressWarnings({
+ save_name <- sprintf(save_name, iteration)
+ })
+ xgb.save(model, save_name)
+}
+
+#' @title Callback for saving a model file.
+#' @param save_period Save the model to disk after every
+#' \code{save_period} iterations; 0 means save the model at the end.
+#' @param save_name The name or path for the saved model file.
+#' It can contain a \code{\link[base]{sprintf}} formatting specifier
+#' to include the integer iteration number in the file name.
+#' E.g., with \code{save_name} = 'xgboost_%04d.model',
+#' the file saved at iteration 50 would be named "xgboost_0050.model".
+#' @return An `xgb.Callback` object, which can be passed to \link{xgb.train},
+#' but \bold{not} to \link{xgb.cv}.
+#' @description
+#' This callback function allows to save an xgb-model file, either periodically
+#' after each \code{save_period}'s or at the end.
+#'
+#' Does not leave any attribute in the booster.
+#' @export
+xgb.cb.save.model <- function(save_period = 0, save_name = "xgboost.ubj") {
+ if (save_period < 0) {
+ stop("'save_period' cannot be negative")
+ }
+ if (!is.character(save_name) || length(save_name) != 1L) {
+ stop("'save_name' must be a single character refering to file name.")
+ }
+
+ xgb.Callback(
+ cb_name = "save_model",
+ env = as.environment(list(save_period = save_period, save_name = save_name, last_save = 0)),
+ f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) {
+ env$begin_iteration <- begin_iteration
+ },
+ f_before_iter = NULL,
+ f_after_iter = function(env, model, data, evals, iteration, iter_feval) {
+ if (env$save_period > 0 && (iteration - env$begin_iteration) %% env$save_period == 0) {
+ .save.model.w.formatted.name(model, env$save_name, iteration)
+ env$last_save <- iteration
+ }
+ return(FALSE)
+ },
+ f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) {
+ if (env$save_period == 0 && iteration > env$last_save) {
+ .save.model.w.formatted.name(model, env$save_name, iteration)
+ }
+ }
+ )
+}
+
+#' @title Callback for returning cross-validation based predictions.
+#' @param save_models A flag for whether to save the folds' models.
+#' @param outputmargin Whether to save margin predictions (same effect as passing this
+#' parameter to \link{predict.xgb.Booster}).
+#' @return An `xgb.Callback` object, which can be passed to \link{xgb.cv},
+#' but \bold{not} to \link{xgb.train}.
+#' @description
+#' This callback function saves predictions for all of the test folds,
+#' and also allows to save the folds' models.
+#' @details
+#' Predictions are saved inside of the \code{pred} element, which is either a vector or a matrix,
+#' depending on the number of prediction outputs per data row. The order of predictions corresponds
+#' to the order of rows in the original dataset. Note that when a custom \code{folds} list is
+#' provided in \code{xgb.cv}, the predictions would only be returned properly when this list is a
+#' non-overlapping list of k sets of indices, as in a standard k-fold CV. The predictions would not be
+#' meaningful when user-provided folds have overlapping indices as in, e.g., random sampling splits.
+#' When some of the indices in the training dataset are not included into user-provided \code{folds},
+#' their prediction value would be \code{NA}.
+#' @export
+xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
+ xgb.Callback(
+ cb_name = "cv_predict",
+ env = as.environment(list(save_models = save_models, outputmargin = outputmargin)),
+ f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) {
+ if (inherits(model, "xgb.Booster")) {
+ stop("'cv.predict' callback is only for 'xgb.cv'.")
+ }
+ },
+ f_before_iter = NULL,
+ f_after_iter = NULL,
+ f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) {
+ pred <- NULL
+ for (fd in model) {
+ pr <- predict(
+ fd$bst,
+ fd$evals[[2L]],
+ outputmargin = env$outputmargin,
+ reshape = TRUE
+ )
+ if (is.null(pred)) {
+ if (NCOL(pr) > 1L) {
+ pred <- matrix(NA_real_, nrow(data), ncol(pr))
+ } else {
+ pred <- matrix(NA_real_, nrow(data))
+ }
+ }
+ if (is.matrix(pred)) {
+ pred[fd$index, ] <- pr
+ } else {
+ pred[fd$index] <- pr
+ }
+ }
+ out <- list(pred = pred)
+ if (env$save_models) {
+ out$models <- lapply(model, function(fd) fd$bst)
+ }
+ return(out)
+ }
+ )
+}
+
+.list2mat <- function(coef_list, sparse) {
+ if (sparse) {
+ coef_mat <- methods::new("dgRMatrix")
+ coef_mat@p <- as.integer(c(0, cumsum(sapply(coef_list, function(x) length(x@x)))))
+ coef_mat@j <- as.integer(unlist(lapply(coef_list, slot, "i")) - 1L)
+ coef_mat@x <- unlist(lapply(coef_list, slot, "x"))
+ coef_mat@Dim <- as.integer(c(length(coef_list), length(coef_list[[1L]])))
+ # Note: function 'xgb.gblinear.history' might later on try to slice by columns
+ coef_mat <- methods::as(coef_mat, "CsparseMatrix")
+ return(coef_mat)
+ } else {
+ return(unname(do.call(rbind, coef_list)))
+ }
+}
+
+.extract.coef <- function(model, sparse) {
+ coefs <- .internal.coef.xgb.Booster(model, add_names = FALSE)
+ if (NCOL(coefs) > 1L) {
+ coefs <- as.vector(coefs)
+ }
+ if (sparse) {
+ coefs <- methods::as(coefs, "sparseVector")
+ }
+ return(coefs)
+}
+
+#' @title Callback for collecting coefficients history of a gblinear booster
+#' @param sparse when set to `FALSE`/`TRUE`, a dense/sparse matrix is used to store the result.
+#' Sparse format is useful when one expects only a subset of coefficients to be non-zero,
+#' when using the "thrifty" feature selector with fairly small number of top features
+#' selected per iteration.
+#' @return An `xgb.Callback` object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+#' @details
+#' To keep things fast and simple, gblinear booster does not internally store the history of linear
+#' model coefficients at each boosting iteration. This callback provides a workaround for storing
+#' the coefficients' path, by extracting them after each training iteration.
+#'
+#' This callback will construct a matrix where rows are boosting iterations and columns are
+#' feature coefficients (same order as when calling \link{coef.xgb.Booster}, with the intercept
+#' corresponding to the first column).
+#'
+#' When there is more than one coefficient per feature (e.g. multi-class classification),
+#' the result will be reshaped into a vector where coefficients are arranged first by features and
+#' then by class (e.g. first 1 through N coefficients will be for the first class, then
+#' coefficients N+1 through 2N for the second class, and so on).
+#'
+#' If the result has only one coefficient per feature in the data, then the resulting matrix
+#' will have column names matching with the feature names, otherwise (when there's more than
+#' one coefficient per feature) the names will be composed as 'column name' + ':' + 'class index'
+#' (so e.g. column 'c1' for class '0' will be named 'c1:0').
+#'
+#' With \code{xgb.train}, the output is either a dense or a sparse matrix.
+#' With with \code{xgb.cv}, it is a list (one element per each fold) of such
+#' matrices.
+#'
+#' Function \link{xgb.gblinear.history} function provides an easy way to retrieve the
+#' outputs from this callback.
+#' @seealso \link{xgb.gblinear.history}, \link{coef.xgb.Booster}.
+#' @examples
+#' #### Binary classification:
+#'
+#' ## Keep the number of threads to 1 for examples
+#' nthread <- 1
+#' data.table::setDTthreads(nthread)
+#'
+#' # In the iris dataset, it is hard to linearly separate Versicolor class from the rest
+#' # without considering the 2nd order interactions:
+#' x <- model.matrix(Species ~ .^2, iris)[,-1]
+#' colnames(x)
+#' dtrain <- xgb.DMatrix(scale(x), label = 1*(iris$Species == "versicolor"), nthread = nthread)
+#' param <- list(booster = "gblinear", objective = "reg:logistic", eval_metric = "auc",
+#' lambda = 0.0003, alpha = 0.0003, nthread = nthread)
+#' # For 'shotgun', which is a default linear updater, using high eta values may result in
+#' # unstable behaviour in some datasets. With this simple dataset, however, the high learning
+#' # rate does not break the convergence, but allows us to illustrate the typical pattern of
+#' # "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations.
+#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 1.,
+#' callbacks = list(xgb.cb.gblinear.history()))
+#' # Extract the coefficients' path and plot them vs boosting iteration number:
+#' coef_path <- xgb.gblinear.history(bst)
+#' matplot(coef_path, type = 'l')
+#'
+#' # With the deterministic coordinate descent updater, it is safer to use higher learning rates.
+#' # Will try the classical componentwise boosting which selects a single best feature per round:
+#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 0.8,
+#' updater = 'coord_descent', feature_selector = 'thrifty', top_k = 1,
+#' callbacks = list(xgb.cb.gblinear.history()))
+#' matplot(xgb.gblinear.history(bst), type = 'l')
+#' # Componentwise boosting is known to have similar effect to Lasso regularization.
+#' # Try experimenting with various values of top_k, eta, nrounds,
+#' # as well as different feature_selectors.
+#'
+#' # For xgb.cv:
+#' bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 100, eta = 0.8,
+#' callbacks = list(xgb.cb.gblinear.history()))
+#' # coefficients in the CV fold #3
+#' matplot(xgb.gblinear.history(bst)[[3]], type = 'l')
+#'
+#'
+#' #### Multiclass classification:
+#' #
+#' dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = nthread)
+#' param <- list(booster = "gblinear", objective = "multi:softprob", num_class = 3,
+#' lambda = 0.0003, alpha = 0.0003, nthread = nthread)
+#' # For the default linear updater 'shotgun' it sometimes is helpful
+#' # to use smaller eta to reduce instability
+#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 50, eta = 0.5,
+#' callbacks = list(xgb.cb.gblinear.history()))
+#' # Will plot the coefficient paths separately for each class:
+#' matplot(xgb.gblinear.history(bst, class_index = 0), type = 'l')
+#' matplot(xgb.gblinear.history(bst, class_index = 1), type = 'l')
+#' matplot(xgb.gblinear.history(bst, class_index = 2), type = 'l')
+#'
+#' # CV:
+#' bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 70, eta = 0.5,
+#' callbacks = list(xgb.cb.gblinear.history(FALSE)))
+#' # 1st fold of 1st class
+#' matplot(xgb.gblinear.history(bst, class_index = 0)[[1]], type = 'l')
+#'
+#' @export
+xgb.cb.gblinear.history <- function(sparse = FALSE) {
+ xgb.Callback(
+ cb_name = "gblinear_history",
+ env = as.environment(list(sparse = sparse)),
+ f_before_training = function(env, model, data, evals, begin_iteration, end_iteration) {
+ if (!inherits(model, "xgb.Booster")) {
+ model <- model[[1L]]$bst
+ }
+ if (xgb.booster_type(model) != "gblinear") {
+ stop("Callback 'xgb.cb.gblinear.history' is only for booster='gblinear'.")
+ }
+ env$coef_hist <- vector("list", end_iteration - begin_iteration + 1)
+ env$next_idx <- 1
+ },
+ f_before_iter = NULL,
+ f_after_iter = function(env, model, data, evals, iteration, iter_feval) {
+ if (inherits(model, "xgb.Booster")) {
+ coef_this <- .extract.coef(model, env$sparse)
+ } else {
+ coef_this <- lapply(model, function(fd) .extract.coef(fd$bst, env$sparse))
+ }
+ env$coef_hist[[env$next_idx]] <- coef_this
+ env$next_idx <- env$next_idx + 1
+ return(FALSE)
+ },
+ f_after_training = function(env, model, data, evals, iteration, final_feval, prev_cb_res) {
+ # in case of early stopping
+ if (env$next_idx <= length(env$coef_hist)) {
+ env$coef_hist <- head(env$coef_hist, env$next_idx - 1)
+ }
+
+ is_booster <- inherits(model, "xgb.Booster")
+ if (is_booster) {
+ out <- .list2mat(env$coef_hist, env$sparse)
+ } else {
+ out <- lapply(
+ X = lapply(
+ X = seq_along(env$coef_hist[[1]]),
+ FUN = function(i) lapply(env$coef_hist, "[[", i)
+ ),
+ FUN = .list2mat,
+ env$sparse
+ )
+ }
+ if (!is.null(prev_cb_res)) {
+ if (is_booster) {
+ out <- rbind(prev_cb_res, out)
+ } else {
+ # Note: this case should never be encountered, since training cannot
+ # be continued from the result of xgb.cv, but this code should in
+ # theory do the job if the situation were to be encountered.
+ out <- lapply(
+ out,
+ function(lst) {
+ lapply(
+ seq_along(lst),
+ function(i) rbind(prev_cb_res[[i]], lst[[i]])
+ )
+ }
+ )
+ }
+ }
+ feature_names <- getinfo(data, "feature_name")
+ if (!NROW(feature_names)) {
+ feature_names <- paste0("V", seq(1L, ncol(data)))
+ }
+ expected_ncols <- length(feature_names) + 1
+ if (is_booster) {
+ mat_ncols <- ncol(out)
+ } else {
+ mat_ncols <- ncol(out[[1L]])
+ }
+ if (mat_ncols %% expected_ncols == 0) {
+ feature_names <- c("(Intercept)", feature_names)
+ n_rep <- mat_ncols / expected_ncols
+ if (n_rep > 1) {
+ feature_names <- unlist(
+ lapply(
+ seq(1, n_rep),
+ function(cl) paste(feature_names, cl - 1, sep = ":")
+ )
+ )
+ }
+ if (is_booster) {
+ colnames(out) <- feature_names
+ } else {
+ out <- lapply(
+ out,
+ function(mat) {
+ colnames(mat) <- feature_names
+ return(mat)
+ }
+ )
+ }
+ }
+ return(out)
+ }
+ )
+}
+
+#' @title Extract gblinear coefficients history.
+#' @description A helper function to extract the matrix of linear coefficients' history
+#' from a gblinear model created while using the \link{xgb.cb.gblinear.history}
+#' callback (which must be added manually as by default it's not used).
+#' @details Note that this is an R-specific function that relies on R attributes that
+#' are not saved when using xgboost's own serialization functions like \link{xgb.load}
+#' or \link{xgb.load.raw}.
+#'
+#' In order for a serialized model to be accepted by this function, one must use R
+#' serializers such as \link{saveRDS}.
+#' @param model either an \code{xgb.Booster} or a result of \code{xgb.cv()}, trained
+#' using the \link{xgb.cb.gblinear.history} callback, but \bold{not} a booster
+#' loaded from \link{xgb.load} or \link{xgb.load.raw}.
+#' @param class_index zero-based class index to extract the coefficients for only that
+#' specific class in a multinomial multiclass model. When it is NULL, all the
+#' coefficients are returned. Has no effect in non-multiclass models.
+#'
+#' @return
+#' For an \link{xgb.train} result, a matrix (either dense or sparse) with the columns
+#' corresponding to iteration's coefficients and the rows corresponding to boosting iterations.
+#'
+#' For an \link{xgb.cv} result, a list of such matrices is returned with the elements
+#' corresponding to CV folds.
+#'
+#' When there is more than one coefficient per feature (e.g. multi-class classification)
+#' and `class_index` is not provided,
+#' the result will be reshaped into a vector where coefficients are arranged first by features and
+#' then by class (e.g. first 1 through N coefficients will be for the first class, then
+#' coefficients N+1 through 2N for the second class, and so on).
+#' @seealso \link{xgb.cb.gblinear.history}, \link{coef.xgb.Booster}.
+#' @export
+xgb.gblinear.history <- function(model, class_index = NULL) {
+
+ if (!(inherits(model, "xgb.Booster") ||
+ inherits(model, "xgb.cv.synchronous")))
+ stop("model must be an object of either xgb.Booster or xgb.cv.synchronous class")
+ is_cv <- inherits(model, "xgb.cv.synchronous")
+
+ if (!is_cv) {
+ coef_path <- getElement(attributes(model), "gblinear_history")
+ } else {
+ coef_path <- getElement(model, "gblinear_history")
+ }
+ if (is.null(coef_path)) {
+ stop("model must be trained while using the xgb.cb.gblinear.history() callback")
+ }
+
+ if (!is_cv) {
+ num_class <- xgb.num_class(model)
+ num_feat <- xgb.num_feature(model)
+ } else {
+ # in case of CV, the object is expected to have this info
+ if (model$params$booster != "gblinear")
+ stop("It does not appear to be a gblinear model")
+ num_class <- NVL(model$params$num_class, 1)
+ num_feat <- model$nfeatures
+ if (is.null(num_feat))
+ stop("This xgb.cv result does not have nfeatures info")
+ }
+
+ if (!is.null(class_index) &&
+ num_class > 1 &&
+ (class_index[1] < 0 || class_index[1] >= num_class))
+ stop("class_index has to be within [0,", num_class - 1, "]")
+
+ if (!is.null(class_index) && num_class > 1) {
+ seq_take <- seq(1 + class_index * (num_feat + 1), (class_index + 1) * (num_feat + 1))
+ coef_path <- if (is.list(coef_path)) {
+ lapply(coef_path, function(x) x[, seq_take])
+ } else {
+ coef_path <- coef_path[, seq_take]
+ }
+ }
+ return(coef_path)
+}
+
+.callbacks.only.train <- "save_model"
+.callbacks.only.cv <- "cv_predict"
+
+.process.callbacks <- function(callbacks, is_cv) {
+ if (inherits(callbacks, "xgb.Callback")) {
+ callbacks <- list(callbacks)
+ }
+ if (!is.list(callbacks)) {
+ stop("'callbacks' must be a list.")
+ }
+ cb_names <- character()
+ if (length(callbacks)) {
+ is_callback <- sapply(callbacks, inherits, "xgb.Callback")
+ if (!all(is_callback)) {
+ stop("Entries in 'callbacks' must be 'xgb.Callback' objects.")
+ }
+ cb_names <- sapply(callbacks, function(cb) cb$cb_name)
+ if (length(cb_names) != length(callbacks)) {
+ stop("Passed invalid callback(s).")
+ }
+ if (anyDuplicated(cb_names) > 0) {
+ stop("Callbacks must have unique names.")
+ }
+ if (is_cv) {
+ if (any(.callbacks.only.train %in% cb_names)) {
+ stop(
+ "Passed callback(s) not supported for 'xgb.cv': ",
+ paste(intersect(.callbacks.only.train, cb_names), collapse = ", ")
+ )
+ }
+ } else {
+ if (any(.callbacks.only.cv %in% cb_names)) {
+ stop(
+ "Passed callback(s) not supported for 'xgb.train': ",
+ paste(intersect(.callbacks.only.cv, cb_names), collapse = ", ")
+ )
+ }
+ }
+ # Early stopping callback needs to be executed before the others
+ if ("early_stop" %in% cb_names) {
+ mask <- cb_names == "early_stop"
+ callbacks <- c(list(callbacks[[which(mask)]]), callbacks[!mask])
+ }
+ }
+ return(list(callbacks = callbacks, cb_names = cb_names))
+}
+
+# Note: don't try to use functions like 'append', as they will
+# merge the elements of the different callbacks into a single list.
+add.callback <- function(callbacks, cb, as_first_elt = FALSE) {
+ if (!as_first_elt) {
+ callbacks[[length(callbacks) + 1]] <- cb
+ return(callbacks)
+ } else {
+ if (!length(callbacks)) {
+ return(list(cb))
+ }
+ new_cb <- vector("list", length(callbacks) + 1)
+ new_cb[[1]] <- cb
+ new_cb[seq(2, length(new_cb))] <- callbacks
+ return(new_cb)
+ }
+}
+
+has.callbacks <- function(callbacks, cb_name) {
+ cb_names <- sapply(callbacks, function(cb) cb$name)
+ return(cb_name %in% cb_names)
}
diff --git a/R-package/R/utils.R b/R-package/R/utils.R
index e8ae787fc..7b6a20f70 100644
--- a/R-package/R/utils.R
+++ b/R-package/R/utils.R
@@ -26,6 +26,11 @@ NVL <- function(x, val) {
'multi:softprob', 'rank:pairwise', 'rank:ndcg', 'rank:map'))
}
+.RANKING_OBJECTIVES <- function() {
+ return(c('binary:logistic', 'binary:logitraw', 'binary:hinge', 'multi:softmax',
+ 'multi:softprob'))
+}
+
#
# Low-level functions for boosting --------------------------------------------
@@ -142,7 +147,7 @@ check.custom.eval <- function(env = parent.frame()) {
if (!is.null(env$feval) &&
is.null(env$maximize) && (
!is.null(env$early_stopping_rounds) ||
- has.callbacks(env$callbacks, 'cb.early.stop')))
+ has.callbacks(env$callbacks, "early_stop")))
stop("Please set 'maximize' to indicate whether the evaluation metric needs to be maximized or not")
}
@@ -193,20 +198,20 @@ xgb.iter.update <- function(bst, dtrain, iter, obj) {
# Evaluate one iteration.
# Returns a named vector of evaluation metrics
# with the names in a 'datasetname-metricname' format.
-xgb.iter.eval <- function(bst, watchlist, iter, feval) {
+xgb.iter.eval <- function(bst, evals, iter, feval) {
handle <- xgb.get.handle(bst)
- if (length(watchlist) == 0)
+ if (length(evals) == 0)
return(NULL)
- evnames <- names(watchlist)
+ evnames <- names(evals)
if (is.null(feval)) {
- msg <- .Call(XGBoosterEvalOneIter_R, handle, as.integer(iter), watchlist, as.list(evnames))
+ msg <- .Call(XGBoosterEvalOneIter_R, handle, as.integer(iter), evals, as.list(evnames))
mat <- matrix(strsplit(msg, '\\s+|:')[[1]][-1], nrow = 2)
res <- structure(as.numeric(mat[2, ]), names = mat[1, ])
} else {
- res <- sapply(seq_along(watchlist), function(j) {
- w <- watchlist[[j]]
+ res <- sapply(seq_along(evals), function(j) {
+ w <- evals[[j]]
## predict using all trees
preds <- predict(bst, w, outputmargin = TRUE, iterationrange = "all")
eval_res <- feval(preds, w)
@@ -235,33 +240,43 @@ convert.labels <- function(labels, objective_name) {
}
# Generates random (stratified if needed) CV folds
-generate.cv.folds <- function(nfold, nrows, stratified, label, params) {
+generate.cv.folds <- function(nfold, nrows, stratified, label, group, params) {
+ if (NROW(group)) {
+ if (stratified) {
+ warning(
+ paste0(
+ "Stratified splitting is not supported when using 'group' attribute.",
+ " Will use unstratified splitting."
+ )
+ )
+ }
+ return(generate.group.folds(nfold, group))
+ }
+ objective <- params$objective
+ if (!is.character(objective)) {
+ warning("Will use unstratified splitting (custom objective used)")
+ stratified <- FALSE
+ }
+ # cannot stratify if label is NULL
+ if (stratified && is.null(label)) {
+ warning("Will use unstratified splitting (no 'labels' available)")
+ stratified <- FALSE
+ }
# cannot do it for rank
- objective <- params$objective
if (is.character(objective) && strtrim(objective, 5) == 'rank:') {
- stop("\n\tAutomatic generation of CV-folds is not implemented for ranking!\n",
+ stop("\n\tAutomatic generation of CV-folds is not implemented for ranking without 'group' field!\n",
"\tConsider providing pre-computed CV-folds through the 'folds=' parameter.\n")
}
# shuffle
rnd_idx <- sample.int(nrows)
- if (stratified &&
- length(label) == length(rnd_idx)) {
+ if (stratified && length(label) == length(rnd_idx)) {
y <- label[rnd_idx]
- # WARNING: some heuristic logic is employed to identify classification setting!
# - For classification, need to convert y labels to factor before making the folds,
# and then do stratification by factor levels.
# - For regression, leave y numeric and do stratification by quantiles.
if (is.character(objective)) {
- y <- convert.labels(y, params$objective)
- } else {
- # If no 'objective' given in params, it means that user either wants to
- # use the default 'reg:squarederror' objective or has provided a custom
- # obj function. Here, assume classification setting when y has 5 or less
- # unique values:
- if (length(unique(y)) <= 5) {
- y <- factor(y)
- }
+ y <- convert.labels(y, objective)
}
folds <- xgb.createFolds(y = y, k = nfold)
} else {
@@ -277,6 +292,29 @@ generate.cv.folds <- function(nfold, nrows, stratified, label, params) {
return(folds)
}
+generate.group.folds <- function(nfold, group) {
+ ngroups <- length(group) - 1
+ if (ngroups < nfold) {
+ stop("DMatrix has fewer groups than folds.")
+ }
+ seq_groups <- seq_len(ngroups)
+ indices <- lapply(seq_groups, function(gr) seq(group[gr] + 1, group[gr + 1]))
+ assignments <- base::split(seq_groups, as.integer(seq_groups %% nfold))
+ assignments <- unname(assignments)
+
+ out <- vector("list", nfold)
+ randomized_groups <- sample(ngroups)
+ for (idx in seq_len(nfold)) {
+ groups_idx_test <- randomized_groups[assignments[[idx]]]
+ groups_test <- indices[groups_idx_test]
+ idx_test <- unlist(groups_test)
+ attributes(idx_test)$group_test <- lengths(groups_test)
+ attributes(idx_test)$group_train <- lengths(indices[-groups_idx_test])
+ out[[idx]] <- idx_test
+ }
+ return(out)
+}
+
# Creates CV folds stratified by the values of y.
# It was borrowed from caret::createFolds and simplified
# by always returning an unnamed list of fold indices.
@@ -454,7 +492,8 @@ depr_par_lut <- matrix(c(
'plot.height', 'plot_height',
'plot.width', 'plot_width',
'n_first_tree', 'trees',
- 'dummy', 'DUMMY'
+ 'dummy', 'DUMMY',
+ 'watchlist', 'evals'
), ncol = 2, byrow = TRUE)
colnames(depr_par_lut) <- c('old', 'new')
diff --git a/R-package/R/xgb.Booster.R b/R-package/R/xgb.Booster.R
index febefb757..77d75fa9c 100644
--- a/R-package/R/xgb.Booster.R
+++ b/R-package/R/xgb.Booster.R
@@ -77,26 +77,45 @@ xgb.get.handle <- function(object) {
#' Predict method for XGBoost model
#'
-#' Predicted values based on either xgboost model or model handle object.
+#' Predict values on data based on xgboost model.
#'
#' @param object Object of class `xgb.Booster`.
-#' @param newdata Takes `matrix`, `dgCMatrix`, `dgRMatrix`, `dsparseVector`,
+#' @param newdata Takes `data.frame`, `matrix`, `dgCMatrix`, `dgRMatrix`, `dsparseVector`,
#' local data file, or `xgb.DMatrix`.
-#' For single-row predictions on sparse data, it is recommended to use the CSR format.
-#' If passing a sparse vector, it will take it as a row vector.
-#' @param missing Only used when input is a dense matrix. Pick a float value that represents
-#' missing values in data (e.g., 0 or some other extreme value).
+#'
+#' For single-row predictions on sparse data, it's recommended to use CSR format. If passing
+#' a sparse vector, it will take it as a row vector.
+#'
+#' Note that, for repeated predictions on the same data, one might want to create a DMatrix to
+#' pass here instead of passing R types like matrices or data frames, as predictions will be
+#' faster on DMatrix.
+#'
+#' If `newdata` is a `data.frame`, be aware that:\itemize{
+#' \item Columns will be converted to numeric if they aren't already, which could potentially make
+#' the operation slower than in an equivalent `matrix` object.
+#' \item The order of the columns must match with that of the data from which the model was fitted
+#' (i.e. columns will not be referenced by their names, just by their order in the data).
+#' \item If the model was fitted to data with categorical columns, these columns must be of
+#' `factor` type here, and must use the same encoding (i.e. have the same levels).
+#' \item If `newdata` contains any `factor` columns, they will be converted to base-0
+#' encoding (same as during DMatrix creation) - hence, one should not pass a `factor`
+#' under a column which during training had a different type.
+#' }
+#' @param missing Float value that represents missing values in data (e.g., 0 or some other extreme value).
+#'
+#' This parameter is not used when `newdata` is an `xgb.DMatrix` - in such cases, should pass
+#' this as an argument to the DMatrix constructor instead.
#' @param outputmargin Whether the prediction should be returned in the form of original untransformed
#' sum of predictions from boosting iterations' results. E.g., setting `outputmargin=TRUE` for
#' logistic regression would return log-odds instead of probabilities.
-#' @param predleaf Whether to predict pre-tree leaf indices.
+#' @param predleaf Whether to predict per-tree leaf indices.
#' @param predcontrib Whether to return feature contributions to individual predictions (see Details).
#' @param approxcontrib Whether to use a fast approximation for feature contributions (see Details).
#' @param predinteraction Whether to return contributions of feature interactions to individual predictions (see Details).
#' @param reshape Whether to reshape the vector of predictions to matrix form when there are several
#' prediction outputs per case. No effect if `predleaf`, `predcontrib`,
#' or `predinteraction` is `TRUE`.
-#' @param training Whether the predictions are used for training. For dart booster,
+#' @param training Whether the prediction result is used for training. For dart booster,
#' training predicting will perform dropout.
#' @param iterationrange Sequence of rounds/iterations from the model to use for prediction, specified by passing
#' a two-dimensional vector with the start and end numbers in the sequence (same format as R's `seq` - i.e.
@@ -111,6 +130,12 @@ xgb.get.handle <- function(object) {
#' If passing "all", will use all of the rounds regardless of whether the model had early stopping or not.
#' @param strict_shape Default is `FALSE`. When set to `TRUE`, the output
#' type and shape of predictions are invariant to the model type.
+#' @param base_margin Base margin used for boosting from existing model.
+#'
+#' Note that, if `newdata` is an `xgb.DMatrix` object, this argument will
+#' be ignored as it needs to be added to the DMatrix instead (e.g. by passing it as
+#' an argument in its constructor, or by calling \link{setinfo.xgb.DMatrix}).
+#'
#' @param validate_features When `TRUE`, validate that the Booster's and newdata's feature_names
#' match (only applicable when both `object` and `newdata` have feature names).
#'
@@ -287,16 +312,80 @@ xgb.get.handle <- function(object) {
predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FALSE,
predleaf = FALSE, predcontrib = FALSE, approxcontrib = FALSE, predinteraction = FALSE,
reshape = FALSE, training = FALSE, iterationrange = NULL, strict_shape = FALSE,
- validate_features = FALSE, ...) {
+ validate_features = FALSE, base_margin = NULL, ...) {
if (validate_features) {
newdata <- validate.features(object, newdata)
}
- if (!inherits(newdata, "xgb.DMatrix")) {
+ is_dmatrix <- inherits(newdata, "xgb.DMatrix")
+ if (is_dmatrix && !is.null(base_margin)) {
+ stop(
+ "'base_margin' is not supported when passing 'xgb.DMatrix' as input.",
+ " Should be passed as argument to 'xgb.DMatrix' constructor."
+ )
+ }
+
+ use_as_df <- FALSE
+ use_as_dense_matrix <- FALSE
+ use_as_csr_matrix <- FALSE
+ n_row <- NULL
+ if (!is_dmatrix) {
+
+ inplace_predict_supported <- !predcontrib && !predinteraction && !predleaf
+ if (inplace_predict_supported) {
+ booster_type <- xgb.booster_type(object)
+ if (booster_type == "gblinear" || (booster_type == "dart" && training)) {
+ inplace_predict_supported <- FALSE
+ }
+ }
+ if (inplace_predict_supported) {
+
+ if (is.matrix(newdata)) {
+ use_as_dense_matrix <- TRUE
+ } else if (is.data.frame(newdata)) {
+ # note: since here it turns it into a non-data-frame list,
+ # needs to keep track of the number of rows it had for later
+ n_row <- nrow(newdata)
+ newdata <- lapply(
+ newdata,
+ function(x) {
+ if (is.factor(x)) {
+ return(as.numeric(x) - 1)
+ } else {
+ return(as.numeric(x))
+ }
+ }
+ )
+ use_as_df <- TRUE
+ } else if (inherits(newdata, "dgRMatrix")) {
+ use_as_csr_matrix <- TRUE
+ csr_data <- list(newdata@p, newdata@j, newdata@x, ncol(newdata))
+ } else if (inherits(newdata, "dsparseVector")) {
+ use_as_csr_matrix <- TRUE
+ n_row <- 1L
+ i <- newdata@i - 1L
+ if (storage.mode(i) != "integer") {
+ storage.mode(i) <- "integer"
+ }
+ csr_data <- list(c(0L, length(i)), i, newdata@x, length(newdata))
+ }
+
+ }
+
+ } # if (!is_dmatrix)
+
+ if (!is_dmatrix && !use_as_dense_matrix && !use_as_csr_matrix && !use_as_df) {
nthread <- xgb.nthread(object)
newdata <- xgb.DMatrix(
newdata,
- missing = missing, nthread = NVL(nthread, -1)
+ missing = missing,
+ base_margin = base_margin,
+ nthread = NVL(nthread, -1)
)
+ is_dmatrix <- TRUE
+ }
+
+ if (is.null(n_row)) {
+ n_row <- nrow(newdata)
}
@@ -354,18 +443,30 @@ predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FA
args$type <- set_type(6)
}
- predts <- .Call(
- XGBoosterPredictFromDMatrix_R,
- xgb.get.handle(object),
- newdata,
- jsonlite::toJSON(args, auto_unbox = TRUE)
- )
+ json_conf <- jsonlite::toJSON(args, auto_unbox = TRUE)
+ if (is_dmatrix) {
+ predts <- .Call(
+ XGBoosterPredictFromDMatrix_R, xgb.get.handle(object), newdata, json_conf
+ )
+ } else if (use_as_dense_matrix) {
+ predts <- .Call(
+ XGBoosterPredictFromDense_R, xgb.get.handle(object), newdata, missing, json_conf, base_margin
+ )
+ } else if (use_as_csr_matrix) {
+ predts <- .Call(
+ XGBoosterPredictFromCSR_R, xgb.get.handle(object), csr_data, missing, json_conf, base_margin
+ )
+ } else if (use_as_df) {
+ predts <- .Call(
+ XGBoosterPredictFromColumnar_R, xgb.get.handle(object), newdata, missing, json_conf, base_margin
+ )
+ }
+
names(predts) <- c("shape", "results")
shape <- predts$shape
arr <- predts$results
n_ret <- length(arr)
- n_row <- nrow(newdata)
if (n_row != shape[1]) {
stop("Incorrect predict shape.")
}
@@ -970,6 +1071,10 @@ xgb.best_iteration <- function(bst) {
#' coef(model)
#' @export
coef.xgb.Booster <- function(object, ...) {
+ return(.internal.coef.xgb.Booster(object, add_names = TRUE))
+}
+
+.internal.coef.xgb.Booster <- function(object, add_names = TRUE) {
booster_type <- xgb.booster_type(object)
if (booster_type != "gblinear") {
stop("Coefficients are not defined for Booster type ", booster_type)
@@ -988,21 +1093,27 @@ coef.xgb.Booster <- function(object, ...) {
intercepts <- weights[seq(sep + 1, length(weights))]
intercepts <- intercepts + as.numeric(base_score)
- feature_names <- xgb.feature_names(object)
- if (!NROW(feature_names)) {
- # This mimics the default naming in R which names columns as "V1..N"
- # when names are needed but not available
- feature_names <- paste0("V", seq(1L, num_feature))
+ if (add_names) {
+ feature_names <- xgb.feature_names(object)
+ if (!NROW(feature_names)) {
+ # This mimics the default naming in R which names columns as "V1..N"
+ # when names are needed but not available
+ feature_names <- paste0("V", seq(1L, num_feature))
+ }
+ feature_names <- c("(Intercept)", feature_names)
}
- feature_names <- c("(Intercept)", feature_names)
if (n_cols == 1L) {
out <- c(intercepts, coefs)
- names(out) <- feature_names
+ if (add_names) {
+ names(out) <- feature_names
+ }
} else {
coefs <- matrix(coefs, nrow = num_feature, byrow = TRUE)
dim(intercepts) <- c(1L, n_cols)
out <- rbind(intercepts, coefs)
- row.names(out) <- feature_names
+ if (add_names) {
+ row.names(out) <- feature_names
+ }
# TODO: if a class names attributes is added,
# should use those names here.
}
@@ -1154,12 +1265,9 @@ print.xgb.Booster <- function(x, ...) {
cat(" ", paste(attr_names, collapse = ", "), "\n")
}
- if (!is.null(R_attrs$callbacks) && length(R_attrs$callbacks) > 0) {
- cat('callbacks:\n')
- lapply(callback.calls(R_attrs$callbacks), function(x) {
- cat(' ')
- print(x)
- })
+ additional_attr <- setdiff(names(R_attrs), .reserved_cb_names)
+ if (NROW(additional_attr)) {
+ cat("callbacks:\n ", paste(additional_attr, collapse = ", "), "\n")
}
if (!is.null(R_attrs$evaluation_log)) {
diff --git a/R-package/R/xgb.DMatrix.R b/R-package/R/xgb.DMatrix.R
index ba0686cf9..15f6faed0 100644
--- a/R-package/R/xgb.DMatrix.R
+++ b/R-package/R/xgb.DMatrix.R
@@ -28,10 +28,27 @@
#' 'xgb.QuantileDMatrix'.
#' \item Single-row CSR matrices, as class `dsparseVector` from package `Matrix`, which is interpreted
#' as a single row (only when making predictions from a fitted model).
-#' \item Text files in SVMLight / LibSVM formats, passed as a path to the file. These are \bold{not}
-#' supported for xgb.QuantileDMatrix'.
-#' \item Binary files generated by \link{xgb.DMatrix.save}, passed as a path to the file. These are
-#' \bold{not} supported for xgb.QuantileDMatrix'.
+#' \item Text files in a supported format, passed as a `character` variable containing the URI path to
+#' the file, with an optional format specifier.
+#'
+#' These are \bold{not} supported for `xgb.QuantileDMatrix`. Supported formats are:\itemize{
+#' \item XGBoost's own binary format for DMatrices, as produced by \link{xgb.DMatrix.save}.
+#' \item SVMLight (a.k.a. LibSVM) format for CSR matrices. This format can be signaled by suffix
+#' `?format=libsvm` at the end of the file path. It will be the default format if not
+#' otherwise specified.
+#' \item CSV files (comma-separated values). This format can be specified by adding suffix
+#' `?format=csv` at the end ofthe file path. It will \bold{not} be auto-deduced from file extensions.
+#' }
+#'
+#' Be aware that the format of the file will not be auto-deduced - for example, if a file is named 'file.csv',
+#' it will not look at the extension or file contents to determine that it is a comma-separated value.
+#' Instead, the format must be specified following the URI format, so the input to `data` should be passed
+#' like this: `"file.csv?format=csv"` (or `"file.csv?format=csv&label_column=0"` if the first column
+#' corresponds to the labels).
+#'
+#' For more information about passing text files as input, see the articles
+#' \href{https://xgboost.readthedocs.io/en/stable/tutorials/input_format.html}{Text Input Format of DMatrix} and
+#' \href{https://xgboost.readthedocs.io/en/stable/python/python_intro.html#python-data-interface}{Data Interface}.
#' }
#' @param label Label of the training data. For classification problems, should be passed encoded as
#' integers with numeration starting at zero.
@@ -81,6 +98,13 @@
#' @param label_lower_bound Lower bound for survival training.
#' @param label_upper_bound Upper bound for survival training.
#' @param feature_weights Set feature weights for column sampling.
+#' @param data_split_mode When passing a URI (as R `character`) as input, this signals
+#' whether to split by row or column. Allowed values are `"row"` and `"col"`.
+#'
+#' In distributed mode, the file is split accordingly; otherwise this is only an indicator on
+#' how the file was split beforehand. Default to row.
+#'
+#' This is not used when `data` is not a URI.
#' @return An 'xgb.DMatrix' object. If calling 'xgb.QuantileDMatrix', it will have additional
#' subclass 'xgb.QuantileDMatrix'.
#'
@@ -117,7 +141,8 @@ xgb.DMatrix <- function(
qid = NULL,
label_lower_bound = NULL,
label_upper_bound = NULL,
- feature_weights = NULL
+ feature_weights = NULL,
+ data_split_mode = "row"
) {
if (!is.null(group) && !is.null(qid)) {
stop("Either one of 'group' or 'qid' should be NULL")
@@ -131,7 +156,14 @@ xgb.DMatrix <- function(
)
}
data <- path.expand(data)
- handle <- .Call(XGDMatrixCreateFromFile_R, data, as.integer(silent))
+ if (data_split_mode == "row") {
+ data_split_mode <- 0L
+ } else if (data_split_mode == "col") {
+ data_split_mode <- 1L
+ } else {
+ stop("Passed invalid 'data_split_mode': ", data_split_mode)
+ }
+ handle <- .Call(XGDMatrixCreateFromURI_R, data, as.integer(silent), data_split_mode)
} else if (is.matrix(data)) {
handle <- .Call(
XGDMatrixCreateFromMat_R, data, missing, nthread
@@ -1227,8 +1259,11 @@ xgb.get.DMatrix.data <- function(dmat) {
#' Get a new DMatrix containing the specified rows of
#' original xgb.DMatrix object
#'
-#' @param object Object of class "xgb.DMatrix"
-#' @param idxset a integer vector of indices of rows needed
+#' @param object Object of class "xgb.DMatrix".
+#' @param idxset An integer vector of indices of rows needed (base-1 indexing).
+#' @param allow_groups Whether to allow slicing an `xgb.DMatrix` with `group` (or
+#' equivalently `qid`) field. Note that in such case, the result will not have
+#' the groups anymore - they need to be set manually through `setinfo`.
#' @param colset currently not used (columns subsetting is not available)
#'
#' @examples
@@ -1243,11 +1278,11 @@ xgb.get.DMatrix.data <- function(dmat) {
#'
#' @rdname xgb.slice.DMatrix
#' @export
-xgb.slice.DMatrix <- function(object, idxset) {
+xgb.slice.DMatrix <- function(object, idxset, allow_groups = FALSE) {
if (!inherits(object, "xgb.DMatrix")) {
stop("object must be xgb.DMatrix")
}
- ret <- .Call(XGDMatrixSliceDMatrix_R, object, idxset)
+ ret <- .Call(XGDMatrixSliceDMatrix_R, object, idxset, allow_groups)
attr_list <- attributes(object)
nr <- nrow(object)
@@ -1264,7 +1299,15 @@ xgb.slice.DMatrix <- function(object, idxset) {
}
}
}
- return(structure(ret, class = "xgb.DMatrix"))
+
+ out <- structure(ret, class = "xgb.DMatrix")
+ parent_fields <- as.list(attributes(object)$fields)
+ if (NROW(parent_fields)) {
+ child_fields <- parent_fields[!(names(parent_fields) %in% c("group", "qid"))]
+ child_fields <- as.environment(child_fields)
+ attributes(out)$fields <- child_fields
+ }
+ return(out)
}
#' @rdname xgb.slice.DMatrix
@@ -1308,11 +1351,11 @@ print.xgb.DMatrix <- function(x, verbose = FALSE, ...) {
}
cat(class_print, ' dim:', nrow(x), 'x', ncol(x), ' info: ')
- infos <- character(0)
- if (xgb.DMatrix.hasinfo(x, 'label')) infos <- 'label'
- if (xgb.DMatrix.hasinfo(x, 'weight')) infos <- c(infos, 'weight')
- if (xgb.DMatrix.hasinfo(x, 'base_margin')) infos <- c(infos, 'base_margin')
- if (length(infos) == 0) infos <- 'NA'
+ infos <- names(attributes(x)$fields)
+ infos <- infos[infos != "feature_name"]
+ if (!NROW(infos)) infos <- "NA"
+ infos <- infos[order(infos)]
+ infos <- paste(infos, collapse = ", ")
cat(infos)
cnames <- colnames(x)
cat(' colnames:')
diff --git a/R-package/R/xgb.DMatrix.save.R b/R-package/R/xgb.DMatrix.save.R
index ef4599d0e..243f43047 100644
--- a/R-package/R/xgb.DMatrix.save.R
+++ b/R-package/R/xgb.DMatrix.save.R
@@ -6,6 +6,7 @@
#' @param fname the name of the file to write.
#'
#' @examples
+#' \dontshow{RhpcBLASctl::omp_set_num_threads(1)}
#' data(agaricus.train, package='xgboost')
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#' fname <- file.path(tempdir(), "xgb.DMatrix.data")
diff --git a/R-package/R/xgb.config.R b/R-package/R/xgb.config.R
index 3f3a9b1a7..20b8aef90 100644
--- a/R-package/R/xgb.config.R
+++ b/R-package/R/xgb.config.R
@@ -4,7 +4,14 @@
#' values of one or more global-scope parameters. Use \code{xgb.get.config} to fetch the current
#' values of all global-scope parameters (listed in
#' \url{https://xgboost.readthedocs.io/en/stable/parameter.html}).
+#' @details
+#' Note that serialization-related functions might use a globally-configured number of threads,
+#' which is managed by the system's OpenMP (OMP) configuration instead. Typically, XGBoost methods
+#' accept an `nthreads` parameter, but some methods like `readRDS` might get executed before such
+#' parameter can be supplied.
#'
+#' The number of OMP threads can in turn be configured for example through an environment variable
+#' `OMP_NUM_THREADS` (needs to be set before R is started), or through `RhpcBLASctl::omp_set_num_threads`.
#' @rdname xgbConfig
#' @title Set and get global configuration
#' @name xgb.set.config, xgb.get.config
diff --git a/R-package/R/xgb.create.features.R b/R-package/R/xgb.create.features.R
index baef3bb03..27f8a0975 100644
--- a/R-package/R/xgb.create.features.R
+++ b/R-package/R/xgb.create.features.R
@@ -71,7 +71,6 @@
#' new.dtest <- xgb.DMatrix(
#' data = new.features.test, label = agaricus.test$label, nthread = 2
#' )
-#' watchlist <- list(train = new.dtrain)
#' bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2)
#'
#' # Model accuracy with new features
diff --git a/R-package/R/xgb.cv.R b/R-package/R/xgb.cv.R
index 29bddb57f..880fd5697 100644
--- a/R-package/R/xgb.cv.R
+++ b/R-package/R/xgb.cv.R
@@ -1,6 +1,6 @@
#' Cross Validation
#'
-#' The cross validation function of xgboost
+#' The cross validation function of xgboost.
#'
#' @param params the list of parameters. The complete list of parameters is
#' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
@@ -19,15 +19,19 @@
#'
#' See \code{\link{xgb.train}} for further details.
#' See also demo/ for walkthrough example in R.
-#' @param data takes an \code{xgb.DMatrix}, \code{matrix}, or \code{dgCMatrix} as the input.
+#'
+#' Note that, while `params` accepts a `seed` entry and will use such parameter for model training if
+#' supplied, this seed is not used for creation of train-test splits, which instead rely on R's own RNG
+#' system - thus, for reproducible results, one needs to call the `set.seed` function beforehand.
+#' @param data An `xgb.DMatrix` object, with corresponding fields like `label` or bounds as required
+#' for model training by the objective.
+#'
+#' Note that only the basic `xgb.DMatrix` class is supported - variants such as `xgb.QuantileDMatrix`
+#' or `xgb.ExternalDMatrix` are not supported here.
#' @param nrounds the max number of iterations
#' @param nfold the original dataset is randomly partitioned into \code{nfold} equal size subsamples.
-#' @param label vector of response values. Should be provided only when data is an R-matrix.
-#' @param missing is only used when input is a dense matrix. By default is set to NA, which means
-#' that NA values should be considered as 'missing' by the algorithm.
-#' Sometimes, 0 or other extreme value might be used to represent missing values.
#' @param prediction A logical value indicating whether to return the test fold predictions
-#' from each CV model. This parameter engages the \code{\link{cb.cv.predict}} callback.
+#' from each CV model. This parameter engages the \code{\link{xgb.cb.cv.predict}} callback.
#' @param showsd \code{boolean}, whether to show standard deviation of cross validation
#' @param metrics, list of evaluation metrics to be used in cross validation,
#' when it is not specified, the evaluation metric is chosen according to objective function.
@@ -47,27 +51,44 @@
#' @param feval customized evaluation function. Returns
#' \code{list(metric='metric-name', value='metric-value')} with given
#' prediction and dtrain.
-#' @param stratified a \code{boolean} indicating whether sampling of folds should be stratified
-#' by the values of outcome labels.
+#' @param stratified A \code{boolean} indicating whether sampling of folds should be stratified
+#' by the values of outcome labels. For real-valued labels in regression objectives,
+#' stratification will be done by discretizing the labels into up to 5 buckets beforehand.
+#'
+#' If passing "auto", will be set to `TRUE` if the objective in `params` is a classification
+#' objective (from XGBoost's built-in objectives, doesn't apply to custom ones), and to
+#' `FALSE` otherwise.
+#'
+#' This parameter is ignored when `data` has a `group` field - in such case, the splitting
+#' will be based on whole groups (note that this might make the folds have different sizes).
+#'
+#' Value `TRUE` here is \bold{not} supported for custom objectives.
#' @param folds \code{list} provides a possibility to use a list of pre-defined CV folds
#' (each element must be a vector of test fold's indices). When folds are supplied,
#' the \code{nfold} and \code{stratified} parameters are ignored.
+#'
+#' If `data` has a `group` field and the objective requires this field, each fold (list element)
+#' must additionally have two attributes (retrievable through \link{attributes}) named `group_test`
+#' and `group_train`, which should hold the `group` to assign through \link{setinfo.xgb.DMatrix} to
+#' the resulting DMatrices.
#' @param train_folds \code{list} list specifying which indicies to use for training. If \code{NULL}
#' (the default) all indices not specified in \code{folds} will be used for training.
+#'
+#' This is not supported when `data` has `group` field.
#' @param verbose \code{boolean}, print the statistics during the process
#' @param print_every_n Print each n-th iteration evaluation messages when \code{verbose>0}.
#' Default is 1 which means all messages are printed. This parameter is passed to the
-#' \code{\link{cb.print.evaluation}} callback.
+#' \code{\link{xgb.cb.print.evaluation}} callback.
#' @param early_stopping_rounds If \code{NULL}, the early stopping function is not triggered.
#' If set to an integer \code{k}, training with a validation set will stop if the performance
#' doesn't improve for \code{k} rounds.
-#' Setting this parameter engages the \code{\link{cb.early.stop}} callback.
+#' Setting this parameter engages the \code{\link{xgb.cb.early.stop}} callback.
#' @param maximize If \code{feval} and \code{early_stopping_rounds} are set,
#' then this parameter must be set as well.
#' When it is \code{TRUE}, it means the larger the evaluation score the better.
-#' This parameter is passed to the \code{\link{cb.early.stop}} callback.
+#' This parameter is passed to the \code{\link{xgb.cb.early.stop}} callback.
#' @param callbacks a list of callback functions to perform various task during boosting.
-#' See \code{\link{callbacks}}. Some of the callbacks are automatically created depending on the
+#' See \code{\link{xgb.Callback}}. Some of the callbacks are automatically created depending on the
#' parameters' values. User can provide either existing or their own callback methods in order
#' to customize the training process.
#' @param ... other parameters to pass to \code{params}.
@@ -90,25 +111,25 @@
#' \itemize{
#' \item \code{call} a function call.
#' \item \code{params} parameters that were passed to the xgboost library. Note that it does not
-#' capture parameters changed by the \code{\link{cb.reset.parameters}} callback.
-#' \item \code{callbacks} callback functions that were either automatically assigned or
-#' explicitly passed.
+#' capture parameters changed by the \code{\link{xgb.cb.reset.parameters}} callback.
#' \item \code{evaluation_log} evaluation history stored as a \code{data.table} with the
#' first column corresponding to iteration number and the rest corresponding to the
#' CV-based evaluation means and standard deviations for the training and test CV-sets.
-#' It is created by the \code{\link{cb.evaluation.log}} callback.
+#' It is created by the \code{\link{xgb.cb.evaluation.log}} callback.
#' \item \code{niter} number of boosting iterations.
#' \item \code{nfeatures} number of features in training data.
#' \item \code{folds} the list of CV folds' indices - either those passed through the \code{folds}
#' parameter or randomly generated.
#' \item \code{best_iteration} iteration number with the best evaluation metric value
#' (only available with early stopping).
-#' \item \code{pred} CV prediction values available when \code{prediction} is set.
-#' It is either vector or matrix (see \code{\link{cb.cv.predict}}).
-#' \item \code{models} a list of the CV folds' models. It is only available with the explicit
-#' setting of the \code{cb.cv.predict(save_models = TRUE)} callback.
#' }
#'
+#' Plus other potential elements that are the result of callbacks, such as a list `cv_predict` with
+#' a sub-element `pred` when passing `prediction = TRUE`, which is added by the \link{xgb.cb.cv.predict}
+#' callback (note that one can also pass it manually under `callbacks` with different settings,
+#' such as saving also the models created during cross validation); or a list `early_stop` which
+#' will contain elements such as `best_iteration` when using the early stopping callback (\link{xgb.cb.early.stop}).
+#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
@@ -118,13 +139,14 @@
#' print(cv, verbose=TRUE)
#'
#' @export
-xgb.cv <- function(params = list(), data, nrounds, nfold, label = NULL, missing = NA,
+xgb.cv <- function(params = list(), data, nrounds, nfold,
prediction = FALSE, showsd = TRUE, metrics = list(),
- obj = NULL, feval = NULL, stratified = TRUE, folds = NULL, train_folds = NULL,
+ obj = NULL, feval = NULL, stratified = "auto", folds = NULL, train_folds = NULL,
verbose = TRUE, print_every_n = 1L,
early_stopping_rounds = NULL, maximize = NULL, callbacks = list(), ...) {
check.deprecation(...)
+ stopifnot(inherits(data, "xgb.DMatrix"))
if (inherits(data, "xgb.DMatrix") && .Call(XGCheckNullPtr_R, data)) {
stop("'data' is an invalid 'xgb.DMatrix' object. Must be constructed again.")
}
@@ -137,16 +159,22 @@ xgb.cv <- function(params = list(), data, nrounds, nfold, label = NULL, missing
check.custom.obj()
check.custom.eval()
- # Check the labels
- if ((inherits(data, 'xgb.DMatrix') && !xgb.DMatrix.hasinfo(data, 'label')) ||
- (!inherits(data, 'xgb.DMatrix') && is.null(label))) {
- stop("Labels must be provided for CV either through xgb.DMatrix, or through 'label=' when 'data' is matrix")
- } else if (inherits(data, 'xgb.DMatrix')) {
- if (!is.null(label))
- warning("xgb.cv: label will be ignored, since data is of type xgb.DMatrix")
- cv_label <- getinfo(data, 'label')
- } else {
- cv_label <- label
+ if (stratified == "auto") {
+ if (is.character(params$objective)) {
+ stratified <- (
+ (params$objective %in% .CLASSIFICATION_OBJECTIVES())
+ && !(params$objective %in% .RANKING_OBJECTIVES())
+ )
+ } else {
+ stratified <- FALSE
+ }
+ }
+
+ # Check the labels and groups
+ cv_label <- getinfo(data, "label")
+ cv_group <- getinfo(data, "group")
+ if (!is.null(train_folds) && NROW(cv_group)) {
+ stop("'train_folds' is not supported for DMatrix object with 'group' field.")
}
# CV folds
@@ -157,63 +185,64 @@ xgb.cv <- function(params = list(), data, nrounds, nfold, label = NULL, missing
} else {
if (nfold <= 1)
stop("'nfold' must be > 1")
- folds <- generate.cv.folds(nfold, nrow(data), stratified, cv_label, params)
+ folds <- generate.cv.folds(nfold, nrow(data), stratified, cv_label, cv_group, params)
}
+ # Callbacks
+ tmp <- .process.callbacks(callbacks, is_cv = TRUE)
+ callbacks <- tmp$callbacks
+ cb_names <- tmp$cb_names
+ rm(tmp)
+
+ # Early stopping callback
+ if (!is.null(early_stopping_rounds) && !("early_stop" %in% cb_names)) {
+ callbacks <- add.callback(
+ callbacks,
+ xgb.cb.early.stop(
+ early_stopping_rounds,
+ maximize = maximize,
+ verbose = verbose
+ ),
+ as_first_elt = TRUE
+ )
+ }
# verbosity & evaluation printing callback:
params <- c(params, list(silent = 1))
print_every_n <- max(as.integer(print_every_n), 1L)
- if (!has.callbacks(callbacks, 'cb.print.evaluation') && verbose) {
- callbacks <- add.cb(callbacks, cb.print.evaluation(print_every_n, showsd = showsd))
+ if (verbose && !("print_evaluation" %in% cb_names)) {
+ callbacks <- add.callback(callbacks, xgb.cb.print.evaluation(print_every_n, showsd = showsd))
}
# evaluation log callback: always is on in CV
- evaluation_log <- list()
- if (!has.callbacks(callbacks, 'cb.evaluation.log')) {
- callbacks <- add.cb(callbacks, cb.evaluation.log())
- }
- # Early stopping callback
- stop_condition <- FALSE
- if (!is.null(early_stopping_rounds) &&
- !has.callbacks(callbacks, 'cb.early.stop')) {
- callbacks <- add.cb(callbacks, cb.early.stop(early_stopping_rounds,
- maximize = maximize, verbose = verbose))
+ if (!("evaluation_log" %in% cb_names)) {
+ callbacks <- add.callback(callbacks, xgb.cb.evaluation.log())
}
# CV-predictions callback
- if (prediction &&
- !has.callbacks(callbacks, 'cb.cv.predict')) {
- callbacks <- add.cb(callbacks, cb.cv.predict(save_models = FALSE))
+ if (prediction && !("cv_predict" %in% cb_names)) {
+ callbacks <- add.callback(callbacks, xgb.cb.cv.predict(save_models = FALSE))
}
- # Sort the callbacks into categories
- cb <- categorize.callbacks(callbacks)
-
# create the booster-folds
# train_folds
- dall <- xgb.get.DMatrix(
- data = data,
- label = label,
- missing = missing,
- weight = NULL,
- nthread = params$nthread
- )
+ dall <- data
bst_folds <- lapply(seq_along(folds), function(k) {
- dtest <- xgb.slice.DMatrix(dall, folds[[k]])
+ dtest <- xgb.slice.DMatrix(dall, folds[[k]], allow_groups = TRUE)
# code originally contributed by @RolandASc on stackoverflow
if (is.null(train_folds))
- dtrain <- xgb.slice.DMatrix(dall, unlist(folds[-k]))
+ dtrain <- xgb.slice.DMatrix(dall, unlist(folds[-k]), allow_groups = TRUE)
else
- dtrain <- xgb.slice.DMatrix(dall, train_folds[[k]])
+ dtrain <- xgb.slice.DMatrix(dall, train_folds[[k]], allow_groups = TRUE)
+ if (!is.null(attributes(folds[[k]])$group_test)) {
+ setinfo(dtest, "group", attributes(folds[[k]])$group_test)
+ setinfo(dtrain, "group", attributes(folds[[k]])$group_train)
+ }
bst <- xgb.Booster(
params = params,
cachelist = list(dtrain, dtest),
modelfile = NULL
)
bst <- bst$bst
- list(dtrain = dtrain, bst = bst, watchlist = list(train = dtrain, test = dtest), index = folds[[k]])
+ list(dtrain = dtrain, bst = bst, evals = list(train = dtrain, test = dtest), index = folds[[k]])
})
- rm(dall)
- # a "basket" to collect some results from callbacks
- basket <- list()
# extract parameters that can affect the relationship b/w #trees and #iterations
num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1) # nolint
@@ -222,10 +251,25 @@ xgb.cv <- function(params = list(), data, nrounds, nfold, label = NULL, missing
begin_iteration <- 1
end_iteration <- nrounds
+ .execute.cb.before.training(
+ callbacks,
+ bst_folds,
+ dall,
+ NULL,
+ begin_iteration,
+ end_iteration
+ )
+
# synchronous CV boosting: run CV folds' models within each iteration
for (iteration in begin_iteration:end_iteration) {
- for (f in cb$pre_iter) f()
+ .execute.cb.before.iter(
+ callbacks,
+ bst_folds,
+ dall,
+ NULL,
+ iteration
+ )
msg <- lapply(bst_folds, function(fd) {
xgb.iter.update(
@@ -236,33 +280,42 @@ xgb.cv <- function(params = list(), data, nrounds, nfold, label = NULL, missing
)
xgb.iter.eval(
bst = fd$bst,
- watchlist = fd$watchlist,
+ evals = fd$evals,
iter = iteration - 1,
feval = feval
)
})
msg <- simplify2array(msg)
- # Note: these variables might look unused here, but they are used in the callbacks
- bst_evaluation <- rowMeans(msg) # nolint
- bst_evaluation_err <- apply(msg, 1, sd) # nolint
- for (f in cb$post_iter) f()
+ should_stop <- .execute.cb.after.iter(
+ callbacks,
+ bst_folds,
+ dall,
+ NULL,
+ iteration,
+ msg
+ )
- if (stop_condition) break
+ if (should_stop) break
}
- for (f in cb$finalize) f(finalize = TRUE)
+ cb_outputs <- .execute.cb.after.training(
+ callbacks,
+ bst_folds,
+ dall,
+ NULL,
+ iteration,
+ msg
+ )
# the CV result
ret <- list(
call = match.call(),
params = params,
- callbacks = callbacks,
- evaluation_log = evaluation_log,
- niter = end_iteration,
- nfeatures = ncol(data),
+ niter = iteration,
+ nfeatures = ncol(dall),
folds = folds
)
- ret <- c(ret, basket)
+ ret <- c(ret, cb_outputs)
class(ret) <- 'xgb.cv.synchronous'
return(invisible(ret))
@@ -285,8 +338,8 @@ xgb.cv <- function(params = list(), data, nrounds, nfold, label = NULL, missing
#' @examples
#' data(agaricus.train, package='xgboost')
#' train <- agaricus.train
-#' cv <- xgb.cv(data = train$data, label = train$label, nfold = 5, max_depth = 2,
-#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
+#' cv <- xgb.cv(data = xgb.DMatrix(train$data, label = train$label), nfold = 5, max_depth = 2,
+#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
#' print(cv)
#' print(cv, verbose=TRUE)
#'
@@ -308,23 +361,16 @@ print.xgb.cv.synchronous <- function(x, verbose = FALSE, ...) {
paste0('"', unlist(x$params), '"'),
sep = ' = ', collapse = ', '), '\n', sep = '')
}
- if (!is.null(x$callbacks) && length(x$callbacks) > 0) {
- cat('callbacks:\n')
- lapply(callback.calls(x$callbacks), function(x) {
- cat(' ')
- print(x)
- })
- }
for (n in c('niter', 'best_iteration')) {
- if (is.null(x[[n]]))
+ if (is.null(x$early_stop[[n]]))
next
- cat(n, ': ', x[[n]], '\n', sep = '')
+ cat(n, ': ', x$early_stop[[n]], '\n', sep = '')
}
- if (!is.null(x$pred)) {
+ if (!is.null(x$cv_predict$pred)) {
cat('pred:\n')
- str(x$pred)
+ str(x$cv_predict$pred)
}
}
@@ -332,9 +378,9 @@ print.xgb.cv.synchronous <- function(x, verbose = FALSE, ...) {
cat('evaluation_log:\n')
print(x$evaluation_log, row.names = FALSE, ...)
- if (!is.null(x$best_iteration)) {
+ if (!is.null(x$early_stop$best_iteration)) {
cat('Best iteration:\n')
- print(x$evaluation_log[x$best_iteration], row.names = FALSE, ...)
+ print(x$evaluation_log[x$early_stop$best_iteration], row.names = FALSE, ...)
}
invisible(x)
}
diff --git a/R-package/R/xgb.dump.R b/R-package/R/xgb.dump.R
index 3a3d2c7dc..2fa5bcb2f 100644
--- a/R-package/R/xgb.dump.R
+++ b/R-package/R/xgb.dump.R
@@ -24,6 +24,7 @@
#' as a \code{character} vector. Otherwise it will return \code{TRUE}.
#'
#' @examples
+#' \dontshow{RhpcBLASctl::omp_set_num_threads(1)}
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#' train <- agaricus.train
diff --git a/R-package/R/xgb.load.R b/R-package/R/xgb.load.R
index 7d1eab7e9..d5b192bcb 100644
--- a/R-package/R/xgb.load.R
+++ b/R-package/R/xgb.load.R
@@ -6,7 +6,7 @@
#'
#' @details
#' The input file is expected to contain a model saved in an xgboost model format
-#' using either \code{\link{xgb.save}} or \code{\link{cb.save.model}} in R, or using some
+#' using either \code{\link{xgb.save}} or \code{\link{xgb.cb.save.model}} in R, or using some
#' appropriate methods from other xgboost interfaces. E.g., a model trained in Python and
#' saved from there in xgboost format, could be loaded from R.
#'
@@ -20,6 +20,7 @@
#' \code{\link{xgb.save}}
#'
#' @examples
+#' \dontshow{RhpcBLASctl::omp_set_num_threads(1)}
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
diff --git a/R-package/R/xgb.save.R b/R-package/R/xgb.save.R
index e1a61d196..91c545ff7 100644
--- a/R-package/R/xgb.save.R
+++ b/R-package/R/xgb.save.R
@@ -35,6 +35,7 @@
#' \code{\link{xgb.load}}
#'
#' @examples
+#' \dontshow{RhpcBLASctl::omp_set_num_threads(1)}
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
diff --git a/R-package/R/xgb.save.raw.R b/R-package/R/xgb.save.raw.R
index c124a752b..c04f06d9c 100644
--- a/R-package/R/xgb.save.raw.R
+++ b/R-package/R/xgb.save.raw.R
@@ -12,6 +12,7 @@
#' }
#'
#' @examples
+#' \dontshow{RhpcBLASctl::omp_set_num_threads(1)}
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
diff --git a/R-package/R/xgb.train.R b/R-package/R/xgb.train.R
index f0f2332b5..4cea088e0 100644
--- a/R-package/R/xgb.train.R
+++ b/R-package/R/xgb.train.R
@@ -114,13 +114,13 @@
#' @param data training dataset. \code{xgb.train} accepts only an \code{xgb.DMatrix} as the input.
#' \code{xgboost}, in addition, also accepts \code{matrix}, \code{dgCMatrix}, or name of a local data file.
#' @param nrounds max number of boosting iterations.
-#' @param watchlist named list of xgb.DMatrix datasets to use for evaluating model performance.
+#' @param evals Named list of `xgb.DMatrix` datasets to use for evaluating model performance.
#' Metrics specified in either \code{eval_metric} or \code{feval} will be computed for each
#' of these datasets during each boosting iteration, and stored in the end as a field named
#' \code{evaluation_log} in the resulting object. When either \code{verbose>=1} or
-#' \code{\link{cb.print.evaluation}} callback is engaged, the performance results are continuously
+#' \code{\link{xgb.cb.print.evaluation}} callback is engaged, the performance results are continuously
#' printed out during the training.
-#' E.g., specifying \code{watchlist=list(validation1=mat1, validation2=mat2)} allows to track
+#' E.g., specifying \code{evals=list(validation1=mat1, validation2=mat2)} allows to track
#' the performance of each round's model on mat1 and mat2.
#' @param obj customized objective function. Returns gradient and second order
#' gradient with given prediction and dtrain.
@@ -130,31 +130,32 @@
#' @param verbose If 0, xgboost will stay silent. If 1, it will print information about performance.
#' If 2, some additional information will be printed out.
#' Note that setting \code{verbose > 0} automatically engages the
-#' \code{cb.print.evaluation(period=1)} callback function.
+#' \code{xgb.cb.print.evaluation(period=1)} callback function.
#' @param print_every_n Print each n-th iteration evaluation messages when \code{verbose>0}.
#' Default is 1 which means all messages are printed. This parameter is passed to the
-#' \code{\link{cb.print.evaluation}} callback.
+#' \code{\link{xgb.cb.print.evaluation}} callback.
#' @param early_stopping_rounds If \code{NULL}, the early stopping function is not triggered.
#' If set to an integer \code{k}, training with a validation set will stop if the performance
#' doesn't improve for \code{k} rounds.
-#' Setting this parameter engages the \code{\link{cb.early.stop}} callback.
+#' Setting this parameter engages the \code{\link{xgb.cb.early.stop}} callback.
#' @param maximize If \code{feval} and \code{early_stopping_rounds} are set,
#' then this parameter must be set as well.
#' When it is \code{TRUE}, it means the larger the evaluation score the better.
-#' This parameter is passed to the \code{\link{cb.early.stop}} callback.
+#' This parameter is passed to the \code{\link{xgb.cb.early.stop}} callback.
#' @param save_period when it is non-NULL, model is saved to disk after every \code{save_period} rounds,
-#' 0 means save at the end. The saving is handled by the \code{\link{cb.save.model}} callback.
+#' 0 means save at the end. The saving is handled by the \code{\link{xgb.cb.save.model}} callback.
#' @param save_name the name or path for periodically saved model file.
#' @param xgb_model a previously built model to continue the training from.
#' Could be either an object of class \code{xgb.Booster}, or its raw data, or the name of a
#' file with a previously saved model.
#' @param callbacks a list of callback functions to perform various task during boosting.
-#' See \code{\link{callbacks}}. Some of the callbacks are automatically created depending on the
+#' See \code{\link{xgb.Callback}}. Some of the callbacks are automatically created depending on the
#' parameters' values. User can provide either existing or their own callback methods in order
#' to customize the training process.
#'
-#' Note that some callbacks might try to set an evaluation log - be aware that these evaluation logs
-#' are kept as R attributes, and thus do not get saved when using non-R serializaters like
+#' Note that some callbacks might try to leave attributes in the resulting model object,
+#' such as an evaluation log (a `data.table` object) - be aware that these objects are kept
+#' as R attributes, and thus do not get saved when using XGBoost's own serializaters like
#' \link{xgb.save} (but are kept when using R serializers like \link{saveRDS}).
#' @param ... other parameters to pass to \code{params}.
#' @param label vector of response values. Should not be provided when data is
@@ -170,7 +171,7 @@
#' @details
#' These are the training functions for \code{xgboost}.
#'
-#' The \code{xgb.train} interface supports advanced features such as \code{watchlist},
+#' The \code{xgb.train} interface supports advanced features such as \code{evals},
#' customized objective and evaluation metric functions, therefore it is more flexible
#' than the \code{xgboost} interface.
#'
@@ -178,6 +179,11 @@
#' Number of threads can also be manually specified via the \code{nthread}
#' parameter.
#'
+#' While in other interfaces, the default random seed defaults to zero, in R, if a parameter `seed`
+#' is not manually supplied, it will generate a random seed through R's own random number generator,
+#' whose seed in turn is controllable through `set.seed`. If `seed` is passed, it will override the
+#' RNG from R.
+#'
#' The evaluation metric is chosen automatically by XGBoost (according to the objective)
#' when the \code{eval_metric} parameter is not provided.
#' User may set one or several \code{eval_metric} parameters.
@@ -201,18 +207,19 @@
#'
#' The following callbacks are automatically created when certain parameters are set:
#' \itemize{
-#' \item \code{cb.print.evaluation} is turned on when \code{verbose > 0};
+#' \item \code{xgb.cb.print.evaluation} is turned on when \code{verbose > 0};
#' and the \code{print_every_n} parameter is passed to it.
-#' \item \code{cb.evaluation.log} is on when \code{watchlist} is present.
-#' \item \code{cb.early.stop}: when \code{early_stopping_rounds} is set.
-#' \item \code{cb.save.model}: when \code{save_period > 0} is set.
+#' \item \code{xgb.cb.evaluation.log} is on when \code{evals} is present.
+#' \item \code{xgb.cb.early.stop}: when \code{early_stopping_rounds} is set.
+#' \item \code{xgb.cb.save.model}: when \code{save_period > 0} is set.
#' }
#'
#' Note that objects of type `xgb.Booster` as returned by this function behave a bit differently
#' from typical R objects (it's an 'altrep' list class), and it makes a separation between
#' internal booster attributes (restricted to jsonifyable data), accessed through \link{xgb.attr}
#' and shared between interfaces through serialization functions like \link{xgb.save}; and
-#' R-specific attributes, accessed through \link{attributes} and \link{attr}, which are otherwise
+#' R-specific attributes (typically the result from a callback), accessed through \link{attributes}
+#' and \link{attr}, which are otherwise
#' only used in the R interface, only kept when using R's serializers like \link{saveRDS}, and
#' not anyhow used by functions like \link{predict.xgb.Booster}.
#'
@@ -224,7 +231,7 @@
#' effect elsewhere.
#'
#' @seealso
-#' \code{\link{callbacks}},
+#' \code{\link{xgb.Callback}},
#' \code{\link{predict.xgb.Booster}},
#' \code{\link{xgb.cv}}
#'
@@ -247,12 +254,12 @@
#' dtest <- with(
#' agaricus.test, xgb.DMatrix(data, label = label, nthread = nthread)
#' )
-#' watchlist <- list(train = dtrain, eval = dtest)
+#' evals <- list(train = dtrain, eval = dtest)
#'
#' ## A simple xgb.train example:
#' param <- list(max_depth = 2, eta = 1, nthread = nthread,
#' objective = "binary:logistic", eval_metric = "auc")
-#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0)
+#' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0)
#'
#' ## An xgb.train example where custom objective and evaluation metric are
#' ## used:
@@ -273,15 +280,15 @@
#' # as 'objective' and 'eval_metric' parameters in the params list:
#' param <- list(max_depth = 2, eta = 1, nthread = nthread,
#' objective = logregobj, eval_metric = evalerror)
-#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0)
+#' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0)
#'
#' # or through the ... arguments:
#' param <- list(max_depth = 2, eta = 1, nthread = nthread)
-#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
+#' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
#' objective = logregobj, eval_metric = evalerror)
#'
#' # or as dedicated 'obj' and 'feval' parameters of xgb.train:
-#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
+#' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals,
#' obj = logregobj, feval = evalerror)
#'
#'
@@ -289,11 +296,11 @@
#' param <- list(max_depth = 2, eta = 1, nthread = nthread,
#' objective = "binary:logistic", eval_metric = "auc")
#' my_etas <- list(eta = c(0.5, 0.1))
-#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
-#' callbacks = list(cb.reset.parameters(my_etas)))
+#' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
+#' callbacks = list(xgb.cb.reset.parameters(my_etas)))
#'
#' ## Early stopping:
-#' bst <- xgb.train(param, dtrain, nrounds = 25, watchlist,
+#' bst <- xgb.train(param, dtrain, nrounds = 25, evals = evals,
#' early_stopping_rounds = 3)
#'
#' ## An 'xgboost' interface example:
@@ -304,7 +311,7 @@
#'
#' @rdname xgb.train
#' @export
-xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
+xgb.train <- function(params = list(), data, nrounds, evals = list(),
obj = NULL, feval = NULL, verbose = 1, print_every_n = 1L,
early_stopping_rounds = NULL, maximize = NULL,
save_period = NULL, save_name = "xgboost.model",
@@ -317,68 +324,68 @@ xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
check.custom.obj()
check.custom.eval()
- # data & watchlist checks
+ # data & evals checks
dtrain <- data
if (!inherits(dtrain, "xgb.DMatrix"))
stop("second argument dtrain must be xgb.DMatrix")
- if (length(watchlist) > 0) {
- if (typeof(watchlist) != "list" ||
- !all(vapply(watchlist, inherits, logical(1), what = 'xgb.DMatrix')))
- stop("watchlist must be a list of xgb.DMatrix elements")
- evnames <- names(watchlist)
+ if (length(evals) > 0) {
+ if (typeof(evals) != "list" ||
+ !all(vapply(evals, inherits, logical(1), what = 'xgb.DMatrix')))
+ stop("'evals' must be a list of xgb.DMatrix elements")
+ evnames <- names(evals)
if (is.null(evnames) || any(evnames == ""))
- stop("each element of the watchlist must have a name tag")
+ stop("each element of 'evals' must have a name tag")
}
# Handle multiple evaluation metrics given as a list
for (m in params$eval_metric) {
params <- c(params, list(eval_metric = m))
}
- # evaluation printing callback
params <- c(params)
- print_every_n <- max(as.integer(print_every_n), 1L)
- if (!has.callbacks(callbacks, 'cb.print.evaluation') &&
- verbose) {
- callbacks <- add.cb(callbacks, cb.print.evaluation(print_every_n))
- }
- # evaluation log callback: it is automatically enabled when watchlist is provided
- evaluation_log <- list()
- if (!has.callbacks(callbacks, 'cb.evaluation.log') &&
- length(watchlist) > 0) {
- callbacks <- add.cb(callbacks, cb.evaluation.log())
- }
- # Model saving callback
- if (!is.null(save_period) &&
- !has.callbacks(callbacks, 'cb.save.model')) {
- callbacks <- add.cb(callbacks, cb.save.model(save_period, save_name))
- }
- # Early stopping callback
- stop_condition <- FALSE
- if (!is.null(early_stopping_rounds) &&
- !has.callbacks(callbacks, 'cb.early.stop')) {
- callbacks <- add.cb(callbacks, cb.early.stop(early_stopping_rounds,
- maximize = maximize, verbose = verbose))
+ params['validate_parameters'] <- TRUE
+ if (!("seed" %in% names(params))) {
+ params[["seed"]] <- sample(.Machine$integer.max, size = 1)
}
- # Sort the callbacks into categories
- cb <- categorize.callbacks(callbacks)
- params['validate_parameters'] <- TRUE
- if (!is.null(params[['seed']])) {
- warning("xgb.train: `seed` is ignored in R package. Use `set.seed()` instead.")
+ # callbacks
+ tmp <- .process.callbacks(callbacks, is_cv = FALSE)
+ callbacks <- tmp$callbacks
+ cb_names <- tmp$cb_names
+ rm(tmp)
+
+ # Early stopping callback (should always come first)
+ if (!is.null(early_stopping_rounds) && !("early_stop" %in% cb_names)) {
+ callbacks <- add.callback(
+ callbacks,
+ xgb.cb.early.stop(
+ early_stopping_rounds,
+ maximize = maximize,
+ verbose = verbose
+ ),
+ as_first_elt = TRUE
+ )
+ }
+ # evaluation printing callback
+ print_every_n <- max(as.integer(print_every_n), 1L)
+ if (verbose && !("print_evaluation" %in% cb_names)) {
+ callbacks <- add.callback(callbacks, xgb.cb.print.evaluation(print_every_n))
+ }
+ # evaluation log callback: it is automatically enabled when 'evals' is provided
+ if (length(evals) && !("evaluation_log" %in% cb_names)) {
+ callbacks <- add.callback(callbacks, xgb.cb.evaluation.log())
+ }
+ # Model saving callback
+ if (!is.null(save_period) && !("save_model" %in% cb_names)) {
+ callbacks <- add.callback(callbacks, xgb.cb.save.model(save_period, save_name))
}
# The tree updating process would need slightly different handling
is_update <- NVL(params[['process_type']], '.') == 'update'
- past_evaluation_log <- NULL
- if (inherits(xgb_model, "xgb.Booster")) {
- past_evaluation_log <- attributes(xgb_model)$evaluation_log
- }
-
# Construct a booster (either a new one or load from xgb_model)
bst <- xgb.Booster(
params = params,
- cachelist = append(watchlist, dtrain),
+ cachelist = append(evals, dtrain),
modelfile = xgb_model
)
niter_init <- bst$niter
@@ -389,11 +396,6 @@ xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
dtrain
)
- # extract parameters that can affect the relationship b/w #trees and #iterations
- # Note: it might look like these aren't used, but they need to be defined in this
- # environment for the callbacks for work correctly.
- num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1) # nolint
-
if (is_update && nrounds > niter_init)
stop("nrounds cannot be larger than ", niter_init, " (nrounds of xgb_model)")
@@ -401,57 +403,83 @@ xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
begin_iteration <- niter_skip + 1
end_iteration <- niter_skip + nrounds
+ .execute.cb.before.training(
+ callbacks,
+ bst,
+ dtrain,
+ evals,
+ begin_iteration,
+ end_iteration
+ )
+
# the main loop for boosting iterations
for (iteration in begin_iteration:end_iteration) {
- for (f in cb$pre_iter) f()
-
- xgb.iter.update(
- bst = bst,
- dtrain = dtrain,
- iter = iteration - 1,
- obj = obj
+ .execute.cb.before.iter(
+ callbacks,
+ bst,
+ dtrain,
+ evals,
+ iteration
)
- if (length(watchlist) > 0) {
- bst_evaluation <- xgb.iter.eval( # nolint: object_usage_linter
+ xgb.iter.update(
+ bst = bst,
+ dtrain = dtrain,
+ iter = iteration - 1,
+ obj = obj
+ )
+
+ bst_evaluation <- NULL
+ if (length(evals) > 0) {
+ bst_evaluation <- xgb.iter.eval(
bst = bst,
- watchlist = watchlist,
+ evals = evals,
iter = iteration - 1,
feval = feval
)
}
- for (f in cb$post_iter) f()
+ should_stop <- .execute.cb.after.iter(
+ callbacks,
+ bst,
+ dtrain,
+ evals,
+ iteration,
+ bst_evaluation
+ )
- if (stop_condition) break
+ if (should_stop) break
}
- for (f in cb$finalize) f(finalize = TRUE)
- # store the evaluation results
- keep_evaluation_log <- FALSE
- if (length(evaluation_log) > 0 && nrow(evaluation_log) > 0) {
- keep_evaluation_log <- TRUE
- # include the previous compatible history when available
- if (inherits(xgb_model, 'xgb.Booster') &&
- !is_update &&
- !is.null(past_evaluation_log) &&
- isTRUE(all.equal(colnames(evaluation_log),
- colnames(past_evaluation_log)))) {
- evaluation_log <- rbindlist(list(past_evaluation_log, evaluation_log))
- }
- }
+ cb_outputs <- .execute.cb.after.training(
+ callbacks,
+ bst,
+ dtrain,
+ evals,
+ iteration,
+ bst_evaluation
+ )
extra_attrs <- list(
call = match.call(),
- params = params,
- callbacks = callbacks
+ params = params
)
- if (keep_evaluation_log) {
- extra_attrs$evaluation_log <- evaluation_log
- }
+
curr_attrs <- attributes(bst)
- attributes(bst) <- c(curr_attrs, extra_attrs)
+ if (NROW(curr_attrs)) {
+ curr_attrs <- curr_attrs[
+ setdiff(
+ names(curr_attrs),
+ c(names(extra_attrs), names(cb_outputs))
+ )
+ ]
+ }
+ curr_attrs <- c(extra_attrs, curr_attrs)
+ if (NROW(cb_outputs)) {
+ curr_attrs <- c(curr_attrs, cb_outputs)
+ }
+ attributes(bst) <- curr_attrs
return(bst)
}
diff --git a/R-package/R/xgboost.R b/R-package/R/xgboost.R
index 170aa5ffd..a1d373581 100644
--- a/R-package/R/xgboost.R
+++ b/R-package/R/xgboost.R
@@ -18,9 +18,9 @@ xgboost <- function(data = NULL, label = NULL, missing = NA, weight = NULL,
nthread = merged$nthread
)
- watchlist <- list(train = dtrain)
+ evals <- list(train = dtrain)
- bst <- xgb.train(params, dtrain, nrounds, watchlist, verbose = verbose, print_every_n = print_every_n,
+ bst <- xgb.train(params, dtrain, nrounds, evals, verbose = verbose, print_every_n = print_every_n,
early_stopping_rounds = early_stopping_rounds, maximize = maximize,
save_period = save_period, save_name = save_name,
xgb_model = xgb_model, callbacks = callbacks, ...)
@@ -82,12 +82,8 @@ NULL
NULL
# Various imports
-#' @importClassesFrom Matrix dgCMatrix dgeMatrix dgRMatrix
-#' @importFrom Matrix colSums
+#' @importClassesFrom Matrix dgCMatrix dgRMatrix CsparseMatrix
#' @importFrom Matrix sparse.model.matrix
-#' @importFrom Matrix sparseVector
-#' @importFrom Matrix sparseMatrix
-#' @importFrom Matrix t
#' @importFrom data.table data.table
#' @importFrom data.table is.data.table
#' @importFrom data.table as.data.table
@@ -103,6 +99,7 @@ NULL
#' @importFrom stats coef
#' @importFrom stats predict
#' @importFrom stats median
+#' @importFrom stats sd
#' @importFrom stats variable.names
#' @importFrom utils head
#' @importFrom graphics barplot
diff --git a/R-package/demo/basic_walkthrough.R b/R-package/demo/basic_walkthrough.R
index 31f79fb57..9403bac20 100644
--- a/R-package/demo/basic_walkthrough.R
+++ b/R-package/demo/basic_walkthrough.R
@@ -55,6 +55,8 @@ print(paste("test-error=", err))
# save model to binary local file
xgb.save(bst, "xgboost.model")
# load binary model to R
+# Function doesn't take 'nthreads', but can be set like this:
+RhpcBLASctl::omp_set_num_threads(1)
bst2 <- xgb.load("xgboost.model")
pred2 <- predict(bst2, test$data)
# pred2 should be identical to pred
@@ -72,17 +74,17 @@ print(paste("sum(abs(pred3-pred))=", sum(abs(pred3 - pred))))
# to use advanced features, we need to put data in xgb.DMatrix
dtrain <- xgb.DMatrix(data = train$data, label = train$label)
dtest <- xgb.DMatrix(data = test$data, label = test$label)
-#---------------Using watchlist----------------
-# watchlist is a list of xgb.DMatrix, each of them is tagged with name
-watchlist <- list(train = dtrain, test = dtest)
-# to train with watchlist, use xgb.train, which contains more advanced features
-# watchlist allows us to monitor the evaluation result on all data in the list
-print("Train xgboost using xgb.train with watchlist")
-bst <- xgb.train(data = dtrain, max_depth = 2, eta = 1, nrounds = 2, watchlist = watchlist,
+#---------------Using an evaluation set----------------
+# 'evals' is a list of xgb.DMatrix, each of them is tagged with name
+evals <- list(train = dtrain, test = dtest)
+# to train with an evaluation set, use xgb.train, which contains more advanced features
+# 'evals' argument allows us to monitor the evaluation result on all data in the list
+print("Train xgboost using xgb.train with evaluation data")
+bst <- xgb.train(data = dtrain, max_depth = 2, eta = 1, nrounds = 2, evals = evals,
nthread = 2, objective = "binary:logistic")
# we can change evaluation metrics, or use multiple evaluation metrics
-print("train xgboost using xgb.train with watchlist, watch logloss and error")
-bst <- xgb.train(data = dtrain, max_depth = 2, eta = 1, nrounds = 2, watchlist = watchlist,
+print("train xgboost using xgb.train with evaluation data, watch logloss and error")
+bst <- xgb.train(data = dtrain, max_depth = 2, eta = 1, nrounds = 2, evals = evals,
eval_metric = "error", eval_metric = "logloss",
nthread = 2, objective = "binary:logistic")
@@ -90,7 +92,7 @@ bst <- xgb.train(data = dtrain, max_depth = 2, eta = 1, nrounds = 2, watchlist =
xgb.DMatrix.save(dtrain, "dtrain.buffer")
# to load it in, simply call xgb.DMatrix
dtrain2 <- xgb.DMatrix("dtrain.buffer")
-bst <- xgb.train(data = dtrain2, max_depth = 2, eta = 1, nrounds = 2, watchlist = watchlist,
+bst <- xgb.train(data = dtrain2, max_depth = 2, eta = 1, nrounds = 2, evals = evals,
nthread = 2, objective = "binary:logistic")
# information can be extracted from xgb.DMatrix using getinfo
label <- getinfo(dtest, "label")
diff --git a/R-package/demo/boost_from_prediction.R b/R-package/demo/boost_from_prediction.R
index 1a3d55369..75af70dba 100644
--- a/R-package/demo/boost_from_prediction.R
+++ b/R-package/demo/boost_from_prediction.R
@@ -5,14 +5,14 @@ data(agaricus.test, package = 'xgboost')
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
-watchlist <- list(eval = dtest, train = dtrain)
+evals <- list(eval = dtest, train = dtrain)
###
# advanced: start from a initial base prediction
#
print('start running example to start from a initial prediction')
# train xgboost for 1 round
param <- list(max_depth = 2, eta = 1, nthread = 2, objective = 'binary:logistic')
-bst <- xgb.train(param, dtrain, 1, watchlist)
+bst <- xgb.train(param, dtrain, 1, evals)
# Note: we need the margin value instead of transformed prediction in set_base_margin
# do predict with output_margin=TRUE, will always give you margin values before logistic transformation
ptrain <- predict(bst, dtrain, outputmargin = TRUE)
@@ -23,4 +23,4 @@ setinfo(dtrain, "base_margin", ptrain)
setinfo(dtest, "base_margin", ptest)
print('this is result of boost from initial prediction')
-bst <- xgb.train(params = param, data = dtrain, nrounds = 1, watchlist = watchlist)
+bst <- xgb.train(params = param, data = dtrain, nrounds = 1, evals = evals)
diff --git a/R-package/demo/custom_objective.R b/R-package/demo/custom_objective.R
index 35201332c..03d7b3464 100644
--- a/R-package/demo/custom_objective.R
+++ b/R-package/demo/custom_objective.R
@@ -8,7 +8,7 @@ dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
# note: for customized objective function, we leave objective as default
# note: what we are getting is margin value in prediction
# you must know what you are doing
-watchlist <- list(eval = dtest, train = dtrain)
+evals <- list(eval = dtest, train = dtrain)
num_round <- 2
# user define objective function, given prediction, return gradient and second order gradient
@@ -38,7 +38,7 @@ param <- list(max_depth = 2, eta = 1, nthread = 2, verbosity = 0,
print('start training with user customized objective')
# training with customized objective, we can also do step by step training
# simply look at xgboost.py's implementation of train
-bst <- xgb.train(param, dtrain, num_round, watchlist)
+bst <- xgb.train(param, dtrain, num_round, evals)
#
# there can be cases where you want additional information
@@ -62,4 +62,4 @@ param <- list(max_depth = 2, eta = 1, nthread = 2, verbosity = 0,
print('start training with user customized objective, with additional attributes in DMatrix')
# training with customized objective, we can also do step by step training
# simply look at xgboost.py's implementation of train
-bst <- xgb.train(param, dtrain, num_round, watchlist)
+bst <- xgb.train(param, dtrain, num_round, evals)
diff --git a/R-package/demo/early_stopping.R b/R-package/demo/early_stopping.R
index 04da1382f..057440882 100644
--- a/R-package/demo/early_stopping.R
+++ b/R-package/demo/early_stopping.R
@@ -8,7 +8,7 @@ dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
# note: what we are getting is margin value in prediction
# you must know what you are doing
param <- list(max_depth = 2, eta = 1, nthread = 2, verbosity = 0)
-watchlist <- list(eval = dtest)
+evals <- list(eval = dtest)
num_round <- 20
# user define objective function, given prediction, return gradient and second order gradient
# this is log likelihood loss
@@ -32,7 +32,7 @@ evalerror <- function(preds, dtrain) {
}
print('start training with early Stopping setting')
-bst <- xgb.train(param, dtrain, num_round, watchlist,
+bst <- xgb.train(param, dtrain, num_round, evals,
objective = logregobj, eval_metric = evalerror, maximize = FALSE,
early_stopping_round = 3)
bst <- xgb.cv(param, dtrain, num_round, nfold = 5,
diff --git a/R-package/demo/generalized_linear_model.R b/R-package/demo/generalized_linear_model.R
index c24fe72cb..d29a6dc5b 100644
--- a/R-package/demo/generalized_linear_model.R
+++ b/R-package/demo/generalized_linear_model.R
@@ -25,9 +25,9 @@ param <- list(objective = "binary:logistic", booster = "gblinear",
##
# the rest of settings are the same
##
-watchlist <- list(eval = dtest, train = dtrain)
+evals <- list(eval = dtest, train = dtrain)
num_round <- 2
-bst <- xgb.train(param, dtrain, num_round, watchlist)
+bst <- xgb.train(param, dtrain, num_round, evals)
ypred <- predict(bst, dtest)
labels <- getinfo(dtest, 'label')
cat('error of preds=', mean(as.numeric(ypred > 0.5) != labels), '\n')
diff --git a/R-package/demo/gpu_accelerated.R b/R-package/demo/gpu_accelerated.R
index 14ed9392b..617a63e74 100644
--- a/R-package/demo/gpu_accelerated.R
+++ b/R-package/demo/gpu_accelerated.R
@@ -23,7 +23,7 @@ y <- rbinom(N, 1, plogis(m))
tr <- sample.int(N, N * 0.75)
dtrain <- xgb.DMatrix(X[tr, ], label = y[tr])
dtest <- xgb.DMatrix(X[-tr, ], label = y[-tr])
-wl <- list(train = dtrain, test = dtest)
+evals <- list(train = dtrain, test = dtest)
# An example of running 'gpu_hist' algorithm
# which is
@@ -35,11 +35,11 @@ wl <- list(train = dtrain, test = dtest)
param <- list(objective = 'reg:logistic', eval_metric = 'auc', subsample = 0.5, nthread = 4,
max_bin = 64, tree_method = 'gpu_hist')
pt <- proc.time()
-bst_gpu <- xgb.train(param, dtrain, watchlist = wl, nrounds = 50)
+bst_gpu <- xgb.train(param, dtrain, evals = evals, nrounds = 50)
proc.time() - pt
# Compare to the 'hist' algorithm:
param$tree_method <- 'hist'
pt <- proc.time()
-bst_hist <- xgb.train(param, dtrain, watchlist = wl, nrounds = 50)
+bst_hist <- xgb.train(param, dtrain, evals = evals, nrounds = 50)
proc.time() - pt
diff --git a/R-package/demo/predict_first_ntree.R b/R-package/demo/predict_first_ntree.R
index 179c18c70..ba15ab39a 100644
--- a/R-package/demo/predict_first_ntree.R
+++ b/R-package/demo/predict_first_ntree.R
@@ -6,11 +6,11 @@ dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
param <- list(max_depth = 2, eta = 1, objective = 'binary:logistic')
-watchlist <- list(eval = dtest, train = dtrain)
+evals <- list(eval = dtest, train = dtrain)
nrounds <- 2
# training the model for two rounds
-bst <- xgb.train(param, dtrain, nrounds, nthread = 2, watchlist)
+bst <- xgb.train(param, dtrain, nrounds, nthread = 2, evals = evals)
cat('start testing prediction from first n trees\n')
labels <- getinfo(dtest, 'label')
diff --git a/R-package/demo/predict_leaf_indices.R b/R-package/demo/predict_leaf_indices.R
index 21b6fa71d..a57baf668 100644
--- a/R-package/demo/predict_leaf_indices.R
+++ b/R-package/demo/predict_leaf_indices.R
@@ -43,7 +43,6 @@ colnames(new.features.test) <- colnames(new.features.train)
# learning with new features
new.dtrain <- xgb.DMatrix(data = new.features.train, label = agaricus.train$label)
new.dtest <- xgb.DMatrix(data = new.features.test, label = agaricus.test$label)
-watchlist <- list(train = new.dtrain)
bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2)
# Model accuracy with new features
diff --git a/R-package/demo/tweedie_regression.R b/R-package/demo/tweedie_regression.R
index dfaf6a2ae..b07858e76 100644
--- a/R-package/demo/tweedie_regression.R
+++ b/R-package/demo/tweedie_regression.R
@@ -39,7 +39,7 @@ bst <- xgb.train(
data = d_train,
params = params,
maximize = FALSE,
- watchlist = list(train = d_train),
+ evals = list(train = d_train),
nrounds = 20)
var_imp <- xgb.importance(attr(x, 'Dimnames')[[2]], model = bst)
diff --git a/R-package/man/callbacks.Rd b/R-package/man/callbacks.Rd
deleted file mode 100644
index 9f6f69015..000000000
--- a/R-package/man/callbacks.Rd
+++ /dev/null
@@ -1,37 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/callbacks.R
-\name{callbacks}
-\alias{callbacks}
-\title{Callback closures for booster training.}
-\description{
-These are used to perform various service tasks either during boosting iterations or at the end.
-This approach helps to modularize many of such tasks without bloating the main training methods,
-and it offers .
-}
-\details{
-By default, a callback function is run after each boosting iteration.
-An R-attribute \code{is_pre_iteration} could be set for a callback to define a pre-iteration function.
-
-When a callback function has \code{finalize} parameter, its finalizer part will also be run after
-the boosting is completed.
-
-WARNING: side-effects!!! Be aware that these callback functions access and modify things in
-the environment from which they are called from, which is a fairly uncommon thing to do in R.
-
-To write a custom callback closure, make sure you first understand the main concepts about R environments.
-Check either R documentation on \code{\link[base]{environment}} or the
-\href{http://adv-r.had.co.nz/Environments.html}{Environments chapter} from the "Advanced R"
-book by Hadley Wickham. Further, the best option is to read the code of some of the existing callbacks -
-choose ones that do something similar to what you want to achieve. Also, you would need to get familiar
-with the objects available inside of the \code{xgb.train} and \code{xgb.cv} internal environments.
-}
-\seealso{
-\code{\link{cb.print.evaluation}},
-\code{\link{cb.evaluation.log}},
-\code{\link{cb.reset.parameters}},
-\code{\link{cb.early.stop}},
-\code{\link{cb.save.model}},
-\code{\link{cb.cv.predict}},
-\code{\link{xgb.train}},
-\code{\link{xgb.cv}}
-}
diff --git a/R-package/man/cb.early.stop.Rd b/R-package/man/cb.early.stop.Rd
deleted file mode 100644
index 7cd51a3ce..000000000
--- a/R-package/man/cb.early.stop.Rd
+++ /dev/null
@@ -1,62 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/callbacks.R
-\name{cb.early.stop}
-\alias{cb.early.stop}
-\title{Callback closure to activate the early stopping.}
-\usage{
-cb.early.stop(
- stopping_rounds,
- maximize = FALSE,
- metric_name = NULL,
- verbose = TRUE
-)
-}
-\arguments{
-\item{stopping_rounds}{The number of rounds with no improvement in
-the evaluation metric in order to stop the training.}
-
-\item{maximize}{whether to maximize the evaluation metric}
-
-\item{metric_name}{the name of an evaluation column to use as a criteria for early
-stopping. If not set, the last column would be used.
-Let's say the test data in \code{watchlist} was labelled as \code{dtest},
-and one wants to use the AUC in test data for early stopping regardless of where
-it is in the \code{watchlist}, then one of the following would need to be set:
-\code{metric_name='dtest-auc'} or \code{metric_name='dtest_auc'}.
-All dash '-' characters in metric names are considered equivalent to '_'.}
-
-\item{verbose}{whether to print the early stopping information.}
-}
-\description{
-Callback closure to activate the early stopping.
-}
-\details{
-This callback function determines the condition for early stopping
-by setting the \code{stop_condition = TRUE} flag in its calling frame.
-
-The following additional fields are assigned to the model's R object:
-\itemize{
-\item \code{best_score} the evaluation score at the best iteration
-\item \code{best_iteration} at which boosting iteration the best score has occurred (1-based index)
-}
-The Same values are also stored as xgb-attributes:
-\itemize{
-\item \code{best_iteration} is stored as a 0-based iteration index (for interoperability of binary models)
-\item \code{best_msg} message string is also stored.
-}
-
-At least one data element is required in the evaluation watchlist for early stopping to work.
-
-Callback function expects the following values to be set in its calling frame:
-\code{stop_condition},
-\code{bst_evaluation},
-\code{rank},
-\code{bst} (or \code{bst_folds} and \code{basket}),
-\code{iteration},
-\code{begin_iteration},
-\code{end_iteration},
-}
-\seealso{
-\code{\link{callbacks}},
-\code{\link{xgb.attr}}
-}
diff --git a/R-package/man/cb.evaluation.log.Rd b/R-package/man/cb.evaluation.log.Rd
deleted file mode 100644
index 94f8a02e6..000000000
--- a/R-package/man/cb.evaluation.log.Rd
+++ /dev/null
@@ -1,31 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/callbacks.R
-\name{cb.evaluation.log}
-\alias{cb.evaluation.log}
-\title{Callback closure for logging the evaluation history}
-\usage{
-cb.evaluation.log()
-}
-\description{
-Callback closure for logging the evaluation history
-}
-\details{
-This callback function appends the current iteration evaluation results \code{bst_evaluation}
-available in the calling parent frame to the \code{evaluation_log} list in a calling frame.
-
-The finalizer callback (called with \code{finalize = TURE} in the end) converts
-the \code{evaluation_log} list into a final data.table.
-
-The iteration evaluation result \code{bst_evaluation} must be a named numeric vector.
-
-Note: in the column names of the final data.table, the dash '-' character is replaced with
-the underscore '_' in order to make the column names more like regular R identifiers.
-
-Callback function expects the following values to be set in its calling frame:
-\code{evaluation_log},
-\code{bst_evaluation},
-\code{iteration}.
-}
-\seealso{
-\code{\link{callbacks}}
-}
diff --git a/R-package/man/cb.print.evaluation.Rd b/R-package/man/cb.print.evaluation.Rd
deleted file mode 100644
index 59b9ba65e..000000000
--- a/R-package/man/cb.print.evaluation.Rd
+++ /dev/null
@@ -1,29 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/callbacks.R
-\name{cb.print.evaluation}
-\alias{cb.print.evaluation}
-\title{Callback closure for printing the result of evaluation}
-\usage{
-cb.print.evaluation(period = 1, showsd = TRUE)
-}
-\arguments{
-\item{period}{results would be printed every number of periods}
-
-\item{showsd}{whether standard deviations should be printed (when available)}
-}
-\description{
-Callback closure for printing the result of evaluation
-}
-\details{
-The callback function prints the result of evaluation at every \code{period} iterations.
-The initial and the last iteration's evaluations are always printed.
-
-Callback function expects the following values to be set in its calling frame:
-\code{bst_evaluation} (also \code{bst_evaluation_err} when available),
-\code{iteration},
-\code{begin_iteration},
-\code{end_iteration}.
-}
-\seealso{
-\code{\link{callbacks}}
-}
diff --git a/R-package/man/cb.save.model.Rd b/R-package/man/cb.save.model.Rd
deleted file mode 100644
index 7701ad990..000000000
--- a/R-package/man/cb.save.model.Rd
+++ /dev/null
@@ -1,40 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/callbacks.R
-\name{cb.save.model}
-\alias{cb.save.model}
-\title{Callback closure for saving a model file.}
-\usage{
-cb.save.model(save_period = 0, save_name = "xgboost.ubj")
-}
-\arguments{
-\item{save_period}{save the model to disk after every
-\code{save_period} iterations; 0 means save the model at the end.}
-
-\item{save_name}{the name or path for the saved model file.
-
-\if{html}{\out{
}}\preformatted{ Note that the format of the model being saved is determined by the file
- extension specified here (see \link{xgb.save} for details about how it works).
-
- It can contain a \code{\link[base]{sprintf}} formatting specifier
- to include the integer iteration number in the file name.
- E.g., with \code{save_name} = 'xgboost_\%04d.ubj',
- the file saved at iteration 50 would be named "xgboost_0050.ubj".
-}\if{html}{\out{
}}}
-}
-\description{
-Callback closure for saving a model file.
-}
-\details{
-This callback function allows to save an xgb-model file, either periodically after each \code{save_period}'s or at the end.
-
-Callback function expects the following values to be set in its calling frame:
-\code{bst},
-\code{iteration},
-\code{begin_iteration},
-\code{end_iteration}.
-}
-\seealso{
-\link{xgb.save}
-
-\code{\link{callbacks}}
-}
diff --git a/R-package/man/predict.xgb.Booster.Rd b/R-package/man/predict.xgb.Booster.Rd
index 95e7a51fd..88a2f203e 100644
--- a/R-package/man/predict.xgb.Booster.Rd
+++ b/R-package/man/predict.xgb.Booster.Rd
@@ -18,25 +18,47 @@
iterationrange = NULL,
strict_shape = FALSE,
validate_features = FALSE,
+ base_margin = NULL,
...
)
}
\arguments{
\item{object}{Object of class \code{xgb.Booster}.}
-\item{newdata}{Takes \code{matrix}, \code{dgCMatrix}, \code{dgRMatrix}, \code{dsparseVector},
+\item{newdata}{Takes \code{data.frame}, \code{matrix}, \code{dgCMatrix}, \code{dgRMatrix}, \code{dsparseVector},
local data file, or \code{xgb.DMatrix}.
-For single-row predictions on sparse data, it is recommended to use the CSR format.
-If passing a sparse vector, it will take it as a row vector.}
-\item{missing}{Only used when input is a dense matrix. Pick a float value that represents
-missing values in data (e.g., 0 or some other extreme value).}
+\if{html}{\out{}}\preformatted{ For single-row predictions on sparse data, it's recommended to use CSR format. If passing
+ a sparse vector, it will take it as a row vector.
+
+ Note that, for repeated predictions on the same data, one might want to create a DMatrix to
+ pass here instead of passing R types like matrices or data frames, as predictions will be
+ faster on DMatrix.
+
+ If `newdata` is a `data.frame`, be aware that:\\itemize\{
+ \\item Columns will be converted to numeric if they aren't already, which could potentially make
+ the operation slower than in an equivalent `matrix` object.
+ \\item The order of the columns must match with that of the data from which the model was fitted
+ (i.e. columns will not be referenced by their names, just by their order in the data).
+ \\item If the model was fitted to data with categorical columns, these columns must be of
+ `factor` type here, and must use the same encoding (i.e. have the same levels).
+ \\item If `newdata` contains any `factor` columns, they will be converted to base-0
+ encoding (same as during DMatrix creation) - hence, one should not pass a `factor`
+ under a column which during training had a different type.
+ \}
+}\if{html}{\out{
}}}
+
+\item{missing}{Float value that represents missing values in data (e.g., 0 or some other extreme value).
+
+\if{html}{\out{}}\preformatted{ This parameter is not used when `newdata` is an `xgb.DMatrix` - in such cases, should pass
+ this as an argument to the DMatrix constructor instead.
+}\if{html}{\out{
}}}
\item{outputmargin}{Whether the prediction should be returned in the form of original untransformed
sum of predictions from boosting iterations' results. E.g., setting \code{outputmargin=TRUE} for
logistic regression would return log-odds instead of probabilities.}
-\item{predleaf}{Whether to predict pre-tree leaf indices.}
+\item{predleaf}{Whether to predict per-tree leaf indices.}
\item{predcontrib}{Whether to return feature contributions to individual predictions (see Details).}
@@ -48,7 +70,7 @@ logistic regression would return log-odds instead of probabilities.}
prediction outputs per case. No effect if \code{predleaf}, \code{predcontrib},
or \code{predinteraction} is \code{TRUE}.}
-\item{training}{Whether the predictions are used for training. For dart booster,
+\item{training}{Whether the prediction result is used for training. For dart booster,
training predicting will perform dropout.}
\item{iterationrange}{Sequence of rounds/iterations from the model to use for prediction, specified by passing
@@ -84,6 +106,13 @@ match (only applicable when both \code{object} and \code{newdata} have feature n
recommended to disable it for performance-sensitive applications.
}\if{html}{\out{}}}
+\item{base_margin}{Base margin used for boosting from existing model.
+
+\if{html}{\out{}}\preformatted{ Note that, if `newdata` is an `xgb.DMatrix` object, this argument will
+ be ignored as it needs to be added to the DMatrix instead (e.g. by passing it as
+ an argument in its constructor, or by calling \link{setinfo.xgb.DMatrix}).
+}\if{html}{\out{
}}}
+
\item{...}{Not used.}
}
\value{
@@ -115,7 +144,7 @@ When \code{strict_shape = TRUE}, the output is always an array:
}
}
\description{
-Predicted values based on either xgboost model or model handle object.
+Predict values on data based on xgboost model.
}
\details{
Note that \code{iterationrange} would currently do nothing for predictions from "gblinear",
diff --git a/R-package/man/print.xgb.cv.Rd b/R-package/man/print.xgb.cv.Rd
index 05ad61eed..74fc15d01 100644
--- a/R-package/man/print.xgb.cv.Rd
+++ b/R-package/man/print.xgb.cv.Rd
@@ -23,8 +23,8 @@ including the best iteration (when available).
\examples{
data(agaricus.train, package='xgboost')
train <- agaricus.train
-cv <- xgb.cv(data = train$data, label = train$label, nfold = 5, max_depth = 2,
- eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
+cv <- xgb.cv(data = xgb.DMatrix(train$data, label = train$label), nfold = 5, max_depth = 2,
+ eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
print(cv)
print(cv, verbose=TRUE)
diff --git a/R-package/man/xgb.Callback.Rd b/R-package/man/xgb.Callback.Rd
new file mode 100644
index 000000000..b4edcd978
--- /dev/null
+++ b/R-package/man/xgb.Callback.Rd
@@ -0,0 +1,248 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/callbacks.R
+\name{xgb.Callback}
+\alias{xgb.Callback}
+\title{XGBoost Callback Constructor}
+\usage{
+xgb.Callback(
+ cb_name = "custom_callback",
+ env = new.env(),
+ f_before_training = function(env, model, data, evals, begin_iteration, end_iteration)
+ NULL,
+ f_before_iter = function(env, model, data, evals, iteration) NULL,
+ f_after_iter = function(env, model, data, evals, iteration, iter_feval) NULL,
+ f_after_training = function(env, model, data, evals, iteration, final_feval,
+ prev_cb_res) NULL
+)
+}
+\arguments{
+\item{cb_name}{Name for the callback.
+
+If the callback produces some non-NULL result (from executing the function passed under
+\code{f_after_training}), that result will be added as an R attribute to the resulting booster
+(or as a named element in the result of CV), with the attribute name specified here.
+
+Names of callbacks must be unique - i.e. there cannot be two callbacks with the same name.}
+
+\item{env}{An environment object that will be passed to the different functions in the callback.
+Note that this environment will not be shared with other callbacks.}
+
+\item{f_before_training}{A function that will be executed before the training has started.
+
+If passing \code{NULL} for this or for the other function inputs, then no function will be executed.
+
+If passing a function, it will be called with parameters supplied as non-named arguments
+matching the function signatures that are shown in the default value for each function argument.}
+
+\item{f_before_iter}{A function that will be executed before each boosting round.
+
+This function can signal whether the training should be finalized or not, by outputting
+a value that evaluates to \code{TRUE} - i.e. if the output from the function provided here at
+a given round is \code{TRUE}, then training will be stopped before the current iteration happens.
+
+Return values of \code{NULL} will be interpreted as \code{FALSE}.}
+
+\item{f_after_iter}{A function that will be executed after each boosting round.
+
+This function can signal whether the training should be finalized or not, by outputting
+a value that evaluates to \code{TRUE} - i.e. if the output from the function provided here at
+a given round is \code{TRUE}, then training will be stopped at that round.
+
+Return values of \code{NULL} will be interpreted as \code{FALSE}.}
+
+\item{f_after_training}{A function that will be executed after training is finished.
+
+This function can optionally output something non-NULL, which will become part of the R
+attributes of the booster (assuming one passes \code{keep_extra_attributes=TRUE} to \link{xgb.train})
+under the name supplied for parameter \code{cb_name} imn the case of \link{xgb.train}; or a part
+of the named elements in the result of \link{xgb.cv}.}
+}
+\value{
+An \code{xgb.Callback} object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+}
+\description{
+Constructor for defining the structure of callback functions that can be executed
+at different stages of model training (before / after training, before / after each boosting
+iteration).
+}
+\details{
+Arguments that will be passed to the supplied functions are as follows:\itemize{
+
+\item env The same environment that is passed under argument \code{env}.
+
+It may be modified by the functions in order to e.g. keep tracking of what happens
+across iterations or similar.
+
+This environment is only used by the functions supplied to the callback, and will
+not be kept after the model fitting function terminates (see parameter \code{f_after_training}).
+
+\item model The booster object when using \link{xgb.train}, or the folds when using
+\link{xgb.cv}.
+
+For \link{xgb.cv}, folds are a list with a structure as follows:\itemize{
+\item \code{dtrain}: The training data for the fold (as an \code{xgb.DMatrix} object).
+\item \code{bst}: Rhe \code{xgb.Booster} object for the fold.
+\item \code{evals}: A list containing two DMatrices, with names \code{train} and \code{test}
+(\code{test} is the held-out data for the fold).
+\item \code{index}: The indices of the hold-out data for that fold (base-1 indexing),
+from which the \code{test} entry in \code{evals} was obtained.
+}
+
+This object should \bold{not} be in-place modified in ways that conflict with the
+training (e.g. resetting the parameters for a training update in a way that resets
+the number of rounds to zero in order to overwrite rounds).
+
+Note that any R attributes that are assigned to the booster during the callback functions,
+will not be kept thereafter as the booster object variable is not re-assigned during
+training. It is however possible to set C-level attributes of the booster through
+\link{xgb.attr} or \link{xgb.attributes}, which should remain available for the rest
+of the iterations and after the training is done.
+
+For keeping variables across iterations, it's recommended to use \code{env} instead.
+\item data The data to which the model is being fit, as an \code{xgb.DMatrix} object.
+
+Note that, for \link{xgb.cv}, this will be the full data, while data for the specific
+folds can be found in the \code{model} object.
+
+\item evals The evaluation data, as passed under argument \code{evals} to
+\link{xgb.train}.
+
+For \link{xgb.cv}, this will always be \code{NULL}.
+
+\item begin_iteration Index of the first boosting iteration that will be executed
+(base-1 indexing).
+
+This will typically be '1', but when using training continuation, depending on the
+parameters for updates, boosting rounds will be continued from where the previous
+model ended, in which case this will be larger than 1.
+
+\item end_iteration Index of the last boostign iteration that will be executed
+(base-1 indexing, inclusive of this end).
+
+It should match with argument \code{nrounds} passed to \link{xgb.train} or \link{xgb.cv}.
+
+Note that boosting might be interrupted before reaching this last iteration, for
+example by using the early stopping callback \link{xgb.cb.early.stop}.
+
+\item iteration Index of the iteration number that is being executed (first iteration
+will be the same as parameter \code{begin_iteration}, then next one will add +1, and so on).
+
+\item iter_feval Evaluation metrics for \code{evals} that were supplied, either
+determined by the objective, or by parameter \code{feval}.
+
+For \link{xgb.train}, this will be a named vector with one entry per element in
+\code{evals}, where the names are determined as 'evals name' + '-' + 'metric name' - for
+example, if \code{evals} contains an entry named "tr" and the metric is "rmse",
+this will be a one-element vector with name "tr-rmse".
+
+For \link{xgb.cv}, this will be a 2d matrix with dimensions \verb{[length(evals), nfolds]},
+where the row names will follow the same naming logic as the one-dimensional vector
+that is passed in \link{xgb.train}.
+
+Note that, internally, the built-in callbacks such as \link{xgb.cb.print.evaluation} summarize
+this table by calculating the row-wise means and standard deviations.
+
+\item final_feval The evaluation results after the last boosting round is executed
+(same format as \code{iter_feval}, and will be the exact same input as passed under
+\code{iter_feval} to the last round that is executed during model fitting).
+
+\item prev_cb_res Result from a previous run of a callback sharing the same name
+(as given by parameter \code{cb_name}) when conducting training continuation, if there
+was any in the booster R attributes.
+
+Some times, one might want to append the new results to the previous one, and this will
+be done automatically by the built-in callbacks such as \link{xgb.cb.evaluation.log},
+which will append the new rows to the previous table.
+
+If no such previous callback result is available (which it never will when fitting
+a model from start instead of updating an existing model), this will be \code{NULL}.
+
+For \link{xgb.cv}, which doesn't support training continuation, this will always be \code{NULL}.
+}
+
+The following names (\code{cb_name} values) are reserved for internal callbacks:\itemize{
+\item print_evaluation
+\item evaluation_log
+\item reset_parameters
+\item early_stop
+\item save_model
+\item cv_predict
+\item gblinear_history
+}
+
+The following names are reserved for other non-callback attributes:\itemize{
+\item names
+\item class
+\item call
+\item params
+\item niter
+\item nfeatures
+\item folds
+}
+
+When using the built-in early stopping callback (\link{xgb.cb.early.stop}), said callback
+will always be executed before the others, as it sets some booster C-level attributes
+that other callbacks might also use. Otherwise, the order of execution will match with
+the order in which the callbacks are passed to the model fitting function.
+}
+\examples{
+# Example constructing a custom callback that calculates
+# squared error on the training data (no separate test set),
+# and outputs the per-iteration results.
+ssq_callback <- xgb.Callback(
+ cb_name = "ssq",
+ f_before_training = function(env, model, data, evals,
+ begin_iteration, end_iteration) {
+ # A vector to keep track of a number at each iteration
+ env$logs <- rep(NA_real_, end_iteration - begin_iteration + 1)
+ },
+ f_after_iter = function(env, model, data, evals, iteration, iter_feval) {
+ # This calculates the sum of squared errors on the training data.
+ # Note that this can be better done by passing an 'evals' entry,
+ # but this demonstrates a way in which callbacks can be structured.
+ pred <- predict(model, data)
+ err <- pred - getinfo(data, "label")
+ sq_err <- sum(err^2)
+ env$logs[iteration] <- sq_err
+ cat(
+ sprintf(
+ "Squared error at iteration \%d: \%.2f\n",
+ iteration, sq_err
+ )
+ )
+
+ # A return value of 'TRUE' here would signal to finalize the training
+ return(FALSE)
+ },
+ f_after_training = function(env, model, data, evals, iteration,
+ final_feval, prev_cb_res) {
+ return(env$logs)
+ }
+)
+
+data(mtcars)
+y <- mtcars$mpg
+x <- as.matrix(mtcars[, -1])
+dm <- xgb.DMatrix(x, label = y, nthread = 1)
+model <- xgb.train(
+ data = dm,
+ params = list(objective = "reg:squarederror", nthread = 1),
+ nrounds = 5,
+ callbacks = list(ssq_callback),
+ keep_extra_attributes = TRUE
+)
+
+# Result from 'f_after_iter' will be available as an attribute
+attributes(model)$ssq
+}
+\seealso{
+Built-in callbacks:\itemize{
+\item \link{xgb.cb.print.evaluation}
+\item \link{xgb.cb.evaluation.log}
+\item \link{xgb.cb.reset.parameters}
+\item \link{xgb.cb.early.stop}
+\item \link{xgb.cb.save.model}
+\item \link{xgb.cb.cv.predict}
+\item \link{xgb.cb.gblinear.history}
+}
+}
diff --git a/R-package/man/xgb.DMatrix.Rd b/R-package/man/xgb.DMatrix.Rd
index d18270733..5f764ed45 100644
--- a/R-package/man/xgb.DMatrix.Rd
+++ b/R-package/man/xgb.DMatrix.Rd
@@ -19,7 +19,8 @@ xgb.DMatrix(
qid = NULL,
label_lower_bound = NULL,
label_upper_bound = NULL,
- feature_weights = NULL
+ feature_weights = NULL,
+ data_split_mode = "row"
)
xgb.QuantileDMatrix(
@@ -60,10 +61,27 @@ Other column types are not supported.
'xgb.QuantileDMatrix'.
\item Single-row CSR matrices, as class \code{dsparseVector} from package \code{Matrix}, which is interpreted
as a single row (only when making predictions from a fitted model).
-\item Text files in SVMLight / LibSVM formats, passed as a path to the file. These are \bold{not}
-supported for xgb.QuantileDMatrix'.
-\item Binary files generated by \link{xgb.DMatrix.save}, passed as a path to the file. These are
-\bold{not} supported for xgb.QuantileDMatrix'.
+\item Text files in a supported format, passed as a \code{character} variable containing the URI path to
+the file, with an optional format specifier.
+
+These are \bold{not} supported for \code{xgb.QuantileDMatrix}. Supported formats are:\itemize{
+\item XGBoost's own binary format for DMatrices, as produced by \link{xgb.DMatrix.save}.
+\item SVMLight (a.k.a. LibSVM) format for CSR matrices. This format can be signaled by suffix
+\code{?format=libsvm} at the end of the file path. It will be the default format if not
+otherwise specified.
+\item CSV files (comma-separated values). This format can be specified by adding suffix
+\code{?format=csv} at the end ofthe file path. It will \bold{not} be auto-deduced from file extensions.
+}
+
+Be aware that the format of the file will not be auto-deduced - for example, if a file is named 'file.csv',
+it will not look at the extension or file contents to determine that it is a comma-separated value.
+Instead, the format must be specified following the URI format, so the input to \code{data} should be passed
+like this: \code{"file.csv?format=csv"} (or \code{"file.csv?format=csv&label_column=0"} if the first column
+corresponds to the labels).
+
+For more information about passing text files as input, see the articles
+\href{https://xgboost.readthedocs.io/en/stable/tutorials/input_format.html}{Text Input Format of DMatrix} and
+\href{https://xgboost.readthedocs.io/en/stable/python/python_intro.html#python-data-interface}{Data Interface}.
}}
\item{label}{Label of the training data. For classification problems, should be passed encoded as
@@ -129,6 +147,14 @@ not be saved, so make sure that \code{factor} columns passed to \code{predict} h
\item{feature_weights}{Set feature weights for column sampling.}
+\item{data_split_mode}{When passing a URI (as R \code{character}) as input, this signals
+whether to split by row or column. Allowed values are \code{"row"} and \code{"col"}.
+
+In distributed mode, the file is split accordingly; otherwise this is only an indicator on
+how the file was split beforehand. Default to row.
+
+This is not used when \code{data} is not a URI.}
+
\item{ref}{The training dataset that provides quantile information, needed when creating
validation/test dataset with \code{xgb.QuantileDMatrix}. Supplying the training DMatrix
as a reference means that the same quantisation applied to the training data is
diff --git a/R-package/man/xgb.DMatrix.save.Rd b/R-package/man/xgb.DMatrix.save.Rd
index d5c0563b3..51643274d 100644
--- a/R-package/man/xgb.DMatrix.save.Rd
+++ b/R-package/man/xgb.DMatrix.save.Rd
@@ -15,6 +15,7 @@ xgb.DMatrix.save(dmatrix, fname)
Save xgb.DMatrix object to binary file
}
\examples{
+\dontshow{RhpcBLASctl::omp_set_num_threads(1)}
data(agaricus.train, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
fname <- file.path(tempdir(), "xgb.DMatrix.data")
diff --git a/R-package/man/cb.cv.predict.Rd b/R-package/man/xgb.cb.cv.predict.Rd
similarity index 53%
rename from R-package/man/cb.cv.predict.Rd
rename to R-package/man/xgb.cb.cv.predict.Rd
index 4cabac1c9..d2d9a084b 100644
--- a/R-package/man/cb.cv.predict.Rd
+++ b/R-package/man/xgb.cb.cv.predict.Rd
@@ -1,16 +1,27 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/callbacks.R
-\name{cb.cv.predict}
-\alias{cb.cv.predict}
-\title{Callback closure for returning cross-validation based predictions.}
+\name{xgb.cb.cv.predict}
+\alias{xgb.cb.cv.predict}
+\title{Callback for returning cross-validation based predictions.}
\usage{
-cb.cv.predict(save_models = FALSE)
+xgb.cb.cv.predict(save_models = FALSE, outputmargin = FALSE)
}
\arguments{
-\item{save_models}{a flag for whether to save the folds' models.}
+\item{save_models}{A flag for whether to save the folds' models.}
+
+\item{outputmargin}{Whether to save margin predictions (same effect as passing this
+parameter to \link{predict.xgb.Booster}).}
}
\value{
-Predictions are returned inside of the \code{pred} element, which is either a vector or a matrix,
+An \code{xgb.Callback} object, which can be passed to \link{xgb.cv},
+but \bold{not} to \link{xgb.train}.
+}
+\description{
+This callback function saves predictions for all of the test folds,
+and also allows to save the folds' models.
+}
+\details{
+Predictions are saved inside of the \code{pred} element, which is either a vector or a matrix,
depending on the number of prediction outputs per data row. The order of predictions corresponds
to the order of rows in the original dataset. Note that when a custom \code{folds} list is
provided in \code{xgb.cv}, the predictions would only be returned properly when this list is a
@@ -19,23 +30,3 @@ meaningful when user-provided folds have overlapping indices as in, e.g., random
When some of the indices in the training dataset are not included into user-provided \code{folds},
their prediction value would be \code{NA}.
}
-\description{
-Callback closure for returning cross-validation based predictions.
-}
-\details{
-This callback function saves predictions for all of the test folds,
-and also allows to save the folds' models.
-
-It is a "finalizer" callback and it uses early stopping information whenever it is available,
-thus it must be run after the early stopping callback if the early stopping is used.
-
-Callback function expects the following values to be set in its calling frame:
-\code{bst_folds},
-\code{basket},
-\code{data},
-\code{end_iteration},
-\code{params},
-}
-\seealso{
-\code{\link{callbacks}}
-}
diff --git a/R-package/man/xgb.cb.early.stop.Rd b/R-package/man/xgb.cb.early.stop.Rd
new file mode 100644
index 000000000..2a70f4943
--- /dev/null
+++ b/R-package/man/xgb.cb.early.stop.Rd
@@ -0,0 +1,55 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/callbacks.R
+\name{xgb.cb.early.stop}
+\alias{xgb.cb.early.stop}
+\title{Callback to activate early stopping}
+\usage{
+xgb.cb.early.stop(
+ stopping_rounds,
+ maximize = FALSE,
+ metric_name = NULL,
+ verbose = TRUE,
+ keep_all_iter = TRUE
+)
+}
+\arguments{
+\item{stopping_rounds}{The number of rounds with no improvement in
+the evaluation metric in order to stop the training.}
+
+\item{maximize}{Whether to maximize the evaluation metric.}
+
+\item{metric_name}{The name of an evaluation column to use as a criteria for early
+stopping. If not set, the last column would be used.
+Let's say the test data in \code{evals} was labelled as \code{dtest},
+and one wants to use the AUC in test data for early stopping regardless of where
+it is in the \code{evals}, then one of the following would need to be set:
+\code{metric_name='dtest-auc'} or \code{metric_name='dtest_auc'}.
+All dash '-' characters in metric names are considered equivalent to '_'.}
+
+\item{verbose}{Whether to print the early stopping information.}
+
+\item{keep_all_iter}{Whether to keep all of the boosting rounds that were produced
+in the resulting object. If passing \code{FALSE}, will only keep the boosting rounds
+up to the detected best iteration, discarding the ones that come after.}
+}
+\value{
+An \code{xgb.Callback} object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+}
+\description{
+This callback function determines the condition for early stopping.
+
+The following attributes are assigned to the booster's object:
+\itemize{
+\item \code{best_score} the evaluation score at the best iteration
+\item \code{best_iteration} at which boosting iteration the best score has occurred
+(0-based index for interoperability of binary models)
+}
+
+The same values are also stored as R attributes as a result of the callback, plus an additional
+attribute \code{stopped_by_max_rounds} which indicates whether an early stopping by the \code{stopping_rounds}
+condition occurred. Note that the \code{best_iteration} that is stored under R attributes will follow
+base-1 indexing, so it will be larger by '1' than the C-level 'best_iteration' that is accessed
+through \link{xgb.attr} or \link{xgb.attributes}.
+
+At least one dataset is required in \code{evals} for early stopping to work.
+}
diff --git a/R-package/man/xgb.cb.evaluation.log.Rd b/R-package/man/xgb.cb.evaluation.log.Rd
new file mode 100644
index 000000000..4cc6ef636
--- /dev/null
+++ b/R-package/man/xgb.cb.evaluation.log.Rd
@@ -0,0 +1,24 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/callbacks.R
+\name{xgb.cb.evaluation.log}
+\alias{xgb.cb.evaluation.log}
+\title{Callback for logging the evaluation history}
+\usage{
+xgb.cb.evaluation.log()
+}
+\value{
+An \code{xgb.Callback} object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+}
+\description{
+Callback for logging the evaluation history
+}
+\details{
+This callback creates a table with per-iteration evaluation metrics (see parameters
+\code{evals} and \code{feval} in \link{xgb.train}).
+
+Note: in the column names of the final data.table, the dash '-' character is replaced with
+the underscore '_' in order to make the column names more like regular R identifiers.
+}
+\seealso{
+\link{xgb.cb.print.evaluation}
+}
diff --git a/R-package/man/cb.gblinear.history.Rd b/R-package/man/xgb.cb.gblinear.history.Rd
similarity index 63%
rename from R-package/man/cb.gblinear.history.Rd
rename to R-package/man/xgb.cb.gblinear.history.Rd
index 2a03c14db..0ebaa4685 100644
--- a/R-package/man/cb.gblinear.history.Rd
+++ b/R-package/man/xgb.cb.gblinear.history.Rd
@@ -1,37 +1,48 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/callbacks.R
-\name{cb.gblinear.history}
-\alias{cb.gblinear.history}
-\title{Callback closure for collecting the model coefficients history of a gblinear booster
-during its training.}
+\name{xgb.cb.gblinear.history}
+\alias{xgb.cb.gblinear.history}
+\title{Callback for collecting coefficients history of a gblinear booster}
\usage{
-cb.gblinear.history(sparse = FALSE)
+xgb.cb.gblinear.history(sparse = FALSE)
}
\arguments{
-\item{sparse}{when set to FALSE/TRUE, a dense/sparse matrix is used to store the result.
+\item{sparse}{when set to \code{FALSE}/\code{TRUE}, a dense/sparse matrix is used to store the result.
Sparse format is useful when one expects only a subset of coefficients to be non-zero,
when using the "thrifty" feature selector with fairly small number of top features
selected per iteration.}
}
\value{
-Results are stored in the \code{coefs} element of the closure.
-The \code{\link{xgb.gblinear.history}} convenience function provides an easy
-way to access it.
-With \code{xgb.train}, it is either a dense of a sparse matrix.
-While with \code{xgb.cv}, it is a list (an element per each fold) of such
-matrices.
+An \code{xgb.Callback} object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
}
\description{
-Callback closure for collecting the model coefficients history of a gblinear booster
-during its training.
+Callback for collecting coefficients history of a gblinear booster
}
\details{
To keep things fast and simple, gblinear booster does not internally store the history of linear
model coefficients at each boosting iteration. This callback provides a workaround for storing
the coefficients' path, by extracting them after each training iteration.
-Callback function expects the following values to be set in its calling frame:
-\code{bst} (or \code{bst_folds}).
+This callback will construct a matrix where rows are boosting iterations and columns are
+feature coefficients (same order as when calling \link{coef.xgb.Booster}, with the intercept
+corresponding to the first column).
+
+When there is more than one coefficient per feature (e.g. multi-class classification),
+the result will be reshaped into a vector where coefficients are arranged first by features and
+then by class (e.g. first 1 through N coefficients will be for the first class, then
+coefficients N+1 through 2N for the second class, and so on).
+
+If the result has only one coefficient per feature in the data, then the resulting matrix
+will have column names matching with the feature names, otherwise (when there's more than
+one coefficient per feature) the names will be composed as 'column name' + ':' + 'class index'
+(so e.g. column 'c1' for class '0' will be named 'c1:0').
+
+With \code{xgb.train}, the output is either a dense or a sparse matrix.
+With with \code{xgb.cv}, it is a list (one element per each fold) of such
+matrices.
+
+Function \link{xgb.gblinear.history} function provides an easy way to retrieve the
+outputs from this callback.
}
\examples{
#### Binary classification:
@@ -52,7 +63,7 @@ param <- list(booster = "gblinear", objective = "reg:logistic", eval_metric = "a
# rate does not break the convergence, but allows us to illustrate the typical pattern of
# "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations.
bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 1.,
- callbacks = list(cb.gblinear.history()))
+ callbacks = list(xgb.cb.gblinear.history()))
# Extract the coefficients' path and plot them vs boosting iteration number:
coef_path <- xgb.gblinear.history(bst)
matplot(coef_path, type = 'l')
@@ -61,7 +72,7 @@ matplot(coef_path, type = 'l')
# Will try the classical componentwise boosting which selects a single best feature per round:
bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 0.8,
updater = 'coord_descent', feature_selector = 'thrifty', top_k = 1,
- callbacks = list(cb.gblinear.history()))
+ callbacks = list(xgb.cb.gblinear.history()))
matplot(xgb.gblinear.history(bst), type = 'l')
# Componentwise boosting is known to have similar effect to Lasso regularization.
# Try experimenting with various values of top_k, eta, nrounds,
@@ -69,7 +80,7 @@ matplot(xgb.gblinear.history(bst), type = 'l')
# For xgb.cv:
bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 100, eta = 0.8,
- callbacks = list(cb.gblinear.history()))
+ callbacks = list(xgb.cb.gblinear.history()))
# coefficients in the CV fold #3
matplot(xgb.gblinear.history(bst)[[3]], type = 'l')
@@ -82,7 +93,7 @@ param <- list(booster = "gblinear", objective = "multi:softprob", num_class = 3,
# For the default linear updater 'shotgun' it sometimes is helpful
# to use smaller eta to reduce instability
bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 50, eta = 0.5,
- callbacks = list(cb.gblinear.history()))
+ callbacks = list(xgb.cb.gblinear.history()))
# Will plot the coefficient paths separately for each class:
matplot(xgb.gblinear.history(bst, class_index = 0), type = 'l')
matplot(xgb.gblinear.history(bst, class_index = 1), type = 'l')
@@ -90,11 +101,11 @@ matplot(xgb.gblinear.history(bst, class_index = 2), type = 'l')
# CV:
bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 70, eta = 0.5,
- callbacks = list(cb.gblinear.history(FALSE)))
+ callbacks = list(xgb.cb.gblinear.history(FALSE)))
# 1st fold of 1st class
matplot(xgb.gblinear.history(bst, class_index = 0)[[1]], type = 'l')
}
\seealso{
-\code{\link{callbacks}}, \code{\link{xgb.gblinear.history}}.
+\link{xgb.gblinear.history}, \link{coef.xgb.Booster}.
}
diff --git a/R-package/man/xgb.cb.print.evaluation.Rd b/R-package/man/xgb.cb.print.evaluation.Rd
new file mode 100644
index 000000000..c4f2e6991
--- /dev/null
+++ b/R-package/man/xgb.cb.print.evaluation.Rd
@@ -0,0 +1,25 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/callbacks.R
+\name{xgb.cb.print.evaluation}
+\alias{xgb.cb.print.evaluation}
+\title{Callback for printing the result of evaluation}
+\usage{
+xgb.cb.print.evaluation(period = 1, showsd = TRUE)
+}
+\arguments{
+\item{period}{results would be printed every number of periods}
+
+\item{showsd}{whether standard deviations should be printed (when available)}
+}
+\value{
+An \code{xgb.Callback} object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+}
+\description{
+The callback function prints the result of evaluation at every \code{period} iterations.
+The initial and the last iteration's evaluations are always printed.
+
+Does not leave any attribute in the booster (see \link{xgb.cb.evaluation.log} for that).
+}
+\seealso{
+\link{xgb.Callback}
+}
diff --git a/R-package/man/cb.reset.parameters.Rd b/R-package/man/xgb.cb.reset.parameters.Rd
similarity index 57%
rename from R-package/man/cb.reset.parameters.Rd
rename to R-package/man/xgb.cb.reset.parameters.Rd
index ee0a5d1bd..c7e863817 100644
--- a/R-package/man/cb.reset.parameters.Rd
+++ b/R-package/man/xgb.cb.reset.parameters.Rd
@@ -1,10 +1,10 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/callbacks.R
-\name{cb.reset.parameters}
-\alias{cb.reset.parameters}
-\title{Callback closure for resetting the booster's parameters at each iteration.}
+\name{xgb.cb.reset.parameters}
+\alias{xgb.cb.reset.parameters}
+\title{Callback for resetting the booster's parameters at each iteration.}
\usage{
-cb.reset.parameters(new_params)
+xgb.cb.reset.parameters(new_params)
}
\arguments{
\item{new_params}{a list where each element corresponds to a parameter that needs to be reset.
@@ -14,23 +14,16 @@ or a function of two parameters \code{learning_rates(iteration, nrounds)}
which returns a new parameter value by using the current iteration number
and the total number of boosting rounds.}
}
+\value{
+An \code{xgb.Callback} object, which can be passed to \link{xgb.train} or \link{xgb.cv}.
+}
\description{
-Callback closure for resetting the booster's parameters at each iteration.
+Callback for resetting the booster's parameters at each iteration.
}
\details{
-This is a "pre-iteration" callback function used to reset booster's parameters
-at the beginning of each iteration.
-
Note that when training is resumed from some previous model, and a function is used to
reset a parameter value, the \code{nrounds} argument in this function would be the
the number of boosting rounds in the current training.
-Callback function expects the following values to be set in its calling frame:
-\code{bst} or \code{bst_folds},
-\code{iteration},
-\code{begin_iteration},
-\code{end_iteration}.
-}
-\seealso{
-\code{\link{callbacks}}
+Does not leave any attribute in the booster.
}
diff --git a/R-package/man/xgb.cb.save.model.Rd b/R-package/man/xgb.cb.save.model.Rd
new file mode 100644
index 000000000..8ddba2f1a
--- /dev/null
+++ b/R-package/man/xgb.cb.save.model.Rd
@@ -0,0 +1,28 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/callbacks.R
+\name{xgb.cb.save.model}
+\alias{xgb.cb.save.model}
+\title{Callback for saving a model file.}
+\usage{
+xgb.cb.save.model(save_period = 0, save_name = "xgboost.ubj")
+}
+\arguments{
+\item{save_period}{Save the model to disk after every
+\code{save_period} iterations; 0 means save the model at the end.}
+
+\item{save_name}{The name or path for the saved model file.
+It can contain a \code{\link[base]{sprintf}} formatting specifier
+to include the integer iteration number in the file name.
+E.g., with \code{save_name} = 'xgboost_\%04d.model',
+the file saved at iteration 50 would be named "xgboost_0050.model".}
+}
+\value{
+An \code{xgb.Callback} object, which can be passed to \link{xgb.train},
+but \bold{not} to \link{xgb.cv}.
+}
+\description{
+This callback function allows to save an xgb-model file, either periodically
+after each \code{save_period}'s or at the end.
+
+Does not leave any attribute in the booster.
+}
diff --git a/R-package/man/xgb.create.features.Rd b/R-package/man/xgb.create.features.Rd
index 68b561997..995c27459 100644
--- a/R-package/man/xgb.create.features.Rd
+++ b/R-package/man/xgb.create.features.Rd
@@ -82,7 +82,6 @@ new.dtrain <- xgb.DMatrix(
new.dtest <- xgb.DMatrix(
data = new.features.test, label = agaricus.test$label, nthread = 2
)
-watchlist <- list(train = new.dtrain)
bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2)
# Model accuracy with new features
diff --git a/R-package/man/xgb.cv.Rd b/R-package/man/xgb.cv.Rd
index 9f6103a52..cede67570 100644
--- a/R-package/man/xgb.cv.Rd
+++ b/R-package/man/xgb.cv.Rd
@@ -9,14 +9,12 @@ xgb.cv(
data,
nrounds,
nfold,
- label = NULL,
- missing = NA,
prediction = FALSE,
showsd = TRUE,
metrics = list(),
obj = NULL,
feval = NULL,
- stratified = TRUE,
+ stratified = "auto",
folds = NULL,
train_folds = NULL,
verbose = TRUE,
@@ -44,22 +42,25 @@ is a shorter summary:
}
See \code{\link{xgb.train}} for further details.
-See also demo/ for walkthrough example in R.}
+See also demo/ for walkthrough example in R.
-\item{data}{takes an \code{xgb.DMatrix}, \code{matrix}, or \code{dgCMatrix} as the input.}
+Note that, while \code{params} accepts a \code{seed} entry and will use such parameter for model training if
+supplied, this seed is not used for creation of train-test splits, which instead rely on R's own RNG
+system - thus, for reproducible results, one needs to call the \code{set.seed} function beforehand.}
+
+\item{data}{An \code{xgb.DMatrix} object, with corresponding fields like \code{label} or bounds as required
+for model training by the objective.
+
+\if{html}{\out{}}\preformatted{ Note that only the basic `xgb.DMatrix` class is supported - variants such as `xgb.QuantileDMatrix`
+ or `xgb.ExternalDMatrix` are not supported here.
+}\if{html}{\out{
}}}
\item{nrounds}{the max number of iterations}
\item{nfold}{the original dataset is randomly partitioned into \code{nfold} equal size subsamples.}
-\item{label}{vector of response values. Should be provided only when data is an R-matrix.}
-
-\item{missing}{is only used when input is a dense matrix. By default is set to NA, which means
-that NA values should be considered as 'missing' by the algorithm.
-Sometimes, 0 or other extreme value might be used to represent missing values.}
-
\item{prediction}{A logical value indicating whether to return the test fold predictions
-from each CV model. This parameter engages the \code{\link{cb.cv.predict}} callback.}
+from each CV model. This parameter engages the \code{\link{xgb.cb.cv.predict}} callback.}
\item{showsd}{\code{boolean}, whether to show standard deviation of cross validation}
@@ -84,34 +85,54 @@ gradient with given prediction and dtrain.}
\code{list(metric='metric-name', value='metric-value')} with given
prediction and dtrain.}
-\item{stratified}{a \code{boolean} indicating whether sampling of folds should be stratified
-by the values of outcome labels.}
+\item{stratified}{A \code{boolean} indicating whether sampling of folds should be stratified
+by the values of outcome labels. For real-valued labels in regression objectives,
+stratification will be done by discretizing the labels into up to 5 buckets beforehand.
+
+\if{html}{\out{}}\preformatted{ If passing "auto", will be set to `TRUE` if the objective in `params` is a classification
+ objective (from XGBoost's built-in objectives, doesn't apply to custom ones), and to
+ `FALSE` otherwise.
+
+ This parameter is ignored when `data` has a `group` field - in such case, the splitting
+ will be based on whole groups (note that this might make the folds have different sizes).
+
+ Value `TRUE` here is \\bold\{not\} supported for custom objectives.
+}\if{html}{\out{
}}}
\item{folds}{\code{list} provides a possibility to use a list of pre-defined CV folds
(each element must be a vector of test fold's indices). When folds are supplied,
-the \code{nfold} and \code{stratified} parameters are ignored.}
+the \code{nfold} and \code{stratified} parameters are ignored.
+
+\if{html}{\out{}}\preformatted{ If `data` has a `group` field and the objective requires this field, each fold (list element)
+ must additionally have two attributes (retrievable through \link{attributes}) named `group_test`
+ and `group_train`, which should hold the `group` to assign through \link{setinfo.xgb.DMatrix} to
+ the resulting DMatrices.
+}\if{html}{\out{
}}}
\item{train_folds}{\code{list} list specifying which indicies to use for training. If \code{NULL}
-(the default) all indices not specified in \code{folds} will be used for training.}
+(the default) all indices not specified in \code{folds} will be used for training.
+
+\if{html}{\out{}}\preformatted{ This is not supported when `data` has `group` field.
+}\if{html}{\out{
}}}
\item{verbose}{\code{boolean}, print the statistics during the process}
\item{print_every_n}{Print each n-th iteration evaluation messages when \code{verbose>0}.
Default is 1 which means all messages are printed. This parameter is passed to the
-\code{\link{cb.print.evaluation}} callback.}
+\code{\link{xgb.cb.print.evaluation}} callback.}
\item{early_stopping_rounds}{If \code{NULL}, the early stopping function is not triggered.
If set to an integer \code{k}, training with a validation set will stop if the performance
doesn't improve for \code{k} rounds.
-Setting this parameter engages the \code{\link{cb.early.stop}} callback.}
+Setting this parameter engages the \code{\link{xgb.cb.early.stop}} callback.}
\item{maximize}{If \code{feval} and \code{early_stopping_rounds} are set,
then this parameter must be set as well.
When it is \code{TRUE}, it means the larger the evaluation score the better.
-This parameter is passed to the \code{\link{cb.early.stop}} callback.}
+This parameter is passed to the \code{\link{xgb.cb.early.stop}} callback.}
\item{callbacks}{a list of callback functions to perform various task during boosting.
-See \code{\link{callbacks}}. Some of the callbacks are automatically created depending on the
+See \code{\link{xgb.Callback}}. Some of the callbacks are automatically created depending on the
parameters' values. User can provide either existing or their own callback methods in order
to customize the training process.}
@@ -122,27 +143,27 @@ An object of class \code{xgb.cv.synchronous} with the following elements:
\itemize{
\item \code{call} a function call.
\item \code{params} parameters that were passed to the xgboost library. Note that it does not
-capture parameters changed by the \code{\link{cb.reset.parameters}} callback.
-\item \code{callbacks} callback functions that were either automatically assigned or
-explicitly passed.
+capture parameters changed by the \code{\link{xgb.cb.reset.parameters}} callback.
\item \code{evaluation_log} evaluation history stored as a \code{data.table} with the
first column corresponding to iteration number and the rest corresponding to the
CV-based evaluation means and standard deviations for the training and test CV-sets.
-It is created by the \code{\link{cb.evaluation.log}} callback.
+It is created by the \code{\link{xgb.cb.evaluation.log}} callback.
\item \code{niter} number of boosting iterations.
\item \code{nfeatures} number of features in training data.
\item \code{folds} the list of CV folds' indices - either those passed through the \code{folds}
parameter or randomly generated.
\item \code{best_iteration} iteration number with the best evaluation metric value
(only available with early stopping).
-\item \code{pred} CV prediction values available when \code{prediction} is set.
-It is either vector or matrix (see \code{\link{cb.cv.predict}}).
-\item \code{models} a list of the CV folds' models. It is only available with the explicit
-setting of the \code{cb.cv.predict(save_models = TRUE)} callback.
}
+
+Plus other potential elements that are the result of callbacks, such as a list \code{cv_predict} with
+a sub-element \code{pred} when passing \code{prediction = TRUE}, which is added by the \link{xgb.cb.cv.predict}
+callback (note that one can also pass it manually under \code{callbacks} with different settings,
+such as saving also the models created during cross validation); or a list \code{early_stop} which
+will contain elements such as \code{best_iteration} when using the early stopping callback (\link{xgb.cb.early.stop}).
}
\description{
-The cross validation function of xgboost
+The cross validation function of xgboost.
}
\details{
The original sample is randomly partitioned into \code{nfold} equal size subsamples.
diff --git a/R-package/man/xgb.dump.Rd b/R-package/man/xgb.dump.Rd
index 2cdb6b16a..6f97f6924 100644
--- a/R-package/man/xgb.dump.Rd
+++ b/R-package/man/xgb.dump.Rd
@@ -44,6 +44,7 @@ as a \code{character} vector. Otherwise it will return \code{TRUE}.
Dump an xgboost model in text format.
}
\examples{
+\dontshow{RhpcBLASctl::omp_set_num_threads(1)}
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
diff --git a/R-package/man/xgb.gblinear.history.Rd b/R-package/man/xgb.gblinear.history.Rd
index 103be16f1..25aef7163 100644
--- a/R-package/man/xgb.gblinear.history.Rd
+++ b/R-package/man/xgb.gblinear.history.Rd
@@ -8,7 +8,7 @@ xgb.gblinear.history(model, class_index = NULL)
}
\arguments{
\item{model}{either an \code{xgb.Booster} or a result of \code{xgb.cv()}, trained
-using the \code{cb.gblinear.history()} callback, but \bold{not} a booster
+using the \link{xgb.cb.gblinear.history} callback, but \bold{not} a booster
loaded from \link{xgb.load} or \link{xgb.load.raw}.}
\item{class_index}{zero-based class index to extract the coefficients for only that
@@ -16,23 +16,31 @@ specific class in a multinomial multiclass model. When it is NULL, all the
coefficients are returned. Has no effect in non-multiclass models.}
}
\value{
-For an \code{xgb.train} result, a matrix (either dense or sparse) with the columns
-corresponding to iteration's coefficients (in the order as \code{xgb.dump()} would
-return) and the rows corresponding to boosting iterations.
+For an \link{xgb.train} result, a matrix (either dense or sparse) with the columns
+corresponding to iteration's coefficients and the rows corresponding to boosting iterations.
-For an \code{xgb.cv} result, a list of such matrices is returned with the elements
+For an \link{xgb.cv} result, a list of such matrices is returned with the elements
corresponding to CV folds.
+
+When there is more than one coefficient per feature (e.g. multi-class classification)
+and \code{class_index} is not provided,
+the result will be reshaped into a vector where coefficients are arranged first by features and
+then by class (e.g. first 1 through N coefficients will be for the first class, then
+coefficients N+1 through 2N for the second class, and so on).
}
\description{
A helper function to extract the matrix of linear coefficients' history
-from a gblinear model created while using the \code{cb.gblinear.history()}
-callback.
+from a gblinear model created while using the \link{xgb.cb.gblinear.history}
+callback (which must be added manually as by default it's not used).
}
\details{
Note that this is an R-specific function that relies on R attributes that
are not saved when using xgboost's own serialization functions like \link{xgb.load}
or \link{xgb.load.raw}.
-In order for a serialized model to be accepted by tgis function, one must use R
+In order for a serialized model to be accepted by this function, one must use R
serializers such as \link{saveRDS}.
}
+\seealso{
+\link{xgb.cb.gblinear.history}, \link{coef.xgb.Booster}.
+}
diff --git a/R-package/man/xgb.load.Rd b/R-package/man/xgb.load.Rd
index 1a6873171..e18a900e3 100644
--- a/R-package/man/xgb.load.Rd
+++ b/R-package/man/xgb.load.Rd
@@ -17,7 +17,7 @@ Load xgboost model from the binary model file.
}
\details{
The input file is expected to contain a model saved in an xgboost model format
-using either \code{\link{xgb.save}} or \code{\link{cb.save.model}} in R, or using some
+using either \code{\link{xgb.save}} or \code{\link{xgb.cb.save.model}} in R, or using some
appropriate methods from other xgboost interfaces. E.g., a model trained in Python and
saved from there in xgboost format, could be loaded from R.
@@ -25,6 +25,7 @@ Note: a model saved as an R-object, has to be loaded using corresponding R-metho
not \code{xgb.load}.
}
\examples{
+\dontshow{RhpcBLASctl::omp_set_num_threads(1)}
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
diff --git a/R-package/man/xgb.save.Rd b/R-package/man/xgb.save.Rd
index 0db80a120..bcfbd0bb4 100644
--- a/R-package/man/xgb.save.Rd
+++ b/R-package/man/xgb.save.Rd
@@ -41,6 +41,7 @@ how to persist models in a future-proof way, i.e. to make the model accessible i
releases of XGBoost.
}
\examples{
+\dontshow{RhpcBLASctl::omp_set_num_threads(1)}
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
diff --git a/R-package/man/xgb.save.raw.Rd b/R-package/man/xgb.save.raw.Rd
index 15400bb14..6cdafd3d9 100644
--- a/R-package/man/xgb.save.raw.Rd
+++ b/R-package/man/xgb.save.raw.Rd
@@ -21,6 +21,7 @@ xgb.save.raw(model, raw_format = "ubj")
Save xgboost model from xgboost or xgb.train
}
\examples{
+\dontshow{RhpcBLASctl::omp_set_num_threads(1)}
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
diff --git a/R-package/man/xgb.slice.DMatrix.Rd b/R-package/man/xgb.slice.DMatrix.Rd
index c9695996b..c4f776594 100644
--- a/R-package/man/xgb.slice.DMatrix.Rd
+++ b/R-package/man/xgb.slice.DMatrix.Rd
@@ -6,14 +6,18 @@
\title{Get a new DMatrix containing the specified rows of
original xgb.DMatrix object}
\usage{
-xgb.slice.DMatrix(object, idxset)
+xgb.slice.DMatrix(object, idxset, allow_groups = FALSE)
\method{[}{xgb.DMatrix}(object, idxset, colset = NULL)
}
\arguments{
-\item{object}{Object of class "xgb.DMatrix"}
+\item{object}{Object of class "xgb.DMatrix".}
-\item{idxset}{a integer vector of indices of rows needed}
+\item{idxset}{An integer vector of indices of rows needed (base-1 indexing).}
+
+\item{allow_groups}{Whether to allow slicing an \code{xgb.DMatrix} with \code{group} (or
+equivalently \code{qid}) field. Note that in such case, the result will not have
+the groups anymore - they need to be set manually through \code{setinfo}.}
\item{colset}{currently not used (columns subsetting is not available)}
}
diff --git a/R-package/man/xgb.train.Rd b/R-package/man/xgb.train.Rd
index 0421b9c4a..21c8dbe16 100644
--- a/R-package/man/xgb.train.Rd
+++ b/R-package/man/xgb.train.Rd
@@ -9,7 +9,7 @@ xgb.train(
params = list(),
data,
nrounds,
- watchlist = list(),
+ evals = list(),
obj = NULL,
feval = NULL,
verbose = 1,
@@ -158,13 +158,13 @@ List is provided in detail section.}
\item{nrounds}{max number of boosting iterations.}
-\item{watchlist}{named list of xgb.DMatrix datasets to use for evaluating model performance.
+\item{evals}{Named list of \code{xgb.DMatrix} datasets to use for evaluating model performance.
Metrics specified in either \code{eval_metric} or \code{feval} will be computed for each
of these datasets during each boosting iteration, and stored in the end as a field named
\code{evaluation_log} in the resulting object. When either \code{verbose>=1} or
-\code{\link{cb.print.evaluation}} callback is engaged, the performance results are continuously
+\code{\link{xgb.cb.print.evaluation}} callback is engaged, the performance results are continuously
printed out during the training.
-E.g., specifying \code{watchlist=list(validation1=mat1, validation2=mat2)} allows to track
+E.g., specifying \code{evals=list(validation1=mat1, validation2=mat2)} allows to track
the performance of each round's model on mat1 and mat2.}
\item{obj}{customized objective function. Returns gradient and second order
@@ -177,24 +177,24 @@ prediction and dtrain.}
\item{verbose}{If 0, xgboost will stay silent. If 1, it will print information about performance.
If 2, some additional information will be printed out.
Note that setting \code{verbose > 0} automatically engages the
-\code{cb.print.evaluation(period=1)} callback function.}
+\code{xgb.cb.print.evaluation(period=1)} callback function.}
\item{print_every_n}{Print each n-th iteration evaluation messages when \code{verbose>0}.
Default is 1 which means all messages are printed. This parameter is passed to the
-\code{\link{cb.print.evaluation}} callback.}
+\code{\link{xgb.cb.print.evaluation}} callback.}
\item{early_stopping_rounds}{If \code{NULL}, the early stopping function is not triggered.
If set to an integer \code{k}, training with a validation set will stop if the performance
doesn't improve for \code{k} rounds.
-Setting this parameter engages the \code{\link{cb.early.stop}} callback.}
+Setting this parameter engages the \code{\link{xgb.cb.early.stop}} callback.}
\item{maximize}{If \code{feval} and \code{early_stopping_rounds} are set,
then this parameter must be set as well.
When it is \code{TRUE}, it means the larger the evaluation score the better.
-This parameter is passed to the \code{\link{cb.early.stop}} callback.}
+This parameter is passed to the \code{\link{xgb.cb.early.stop}} callback.}
\item{save_period}{when it is non-NULL, model is saved to disk after every \code{save_period} rounds,
-0 means save at the end. The saving is handled by the \code{\link{cb.save.model}} callback.}
+0 means save at the end. The saving is handled by the \code{\link{xgb.cb.save.model}} callback.}
\item{save_name}{the name or path for periodically saved model file.}
@@ -203,12 +203,13 @@ Could be either an object of class \code{xgb.Booster}, or its raw data, or the n
file with a previously saved model.}
\item{callbacks}{a list of callback functions to perform various task during boosting.
-See \code{\link{callbacks}}. Some of the callbacks are automatically created depending on the
+See \code{\link{xgb.Callback}}. Some of the callbacks are automatically created depending on the
parameters' values. User can provide either existing or their own callback methods in order
to customize the training process.
-\if{html}{\out{}}\preformatted{ Note that some callbacks might try to set an evaluation log - be aware that these evaluation logs
- are kept as R attributes, and thus do not get saved when using non-R serializaters like
+\if{html}{\out{
}}\preformatted{ Note that some callbacks might try to leave attributes in the resulting model object,
+ such as an evaluation log (a `data.table` object) - be aware that these objects are kept
+ as R attributes, and thus do not get saved when using XGBoost's own serializaters like
\link{xgb.save} (but are kept when using R serializers like \link{saveRDS}).
}\if{html}{\out{
}}}
@@ -233,7 +234,7 @@ The \code{xgboost} function is a simpler wrapper for \code{xgb.train}.
\details{
These are the training functions for \code{xgboost}.
-The \code{xgb.train} interface supports advanced features such as \code{watchlist},
+The \code{xgb.train} interface supports advanced features such as \code{evals},
customized objective and evaluation metric functions, therefore it is more flexible
than the \code{xgboost} interface.
@@ -241,6 +242,11 @@ Parallelization is automatically enabled if \code{OpenMP} is present.
Number of threads can also be manually specified via the \code{nthread}
parameter.
+While in other interfaces, the default random seed defaults to zero, in R, if a parameter \code{seed}
+is not manually supplied, it will generate a random seed through R's own random number generator,
+whose seed in turn is controllable through \code{set.seed}. If \code{seed} is passed, it will override the
+RNG from R.
+
The evaluation metric is chosen automatically by XGBoost (according to the objective)
when the \code{eval_metric} parameter is not provided.
User may set one or several \code{eval_metric} parameters.
@@ -264,18 +270,19 @@ Different threshold (e.g., 0.) could be specified as "error@0."
The following callbacks are automatically created when certain parameters are set:
\itemize{
-\item \code{cb.print.evaluation} is turned on when \code{verbose > 0};
+\item \code{xgb.cb.print.evaluation} is turned on when \code{verbose > 0};
and the \code{print_every_n} parameter is passed to it.
-\item \code{cb.evaluation.log} is on when \code{watchlist} is present.
-\item \code{cb.early.stop}: when \code{early_stopping_rounds} is set.
-\item \code{cb.save.model}: when \code{save_period > 0} is set.
+\item \code{xgb.cb.evaluation.log} is on when \code{evals} is present.
+\item \code{xgb.cb.early.stop}: when \code{early_stopping_rounds} is set.
+\item \code{xgb.cb.save.model}: when \code{save_period > 0} is set.
}
Note that objects of type \code{xgb.Booster} as returned by this function behave a bit differently
from typical R objects (it's an 'altrep' list class), and it makes a separation between
internal booster attributes (restricted to jsonifyable data), accessed through \link{xgb.attr}
and shared between interfaces through serialization functions like \link{xgb.save}; and
-R-specific attributes, accessed through \link{attributes} and \link{attr}, which are otherwise
+R-specific attributes (typically the result from a callback), accessed through \link{attributes}
+and \link{attr}, which are otherwise
only used in the R interface, only kept when using R's serializers like \link{saveRDS}, and
not anyhow used by functions like \link{predict.xgb.Booster}.
@@ -300,12 +307,12 @@ dtrain <- with(
dtest <- with(
agaricus.test, xgb.DMatrix(data, label = label, nthread = nthread)
)
-watchlist <- list(train = dtrain, eval = dtest)
+evals <- list(train = dtrain, eval = dtest)
## A simple xgb.train example:
param <- list(max_depth = 2, eta = 1, nthread = nthread,
objective = "binary:logistic", eval_metric = "auc")
-bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0)
+bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0)
## An xgb.train example where custom objective and evaluation metric are
## used:
@@ -326,15 +333,15 @@ evalerror <- function(preds, dtrain) {
# as 'objective' and 'eval_metric' parameters in the params list:
param <- list(max_depth = 2, eta = 1, nthread = nthread,
objective = logregobj, eval_metric = evalerror)
-bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0)
+bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0)
# or through the ... arguments:
param <- list(max_depth = 2, eta = 1, nthread = nthread)
-bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
+bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
objective = logregobj, eval_metric = evalerror)
# or as dedicated 'obj' and 'feval' parameters of xgb.train:
-bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
+bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals,
obj = logregobj, feval = evalerror)
@@ -342,11 +349,11 @@ bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
param <- list(max_depth = 2, eta = 1, nthread = nthread,
objective = "binary:logistic", eval_metric = "auc")
my_etas <- list(eta = c(0.5, 0.1))
-bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
- callbacks = list(cb.reset.parameters(my_etas)))
+bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
+ callbacks = list(xgb.cb.reset.parameters(my_etas)))
## Early stopping:
-bst <- xgb.train(param, dtrain, nrounds = 25, watchlist,
+bst <- xgb.train(param, dtrain, nrounds = 25, evals = evals,
early_stopping_rounds = 3)
## An 'xgboost' interface example:
@@ -361,7 +368,7 @@ Tianqi Chen and Carlos Guestrin, "XGBoost: A Scalable Tree Boosting System",
22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016, \url{https://arxiv.org/abs/1603.02754}
}
\seealso{
-\code{\link{callbacks}},
+\code{\link{xgb.Callback}},
\code{\link{predict.xgb.Booster}},
\code{\link{xgb.cv}}
}
diff --git a/R-package/man/xgbConfig.Rd b/R-package/man/xgbConfig.Rd
index 94b220c77..164c62ef4 100644
--- a/R-package/man/xgbConfig.Rd
+++ b/R-package/man/xgbConfig.Rd
@@ -25,6 +25,15 @@ values of one or more global-scope parameters. Use \code{xgb.get.config} to fetc
values of all global-scope parameters (listed in
\url{https://xgboost.readthedocs.io/en/stable/parameter.html}).
}
+\details{
+Note that serialization-related functions might use a globally-configured number of threads,
+which is managed by the system's OpenMP (OMP) configuration instead. Typically, XGBoost methods
+accept an \code{nthreads} parameter, but some methods like \code{readRDS} might get executed before such
+parameter can be supplied.
+
+The number of OMP threads can in turn be configured for example through an environment variable
+\code{OMP_NUM_THREADS} (needs to be set before R is started), or through \code{RhpcBLASctl::omp_set_num_threads}.
+}
\examples{
# Set verbosity level to silent (0)
xgb.set.config(verbosity = 0)
diff --git a/R-package/src/Makevars.in b/R-package/src/Makevars.in
index dd13983f5..69cdd09a3 100644
--- a/R-package/src/Makevars.in
+++ b/R-package/src/Makevars.in
@@ -99,11 +99,14 @@ OBJECTS= \
$(PKGROOT)/src/context.o \
$(PKGROOT)/src/logging.o \
$(PKGROOT)/src/global_config.o \
+ $(PKGROOT)/src/collective/result.o \
$(PKGROOT)/src/collective/allgather.o \
$(PKGROOT)/src/collective/allreduce.o \
$(PKGROOT)/src/collective/broadcast.o \
$(PKGROOT)/src/collective/comm.o \
+ $(PKGROOT)/src/collective/comm_group.o \
$(PKGROOT)/src/collective/coll.o \
+ $(PKGROOT)/src/collective/communicator-inl.o \
$(PKGROOT)/src/collective/tracker.o \
$(PKGROOT)/src/collective/communicator.o \
$(PKGROOT)/src/collective/in_memory_communicator.o \
diff --git a/R-package/src/Makevars.win b/R-package/src/Makevars.win
index 46a862711..b34d8c649 100644
--- a/R-package/src/Makevars.win
+++ b/R-package/src/Makevars.win
@@ -99,11 +99,14 @@ OBJECTS= \
$(PKGROOT)/src/context.o \
$(PKGROOT)/src/logging.o \
$(PKGROOT)/src/global_config.o \
+ $(PKGROOT)/src/collective/result.o \
$(PKGROOT)/src/collective/allgather.o \
$(PKGROOT)/src/collective/allreduce.o \
$(PKGROOT)/src/collective/broadcast.o \
$(PKGROOT)/src/collective/comm.o \
+ $(PKGROOT)/src/collective/comm_group.o \
$(PKGROOT)/src/collective/coll.o \
+ $(PKGROOT)/src/collective/communicator-inl.o \
$(PKGROOT)/src/collective/tracker.o \
$(PKGROOT)/src/collective/communicator.o \
$(PKGROOT)/src/collective/in_memory_communicator.o \
diff --git a/R-package/src/init.c b/R-package/src/init.c
index a9f3f3e38..5db3218b4 100644
--- a/R-package/src/init.c
+++ b/R-package/src/init.c
@@ -37,6 +37,9 @@ extern SEXP XGBoosterLoadJsonConfig_R(SEXP handle, SEXP value);
extern SEXP XGBoosterSerializeToBuffer_R(SEXP handle);
extern SEXP XGBoosterUnserializeFromBuffer_R(SEXP handle, SEXP raw);
extern SEXP XGBoosterPredictFromDMatrix_R(SEXP, SEXP, SEXP);
+extern SEXP XGBoosterPredictFromDense_R(SEXP, SEXP, SEXP, SEXP, SEXP);
+extern SEXP XGBoosterPredictFromCSR_R(SEXP, SEXP, SEXP, SEXP, SEXP);
+extern SEXP XGBoosterPredictFromColumnar_R(SEXP, SEXP, SEXP, SEXP, SEXP);
extern SEXP XGBoosterSaveModel_R(SEXP, SEXP);
extern SEXP XGBoosterSetAttr_R(SEXP, SEXP, SEXP);
extern SEXP XGBoosterSetParam_R(SEXP, SEXP, SEXP);
@@ -46,7 +49,7 @@ extern SEXP XGSetArrayDimInplace_R(SEXP, SEXP);
extern SEXP XGSetArrayDimNamesInplace_R(SEXP, SEXP);
extern SEXP XGDMatrixCreateFromCSC_R(SEXP, SEXP, SEXP, SEXP, SEXP, SEXP);
extern SEXP XGDMatrixCreateFromCSR_R(SEXP, SEXP, SEXP, SEXP, SEXP, SEXP);
-extern SEXP XGDMatrixCreateFromFile_R(SEXP, SEXP);
+extern SEXP XGDMatrixCreateFromURI_R(SEXP, SEXP, SEXP);
extern SEXP XGDMatrixCreateFromMat_R(SEXP, SEXP, SEXP);
extern SEXP XGDMatrixGetFloatInfo_R(SEXP, SEXP);
extern SEXP XGDMatrixGetUIntInfo_R(SEXP, SEXP);
@@ -68,11 +71,12 @@ extern SEXP XGDMatrixGetDataAsCSR_R(SEXP);
extern SEXP XGDMatrixSaveBinary_R(SEXP, SEXP, SEXP);
extern SEXP XGDMatrixSetInfo_R(SEXP, SEXP, SEXP);
extern SEXP XGDMatrixSetStrFeatureInfo_R(SEXP, SEXP, SEXP);
-extern SEXP XGDMatrixSliceDMatrix_R(SEXP, SEXP);
+extern SEXP XGDMatrixSliceDMatrix_R(SEXP, SEXP, SEXP);
extern SEXP XGBSetGlobalConfig_R(SEXP);
extern SEXP XGBGetGlobalConfig_R(void);
extern SEXP XGBoosterFeatureScore_R(SEXP, SEXP);
extern SEXP XGBoosterSlice_R(SEXP, SEXP, SEXP, SEXP);
+extern SEXP XGBoosterSliceAndReplace_R(SEXP, SEXP, SEXP, SEXP);
static const R_CallMethodDef CallEntries[] = {
{"XGDuplicate_R", (DL_FUNC) &XGDuplicate_R, 1},
@@ -96,6 +100,9 @@ static const R_CallMethodDef CallEntries[] = {
{"XGBoosterSerializeToBuffer_R", (DL_FUNC) &XGBoosterSerializeToBuffer_R, 1},
{"XGBoosterUnserializeFromBuffer_R", (DL_FUNC) &XGBoosterUnserializeFromBuffer_R, 2},
{"XGBoosterPredictFromDMatrix_R", (DL_FUNC) &XGBoosterPredictFromDMatrix_R, 3},
+ {"XGBoosterPredictFromDense_R", (DL_FUNC) &XGBoosterPredictFromDense_R, 5},
+ {"XGBoosterPredictFromCSR_R", (DL_FUNC) &XGBoosterPredictFromCSR_R, 5},
+ {"XGBoosterPredictFromColumnar_R", (DL_FUNC) &XGBoosterPredictFromColumnar_R, 5},
{"XGBoosterSaveModel_R", (DL_FUNC) &XGBoosterSaveModel_R, 2},
{"XGBoosterSetAttr_R", (DL_FUNC) &XGBoosterSetAttr_R, 3},
{"XGBoosterSetParam_R", (DL_FUNC) &XGBoosterSetParam_R, 3},
@@ -105,7 +112,7 @@ static const R_CallMethodDef CallEntries[] = {
{"XGSetArrayDimNamesInplace_R", (DL_FUNC) &XGSetArrayDimNamesInplace_R, 2},
{"XGDMatrixCreateFromCSC_R", (DL_FUNC) &XGDMatrixCreateFromCSC_R, 6},
{"XGDMatrixCreateFromCSR_R", (DL_FUNC) &XGDMatrixCreateFromCSR_R, 6},
- {"XGDMatrixCreateFromFile_R", (DL_FUNC) &XGDMatrixCreateFromFile_R, 2},
+ {"XGDMatrixCreateFromURI_R", (DL_FUNC) &XGDMatrixCreateFromURI_R, 3},
{"XGDMatrixCreateFromMat_R", (DL_FUNC) &XGDMatrixCreateFromMat_R, 3},
{"XGDMatrixGetFloatInfo_R", (DL_FUNC) &XGDMatrixGetFloatInfo_R, 2},
{"XGDMatrixGetUIntInfo_R", (DL_FUNC) &XGDMatrixGetUIntInfo_R, 2},
@@ -127,11 +134,12 @@ static const R_CallMethodDef CallEntries[] = {
{"XGDMatrixSaveBinary_R", (DL_FUNC) &XGDMatrixSaveBinary_R, 3},
{"XGDMatrixSetInfo_R", (DL_FUNC) &XGDMatrixSetInfo_R, 3},
{"XGDMatrixSetStrFeatureInfo_R", (DL_FUNC) &XGDMatrixSetStrFeatureInfo_R, 3},
- {"XGDMatrixSliceDMatrix_R", (DL_FUNC) &XGDMatrixSliceDMatrix_R, 2},
+ {"XGDMatrixSliceDMatrix_R", (DL_FUNC) &XGDMatrixSliceDMatrix_R, 3},
{"XGBSetGlobalConfig_R", (DL_FUNC) &XGBSetGlobalConfig_R, 1},
{"XGBGetGlobalConfig_R", (DL_FUNC) &XGBGetGlobalConfig_R, 0},
{"XGBoosterFeatureScore_R", (DL_FUNC) &XGBoosterFeatureScore_R, 2},
{"XGBoosterSlice_R", (DL_FUNC) &XGBoosterSlice_R, 4},
+ {"XGBoosterSliceAndReplace_R", (DL_FUNC) &XGBoosterSliceAndReplace_R, 4},
{NULL, NULL, 0}
};
diff --git a/R-package/src/xgboost_R.cc b/R-package/src/xgboost_R.cc
index c91fb94c4..cdb9ba65c 100644
--- a/R-package/src/xgboost_R.cc
+++ b/R-package/src/xgboost_R.cc
@@ -13,6 +13,7 @@
#include
#include
#include
+#include
#include
#include
#include
@@ -207,25 +208,24 @@ SEXP SafeAllocInteger(size_t size, SEXP continuation_token) {
return xgboost::Json::Dump(jinterface);
}
-[[nodiscard]] std::string MakeJsonConfigForArray(SEXP missing, SEXP n_threads, SEXPTYPE arr_type) {
- using namespace ::xgboost; // NOLINT
- Json jconfig{Object{}};
-
- const SEXPTYPE missing_type = TYPEOF(missing);
- if (Rf_isNull(missing) || (missing_type == REALSXP && ISNAN(Rf_asReal(missing))) ||
- (missing_type == LGLSXP && Rf_asLogical(missing) == R_NaInt) ||
- (missing_type == INTSXP && Rf_asInteger(missing) == R_NaInt)) {
+void AddMissingToJson(xgboost::Json *jconfig, SEXP missing, SEXPTYPE arr_type) {
+ if (Rf_isNull(missing) || ISNAN(Rf_asReal(missing))) {
// missing is not specified
if (arr_type == REALSXP) {
- jconfig["missing"] = std::numeric_limits::quiet_NaN();
+ (*jconfig)["missing"] = std::numeric_limits::quiet_NaN();
} else {
- jconfig["missing"] = R_NaInt;
+ (*jconfig)["missing"] = R_NaInt;
}
} else {
// missing specified
- jconfig["missing"] = Rf_asReal(missing);
+ (*jconfig)["missing"] = Rf_asReal(missing);
}
+}
+[[nodiscard]] std::string MakeJsonConfigForArray(SEXP missing, SEXP n_threads, SEXPTYPE arr_type) {
+ using namespace ::xgboost; // NOLINT
+ Json jconfig{Object{}};
+ AddMissingToJson(&jconfig, missing, arr_type);
jconfig["nthread"] = Rf_asInteger(n_threads);
return Json::Dump(jconfig);
}
@@ -365,15 +365,22 @@ XGB_DLL SEXP XGBGetGlobalConfig_R() {
return mkString(json_str);
}
-XGB_DLL SEXP XGDMatrixCreateFromFile_R(SEXP fname, SEXP silent) {
- SEXP ret = PROTECT(R_MakeExternalPtr(nullptr, R_NilValue, R_NilValue));
+XGB_DLL SEXP XGDMatrixCreateFromURI_R(SEXP uri, SEXP silent, SEXP data_split_mode) {
+ SEXP ret = Rf_protect(R_MakeExternalPtr(nullptr, R_NilValue, R_NilValue));
+ SEXP uri_char = Rf_protect(Rf_asChar(uri));
+ const char *uri_ptr = CHAR(uri_char);
R_API_BEGIN();
+ xgboost::Json jconfig{xgboost::Object{}};
+ jconfig["uri"] = std::string(uri_ptr);
+ jconfig["silent"] = Rf_asLogical(silent);
+ jconfig["data_split_mode"] = Rf_asInteger(data_split_mode);
+ const std::string sconfig = xgboost::Json::Dump(jconfig);
DMatrixHandle handle;
- CHECK_CALL(XGDMatrixCreateFromFile(CHAR(asChar(fname)), asInteger(silent), &handle));
+ CHECK_CALL(XGDMatrixCreateFromURI(sconfig.c_str(), &handle));
R_SetExternalPtrAddr(ret, handle);
R_RegisterCFinalizerEx(ret, _DMatrixFinalizer, TRUE);
R_API_END();
- UNPROTECT(1);
+ Rf_unprotect(2);
return ret;
}
@@ -404,7 +411,7 @@ XGB_DLL SEXP XGDMatrixCreateFromDF_R(SEXP df, SEXP missing, SEXP n_threads) {
DMatrixHandle handle;
std::int32_t rc{0};
{
- std::string sinterface = MakeArrayInterfaceFromRDataFrame(df);
+ const std::string sinterface = MakeArrayInterfaceFromRDataFrame(df);
xgboost::Json jconfig{xgboost::Object{}};
jconfig["missing"] = asReal(missing);
jconfig["nthread"] = asInteger(n_threads);
@@ -456,7 +463,7 @@ XGB_DLL SEXP XGDMatrixCreateFromCSC_R(SEXP indptr, SEXP indices, SEXP data, SEXP
Json jconfig{Object{}};
// Construct configuration
jconfig["nthread"] = Integer{threads};
- jconfig["missing"] = xgboost::Number{asReal(missing)};
+ AddMissingToJson(&jconfig, missing, TYPEOF(data));
std::string config;
Json::Dump(jconfig, &config);
res_code = XGDMatrixCreateFromCSC(sindptr.c_str(), sindices.c_str(), sdata.c_str(), nrow,
@@ -491,7 +498,7 @@ XGB_DLL SEXP XGDMatrixCreateFromCSR_R(SEXP indptr, SEXP indices, SEXP data, SEXP
Json jconfig{Object{}};
// Construct configuration
jconfig["nthread"] = Integer{threads};
- jconfig["missing"] = xgboost::Number{asReal(missing)};
+ AddMissingToJson(&jconfig, missing, TYPEOF(data));
std::string config;
Json::Dump(jconfig, &config);
res_code = XGDMatrixCreateFromCSR(sindptr.c_str(), sindices.c_str(), sdata.c_str(), ncol,
@@ -505,7 +512,7 @@ XGB_DLL SEXP XGDMatrixCreateFromCSR_R(SEXP indptr, SEXP indices, SEXP data, SEXP
return ret;
}
-XGB_DLL SEXP XGDMatrixSliceDMatrix_R(SEXP handle, SEXP idxset) {
+XGB_DLL SEXP XGDMatrixSliceDMatrix_R(SEXP handle, SEXP idxset, SEXP allow_groups) {
SEXP ret = PROTECT(R_MakeExternalPtr(nullptr, R_NilValue, R_NilValue));
R_API_BEGIN();
R_xlen_t len = Rf_xlength(idxset);
@@ -524,7 +531,7 @@ XGB_DLL SEXP XGDMatrixSliceDMatrix_R(SEXP handle, SEXP idxset) {
res_code = XGDMatrixSliceDMatrixEx(R_ExternalPtrAddr(handle),
BeginPtr(idxvec), len,
&res,
- 0);
+ Rf_asLogical(allow_groups));
}
CHECK_CALL(res_code);
R_SetExternalPtrAddr(ret, res);
@@ -1240,7 +1247,60 @@ XGB_DLL SEXP XGBoosterEvalOneIter_R(SEXP handle, SEXP iter, SEXP dmats, SEXP evn
return mkString(ret);
}
-XGB_DLL SEXP XGBoosterPredictFromDMatrix_R(SEXP handle, SEXP dmat, SEXP json_config) {
+namespace {
+
+struct ProxyDmatrixError : public std::exception {};
+
+struct ProxyDmatrixWrapper {
+ DMatrixHandle proxy_dmat_handle;
+
+ ProxyDmatrixWrapper() {
+ int res_code = XGProxyDMatrixCreate(&this->proxy_dmat_handle);
+ if (res_code != 0) {
+ throw ProxyDmatrixError();
+ }
+ }
+
+ ~ProxyDmatrixWrapper() {
+ if (this->proxy_dmat_handle) {
+ XGDMatrixFree(this->proxy_dmat_handle);
+ this->proxy_dmat_handle = nullptr;
+ }
+ }
+
+ DMatrixHandle get_handle() {
+ return this->proxy_dmat_handle;
+ }
+};
+
+std::unique_ptr GetProxyDMatrixWithBaseMargin(SEXP base_margin) {
+ if (Rf_isNull(base_margin)) {
+ return std::unique_ptr(nullptr);
+ }
+
+ SEXP base_margin_dim = Rf_getAttrib(base_margin, R_DimSymbol);
+ int res_code;
+ try {
+ const std::string array_str = Rf_isNull(base_margin_dim)?
+ MakeArrayInterfaceFromRVector(base_margin) : MakeArrayInterfaceFromRMat(base_margin);
+ std::unique_ptr proxy_dmat(new ProxyDmatrixWrapper());
+ res_code = XGDMatrixSetInfoFromInterface(proxy_dmat->get_handle(),
+ "base_margin",
+ array_str.c_str());
+ if (res_code != 0) {
+ throw ProxyDmatrixError();
+ }
+ return proxy_dmat;
+ } catch(ProxyDmatrixError &err) {
+ Rf_error("%s", XGBGetLastError());
+ }
+}
+
+enum class PredictionInputType {DMatrix, DenseMatrix, CSRMatrix, DataFrame};
+
+SEXP XGBoosterPredictGeneric(SEXP handle, SEXP input_data, SEXP json_config,
+ PredictionInputType input_type, SEXP missing,
+ SEXP base_margin) {
SEXP r_out_shape;
SEXP r_out_result;
SEXP r_out = PROTECT(allocVector(VECSXP, 2));
@@ -1252,9 +1312,79 @@ XGB_DLL SEXP XGBoosterPredictFromDMatrix_R(SEXP handle, SEXP dmat, SEXP json_con
bst_ulong out_dim;
bst_ulong const *out_shape;
float const *out_result;
- CHECK_CALL(XGBoosterPredictFromDMatrix(R_ExternalPtrAddr(handle),
- R_ExternalPtrAddr(dmat), c_json_config,
- &out_shape, &out_dim, &out_result));
+
+ int res_code;
+ {
+ switch (input_type) {
+ case PredictionInputType::DMatrix: {
+ res_code = XGBoosterPredictFromDMatrix(R_ExternalPtrAddr(handle),
+ R_ExternalPtrAddr(input_data), c_json_config,
+ &out_shape, &out_dim, &out_result);
+ break;
+ }
+
+ case PredictionInputType::CSRMatrix: {
+ std::unique_ptr proxy_dmat = GetProxyDMatrixWithBaseMargin(
+ base_margin);
+ DMatrixHandle proxy_dmat_handle = proxy_dmat.get()? proxy_dmat->get_handle() : nullptr;
+
+ SEXP indptr = VECTOR_ELT(input_data, 0);
+ SEXP indices = VECTOR_ELT(input_data, 1);
+ SEXP data = VECTOR_ELT(input_data, 2);
+ const int ncol_csr = Rf_asInteger(VECTOR_ELT(input_data, 3));
+ const SEXPTYPE type_data = TYPEOF(data);
+ CHECK_EQ(type_data, REALSXP);
+ std::string sindptr, sindices, sdata;
+ CreateFromSparse(indptr, indices, data, &sindptr, &sindices, &sdata);
+
+ xgboost::StringView json_str(c_json_config);
+ xgboost::Json new_json = xgboost::Json::Load(json_str);
+ AddMissingToJson(&new_json, missing, type_data);
+ const std::string new_c_json = xgboost::Json::Dump(new_json);
+
+ res_code = XGBoosterPredictFromCSR(
+ R_ExternalPtrAddr(handle), sindptr.c_str(), sindices.c_str(), sdata.c_str(),
+ ncol_csr, new_c_json.c_str(), proxy_dmat_handle, &out_shape, &out_dim, &out_result);
+ break;
+ }
+
+ case PredictionInputType::DenseMatrix: {
+ std::unique_ptr proxy_dmat = GetProxyDMatrixWithBaseMargin(
+ base_margin);
+ DMatrixHandle proxy_dmat_handle = proxy_dmat.get()? proxy_dmat->get_handle() : nullptr;
+ const std::string array_str = MakeArrayInterfaceFromRMat(input_data);
+
+ xgboost::StringView json_str(c_json_config);
+ xgboost::Json new_json = xgboost::Json::Load(json_str);
+ AddMissingToJson(&new_json, missing, TYPEOF(input_data));
+ const std::string new_c_json = xgboost::Json::Dump(new_json);
+
+ res_code = XGBoosterPredictFromDense(
+ R_ExternalPtrAddr(handle), array_str.c_str(), new_c_json.c_str(),
+ proxy_dmat_handle, &out_shape, &out_dim, &out_result);
+ break;
+ }
+
+ case PredictionInputType::DataFrame: {
+ std::unique_ptr proxy_dmat = GetProxyDMatrixWithBaseMargin(
+ base_margin);
+ DMatrixHandle proxy_dmat_handle = proxy_dmat.get()? proxy_dmat->get_handle() : nullptr;
+
+ const std::string df_str = MakeArrayInterfaceFromRDataFrame(input_data);
+
+ xgboost::StringView json_str(c_json_config);
+ xgboost::Json new_json = xgboost::Json::Load(json_str);
+ AddMissingToJson(&new_json, missing, REALSXP);
+ const std::string new_c_json = xgboost::Json::Dump(new_json);
+
+ res_code = XGBoosterPredictFromColumnar(
+ R_ExternalPtrAddr(handle), df_str.c_str(), new_c_json.c_str(),
+ proxy_dmat_handle, &out_shape, &out_dim, &out_result);
+ break;
+ }
+ }
+ }
+ CHECK_CALL(res_code);
r_out_shape = PROTECT(allocVector(INTSXP, out_dim));
size_t len = 1;
@@ -1275,6 +1405,31 @@ XGB_DLL SEXP XGBoosterPredictFromDMatrix_R(SEXP handle, SEXP dmat, SEXP json_con
return r_out;
}
+} // namespace
+
+XGB_DLL SEXP XGBoosterPredictFromDMatrix_R(SEXP handle, SEXP dmat, SEXP json_config) {
+ return XGBoosterPredictGeneric(handle, dmat, json_config,
+ PredictionInputType::DMatrix, R_NilValue, R_NilValue);
+}
+
+XGB_DLL SEXP XGBoosterPredictFromDense_R(SEXP handle, SEXP R_mat, SEXP missing,
+ SEXP json_config, SEXP base_margin) {
+ return XGBoosterPredictGeneric(handle, R_mat, json_config,
+ PredictionInputType::DenseMatrix, missing, base_margin);
+}
+
+XGB_DLL SEXP XGBoosterPredictFromCSR_R(SEXP handle, SEXP lst, SEXP missing,
+ SEXP json_config, SEXP base_margin) {
+ return XGBoosterPredictGeneric(handle, lst, json_config,
+ PredictionInputType::CSRMatrix, missing, base_margin);
+}
+
+XGB_DLL SEXP XGBoosterPredictFromColumnar_R(SEXP handle, SEXP R_df, SEXP missing,
+ SEXP json_config, SEXP base_margin) {
+ return XGBoosterPredictGeneric(handle, R_df, json_config,
+ PredictionInputType::DataFrame, missing, base_margin);
+}
+
XGB_DLL SEXP XGBoosterLoadModel_R(SEXP handle, SEXP fname) {
R_API_BEGIN();
CHECK_CALL(XGBoosterLoadModel(R_ExternalPtrAddr(handle), CHAR(asChar(fname))));
@@ -1519,3 +1674,18 @@ XGB_DLL SEXP XGBoosterSlice_R(SEXP handle, SEXP begin_layer, SEXP end_layer, SEX
Rf_unprotect(1);
return out;
}
+
+XGB_DLL SEXP XGBoosterSliceAndReplace_R(SEXP handle, SEXP begin_layer, SEXP end_layer, SEXP step) {
+ R_API_BEGIN();
+ BoosterHandle old_handle = R_ExternalPtrAddr(handle);
+ BoosterHandle new_handle = nullptr;
+ CHECK_CALL(XGBoosterSlice(old_handle,
+ Rf_asInteger(begin_layer),
+ Rf_asInteger(end_layer),
+ Rf_asInteger(step),
+ &new_handle));
+ R_SetExternalPtrAddr(handle, new_handle);
+ CHECK_CALL(XGBoosterFree(old_handle));
+ R_API_END();
+ return R_NilValue;
+}
diff --git a/R-package/src/xgboost_R.h b/R-package/src/xgboost_R.h
index d2e0ae828..62be5022a 100644
--- a/R-package/src/xgboost_R.h
+++ b/R-package/src/xgboost_R.h
@@ -53,12 +53,13 @@ XGB_DLL SEXP XGBSetGlobalConfig_R(SEXP json_str);
XGB_DLL SEXP XGBGetGlobalConfig_R();
/*!
- * \brief load a data matrix
- * \param fname name of the content
+ * \brief load a data matrix from URI
+ * \param uri URI to the source file to read data from
* \param silent whether print messages
+ * \param Data split mode (0=rows, 1=columns)
* \return a loaded data matrix
*/
-XGB_DLL SEXP XGDMatrixCreateFromFile_R(SEXP fname, SEXP silent);
+XGB_DLL SEXP XGDMatrixCreateFromURI_R(SEXP uri, SEXP silent, SEXP data_split_mode);
/*!
* \brief create matrix content from dense matrix
@@ -111,9 +112,10 @@ XGB_DLL SEXP XGDMatrixCreateFromCSR_R(SEXP indptr, SEXP indices, SEXP data, SEXP
* \brief create a new dmatrix from sliced content of existing matrix
* \param handle instance of data matrix to be sliced
* \param idxset index set
+ * \param allow_groups Whether to allow slicing the DMatrix if it has a 'group' field
* \return a sliced new matrix
*/
-XGB_DLL SEXP XGDMatrixSliceDMatrix_R(SEXP handle, SEXP idxset);
+XGB_DLL SEXP XGDMatrixSliceDMatrix_R(SEXP handle, SEXP idxset, SEXP allow_groups);
/*!
* \brief load a data matrix into binary file
@@ -370,6 +372,50 @@ XGB_DLL SEXP XGBoosterEvalOneIter_R(SEXP handle, SEXP iter, SEXP dmats, SEXP evn
* \return A list containing 2 vectors, first one for shape while second one for prediction result.
*/
XGB_DLL SEXP XGBoosterPredictFromDMatrix_R(SEXP handle, SEXP dmat, SEXP json_config);
+
+/*!
+ * \brief Run prediction on R dense matrix
+ * \param handle handle
+ * \param R_mat R matrix
+ * \param missing missing value
+ * \param json_config See `XGBoosterPredictFromDense` in xgboost c_api.h. Doesn't include 'missing'
+ * \param base_margin base margin for the prediction
+ *
+ * \return A list containing 2 vectors, first one for shape while second one for prediction result.
+ */
+XGB_DLL SEXP XGBoosterPredictFromDense_R(SEXP handle, SEXP R_mat, SEXP missing,
+ SEXP json_config, SEXP base_margin);
+
+/*!
+ * \brief Run prediction on R CSR matrix
+ * \param handle handle
+ * \param lst An R list, containing, in this order:
+ * (a) 'p' array (a.k.a. indptr)
+ * (b) 'j' array (a.k.a. indices)
+ * (c) 'x' array (a.k.a. data / values)
+ * (d) number of columns
+ * \param missing missing value
+ * \param json_config See `XGBoosterPredictFromCSR` in xgboost c_api.h. Doesn't include 'missing'
+ * \param base_margin base margin for the prediction
+ *
+ * \return A list containing 2 vectors, first one for shape while second one for prediction result.
+ */
+XGB_DLL SEXP XGBoosterPredictFromCSR_R(SEXP handle, SEXP lst, SEXP missing,
+ SEXP json_config, SEXP base_margin);
+
+/*!
+ * \brief Run prediction on R data.frame
+ * \param handle handle
+ * \param R_df R data.frame
+ * \param missing missing value
+ * \param json_config See `XGBoosterPredictFromDense` in xgboost c_api.h. Doesn't include 'missing'
+ * \param base_margin base margin for the prediction
+ *
+ * \return A list containing 2 vectors, first one for shape while second one for prediction result.
+ */
+XGB_DLL SEXP XGBoosterPredictFromColumnar_R(SEXP handle, SEXP R_df, SEXP missing,
+ SEXP json_config, SEXP base_margin);
+
/*!
* \brief load model from existing file
* \param handle handle
@@ -490,4 +536,14 @@ XGB_DLL SEXP XGBoosterFeatureScore_R(SEXP handle, SEXP json_config);
*/
XGB_DLL SEXP XGBoosterSlice_R(SEXP handle, SEXP begin_layer, SEXP end_layer, SEXP step);
+/*!
+ * \brief Slice a fitted booster model (by rounds), and replace its handle with the result
+ * \param handle handle to the fitted booster
+ * \param begin_layer start of the slice
+ * \param end_later end of the slice; end_layer=0 is equivalent to end_layer=num_boost_round
+ * \param step step size of the slice
+ * \return NULL
+ */
+XGB_DLL SEXP XGBoosterSliceAndReplace_R(SEXP handle, SEXP begin_layer, SEXP end_layer, SEXP step);
+
#endif // XGBOOST_WRAPPER_R_H_ // NOLINT(*)
diff --git a/R-package/src/xgboost_custom.cc b/R-package/src/xgboost_custom.cc
index 4b05361ca..fb548c61d 100644
--- a/R-package/src/xgboost_custom.cc
+++ b/R-package/src/xgboost_custom.cc
@@ -41,16 +41,6 @@ double LogGamma(double v) {
return lgammafn(v);
}
#endif // !defined(XGBOOST_USE_CUDA)
-// customize random engine.
-void CustomGlobalRandomEngine::seed(CustomGlobalRandomEngine::result_type val) {
- // ignore the seed
-}
-// use R's PRNG to replacd
-CustomGlobalRandomEngine::result_type
-CustomGlobalRandomEngine::operator()() {
- return static_cast(
- std::floor(unif_rand() * CustomGlobalRandomEngine::max()));
-}
} // namespace common
} // namespace xgboost
diff --git a/R-package/tests/helper_scripts/install_deps.R b/R-package/tests/helper_scripts/install_deps.R
index 3ae44f6b1..7a621798a 100644
--- a/R-package/tests/helper_scripts/install_deps.R
+++ b/R-package/tests/helper_scripts/install_deps.R
@@ -20,6 +20,7 @@ pkgs <- c(
"igraph",
"float",
"titanic",
+ "RhpcBLASctl",
## imports
"Matrix",
"methods",
diff --git a/R-package/tests/testthat.R b/R-package/tests/testthat.R
index 3bb229e70..bad6c1df3 100644
--- a/R-package/tests/testthat.R
+++ b/R-package/tests/testthat.R
@@ -1,4 +1,6 @@
library(testthat)
library(xgboost)
+library(Matrix)
test_check("xgboost", reporter = ProgressReporter)
+RhpcBLASctl::omp_set_num_threads(1)
diff --git a/R-package/tests/testthat/test_basic.R b/R-package/tests/testthat/test_basic.R
index 03a8ddbe1..bbb8fb323 100644
--- a/R-package/tests/testthat/test_basic.R
+++ b/R-package/tests/testthat/test_basic.R
@@ -20,7 +20,7 @@ test_that("train and predict binary classification", {
data = xgb.DMatrix(train$data, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = nrounds,
objective = "binary:logistic", eval_metric = "error",
- watchlist = list(train = xgb.DMatrix(train$data, label = train$label))
+ evals = list(train = xgb.DMatrix(train$data, label = train$label))
),
"train-error"
)
@@ -139,8 +139,8 @@ test_that("dart prediction works", {
pred_by_train_1 <- predict(booster_by_train, newdata = dtrain, iterationrange = c(1, nrounds))
pred_by_train_2 <- predict(booster_by_train, newdata = dtrain, training = TRUE)
- expect_true(all(matrix(pred_by_train_0, byrow = TRUE) == matrix(pred_by_xgboost_0, byrow = TRUE)))
- expect_true(all(matrix(pred_by_train_1, byrow = TRUE) == matrix(pred_by_xgboost_1, byrow = TRUE)))
+ expect_equal(pred_by_train_0, pred_by_xgboost_0, tolerance = 1e-6)
+ expect_equal(pred_by_train_1, pred_by_xgboost_1, tolerance = 1e-6)
expect_true(all(matrix(pred_by_train_2, byrow = TRUE) == matrix(pred_by_xgboost_2, byrow = TRUE)))
})
@@ -152,7 +152,7 @@ test_that("train and predict softprob", {
data = xgb.DMatrix(as.matrix(iris[, -5]), label = lb),
max_depth = 3, eta = 0.5, nthread = n_threads, nrounds = 5,
objective = "multi:softprob", num_class = 3, eval_metric = "merror",
- watchlist = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
+ evals = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
),
"train-merror"
)
@@ -203,7 +203,7 @@ test_that("train and predict softmax", {
data = xgb.DMatrix(as.matrix(iris[, -5]), label = lb),
max_depth = 3, eta = 0.5, nthread = n_threads, nrounds = 5,
objective = "multi:softmax", num_class = 3, eval_metric = "merror",
- watchlist = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
+ evals = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
),
"train-merror"
)
@@ -226,7 +226,7 @@ test_that("train and predict RF", {
nthread = n_threads,
nrounds = 1, objective = "binary:logistic", eval_metric = "error",
num_parallel_tree = 20, subsample = 0.6, colsample_bytree = 0.1,
- watchlist = list(train = xgb.DMatrix(train$data, label = lb))
+ evals = list(train = xgb.DMatrix(train$data, label = lb))
)
expect_equal(xgb.get.num.boosted.rounds(bst), 1)
@@ -250,7 +250,7 @@ test_that("train and predict RF with softprob", {
objective = "multi:softprob", eval_metric = "merror",
num_class = 3, verbose = 0,
num_parallel_tree = 4, subsample = 0.5, colsample_bytree = 0.5,
- watchlist = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
+ evals = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
)
expect_equal(xgb.get.num.boosted.rounds(bst), 15)
# predict for all iterations:
@@ -271,7 +271,7 @@ test_that("use of multiple eval metrics works", {
data = xgb.DMatrix(train$data, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
eval_metric = "error", eval_metric = "auc", eval_metric = "logloss",
- watchlist = list(train = xgb.DMatrix(train$data, label = train$label))
+ evals = list(train = xgb.DMatrix(train$data, label = train$label))
),
"train-error.*train-auc.*train-logloss"
)
@@ -283,7 +283,7 @@ test_that("use of multiple eval metrics works", {
data = xgb.DMatrix(train$data, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
eval_metric = list("error", "auc", "logloss"),
- watchlist = list(train = xgb.DMatrix(train$data, label = train$label))
+ evals = list(train = xgb.DMatrix(train$data, label = train$label))
),
"train-error.*train-auc.*train-logloss"
)
@@ -295,19 +295,19 @@ test_that("use of multiple eval metrics works", {
test_that("training continuation works", {
dtrain <- xgb.DMatrix(train$data, label = train$label, nthread = n_threads)
- watchlist <- list(train = dtrain)
+ evals <- list(train = dtrain)
param <- list(
objective = "binary:logistic", max_depth = 2, eta = 1, nthread = n_threads
)
# for the reference, use 4 iterations at once:
set.seed(11)
- bst <- xgb.train(param, dtrain, nrounds = 4, watchlist, verbose = 0)
+ bst <- xgb.train(param, dtrain, nrounds = 4, evals = evals, verbose = 0)
# first two iterations:
set.seed(11)
- bst1 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0)
+ bst1 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0)
# continue for two more:
- bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = bst1)
+ bst2 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0, xgb_model = bst1)
if (!windows_flag && !solaris_flag) {
expect_equal(xgb.save.raw(bst), xgb.save.raw(bst2))
}
@@ -315,7 +315,7 @@ test_that("training continuation works", {
expect_equal(dim(attributes(bst2)$evaluation_log), c(4, 2))
expect_equal(attributes(bst2)$evaluation_log, attributes(bst)$evaluation_log)
# test continuing from raw model data
- bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = xgb.save.raw(bst1))
+ bst2 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0, xgb_model = xgb.save.raw(bst1))
if (!windows_flag && !solaris_flag) {
expect_equal(xgb.save.raw(bst), xgb.save.raw(bst2))
}
@@ -323,7 +323,7 @@ test_that("training continuation works", {
# test continuing from a model in file
fname <- file.path(tempdir(), "xgboost.json")
xgb.save(bst1, fname)
- bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = fname)
+ bst2 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0, xgb_model = fname)
if (!windows_flag && !solaris_flag) {
expect_equal(xgb.save.raw(bst), xgb.save.raw(bst2))
}
@@ -334,7 +334,7 @@ test_that("xgb.cv works", {
set.seed(11)
expect_output(
cv <- xgb.cv(
- data = train$data, label = train$label, max_depth = 2, nfold = 5,
+ data = xgb.DMatrix(train$data, label = train$label), max_depth = 2, nfold = 5,
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
eval_metric = "error", verbose = TRUE
),
@@ -348,7 +348,6 @@ test_that("xgb.cv works", {
expect_false(is.null(cv$folds) && is.list(cv$folds))
expect_length(cv$folds, 5)
expect_false(is.null(cv$params) && is.list(cv$params))
- expect_false(is.null(cv$callbacks))
expect_false(is.null(cv$call))
})
@@ -358,13 +357,13 @@ test_that("xgb.cv works with stratified folds", {
cv <- xgb.cv(
data = dtrain, max_depth = 2, nfold = 5,
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
- verbose = TRUE, stratified = FALSE
+ verbose = FALSE, stratified = FALSE
)
set.seed(314159)
cv2 <- xgb.cv(
data = dtrain, max_depth = 2, nfold = 5,
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
- verbose = TRUE, stratified = TRUE
+ verbose = FALSE, stratified = TRUE
)
# Stratified folds should result in a different evaluation logs
expect_true(all(cv$evaluation_log[, test_logloss_mean] != cv2$evaluation_log[, test_logloss_mean]))
@@ -418,7 +417,7 @@ test_that("max_delta_step works", {
dtrain <- xgb.DMatrix(
agaricus.train$data, label = agaricus.train$label, nthread = n_threads
)
- watchlist <- list(train = dtrain)
+ evals <- list(train = dtrain)
param <- list(
objective = "binary:logistic", eval_metric = "logloss", max_depth = 2,
nthread = n_threads,
@@ -426,9 +425,9 @@ test_that("max_delta_step works", {
)
nrounds <- 5
# model with no restriction on max_delta_step
- bst1 <- xgb.train(param, dtrain, nrounds, watchlist, verbose = 1)
+ bst1 <- xgb.train(param, dtrain, nrounds, evals = evals, verbose = 1)
# model with restricted max_delta_step
- bst2 <- xgb.train(param, dtrain, nrounds, watchlist, verbose = 1, max_delta_step = 1)
+ bst2 <- xgb.train(param, dtrain, nrounds, evals = evals, verbose = 1, max_delta_step = 1)
# the no-restriction model is expected to have consistently lower loss during the initial iterations
expect_true(all(attributes(bst1)$evaluation_log$train_logloss < attributes(bst2)$evaluation_log$train_logloss))
expect_lt(mean(attributes(bst1)$evaluation_log$train_logloss) / mean(attributes(bst2)$evaluation_log$train_logloss), 0.8)
@@ -445,7 +444,7 @@ test_that("colsample_bytree works", {
colnames(test_x) <- paste0("Feature_", sprintf("%03d", 1:100))
dtrain <- xgb.DMatrix(train_x, label = train_y, nthread = n_threads)
dtest <- xgb.DMatrix(test_x, label = test_y, nthread = n_threads)
- watchlist <- list(train = dtrain, eval = dtest)
+ evals <- list(train = dtrain, eval = dtest)
## Use colsample_bytree = 0.01, so that roughly one out of 100 features is chosen for
## each tree
param <- list(
@@ -454,7 +453,7 @@ test_that("colsample_bytree works", {
eval_metric = "auc"
)
set.seed(2)
- bst <- xgb.train(param, dtrain, nrounds = 100, watchlist, verbose = 0)
+ bst <- xgb.train(param, dtrain, nrounds = 100, evals = evals, verbose = 0)
xgb.importance(model = bst)
# If colsample_bytree works properly, a variety of features should be used
# in the 100 trees
@@ -651,6 +650,51 @@ test_that("Can use ranking objectives with either 'qid' or 'group'", {
expect_equal(pred_qid, pred_gr)
})
+test_that("Can predict on data.frame objects", {
+ data("mtcars")
+ y <- mtcars$mpg
+ x_df <- mtcars[, -1]
+ x_mat <- as.matrix(x_df)
+ dm <- xgb.DMatrix(x_mat, label = y, nthread = n_threads)
+ model <- xgb.train(
+ params = list(
+ tree_method = "hist",
+ objective = "reg:squarederror",
+ nthread = n_threads
+ ),
+ data = dm,
+ nrounds = 5
+ )
+
+ pred_mat <- predict(model, xgb.DMatrix(x_mat), nthread = n_threads)
+ pred_df <- predict(model, x_df, nthread = n_threads)
+ expect_equal(pred_mat, pred_df)
+})
+
+test_that("'base_margin' gives the same result in DMatrix as in inplace_predict", {
+ data("mtcars")
+ y <- mtcars$mpg
+ x <- as.matrix(mtcars[, -1])
+ dm <- xgb.DMatrix(x, label = y, nthread = n_threads)
+ model <- xgb.train(
+ params = list(
+ tree_method = "hist",
+ objective = "reg:squarederror",
+ nthread = n_threads
+ ),
+ data = dm,
+ nrounds = 5
+ )
+
+ set.seed(123)
+ base_margin <- rnorm(nrow(x))
+ dm_w_base <- xgb.DMatrix(data = x, base_margin = base_margin)
+ pred_from_dm <- predict(model, dm_w_base)
+ pred_from_mat <- predict(model, x, base_margin = base_margin)
+
+ expect_equal(pred_from_dm, pred_from_mat)
+})
+
test_that("Coefficients from gblinear have the expected shape and names", {
# Single-column coefficients
data(mtcars)
@@ -778,3 +822,120 @@ test_that("DMatrix field are set to booster when training", {
expect_equal(getinfo(model_feature_types, "feature_type"), c("q", "c", "q"))
expect_equal(getinfo(model_both, "feature_type"), c("q", "c", "q"))
})
+
+test_that("Seed in params override PRNG from R", {
+ set.seed(123)
+ model1 <- xgb.train(
+ data = xgb.DMatrix(
+ agaricus.train$data,
+ label = agaricus.train$label, nthread = 1L
+ ),
+ params = list(
+ objective = "binary:logistic",
+ max_depth = 3L,
+ subsample = 0.1,
+ colsample_bytree = 0.1,
+ seed = 111L
+ ),
+ nrounds = 3L
+ )
+
+ set.seed(456)
+ model2 <- xgb.train(
+ data = xgb.DMatrix(
+ agaricus.train$data,
+ label = agaricus.train$label, nthread = 1L
+ ),
+ params = list(
+ objective = "binary:logistic",
+ max_depth = 3L,
+ subsample = 0.1,
+ colsample_bytree = 0.1,
+ seed = 111L
+ ),
+ nrounds = 3L
+ )
+
+ expect_equal(
+ xgb.save.raw(model1, raw_format = "json"),
+ xgb.save.raw(model2, raw_format = "json")
+ )
+
+ set.seed(123)
+ model3 <- xgb.train(
+ data = xgb.DMatrix(
+ agaricus.train$data,
+ label = agaricus.train$label, nthread = 1L
+ ),
+ params = list(
+ objective = "binary:logistic",
+ max_depth = 3L,
+ subsample = 0.1,
+ colsample_bytree = 0.1,
+ seed = 222L
+ ),
+ nrounds = 3L
+ )
+ expect_false(
+ isTRUE(
+ all.equal(
+ xgb.save.raw(model1, raw_format = "json"),
+ xgb.save.raw(model3, raw_format = "json")
+ )
+ )
+ )
+})
+
+test_that("xgb.cv works for AFT", {
+ X <- matrix(c(1, -1, -1, 1, 0, 1, 1, 0), nrow = 4, byrow = TRUE) # 4x2 matrix
+ dtrain <- xgb.DMatrix(X, nthread = n_threads)
+
+ params <- list(objective = 'survival:aft', learning_rate = 0.2, max_depth = 2L)
+
+ # data must have bounds
+ expect_error(
+ xgb.cv(
+ params = params,
+ data = dtrain,
+ nround = 5L,
+ nfold = 4L,
+ nthread = n_threads
+ )
+ )
+
+ setinfo(dtrain, 'label_lower_bound', c(2, 3, 0, 4))
+ setinfo(dtrain, 'label_upper_bound', c(2, Inf, 4, 5))
+
+ # automatic stratified splitting is turned off
+ expect_warning(
+ xgb.cv(
+ params = params, data = dtrain, nround = 5L, nfold = 4L,
+ nthread = n_threads, stratified = TRUE, verbose = FALSE
+ )
+ )
+
+ # this works without any issue
+ expect_no_warning(
+ xgb.cv(params = params, data = dtrain, nround = 5L, nfold = 4L, verbose = FALSE)
+ )
+})
+
+test_that("xgb.cv works for ranking", {
+ data(iris)
+ x <- iris[, -(4:5)]
+ y <- as.integer(iris$Petal.Width)
+ group <- rep(50, 3)
+ dm <- xgb.DMatrix(x, label = y, group = group)
+ res <- xgb.cv(
+ data = dm,
+ params = list(
+ objective = "rank:pairwise",
+ max_depth = 3
+ ),
+ nrounds = 3,
+ nfold = 2,
+ verbose = FALSE,
+ stratified = FALSE
+ )
+ expect_equal(length(res$folds), 2L)
+})
diff --git a/R-package/tests/testthat/test_callbacks.R b/R-package/tests/testthat/test_callbacks.R
index c60d0c246..bf95a170d 100644
--- a/R-package/tests/testthat/test_callbacks.R
+++ b/R-package/tests/testthat/test_callbacks.R
@@ -19,7 +19,7 @@ ltrain <- add.noise(train$label, 0.2)
ltest <- add.noise(test$label, 0.2)
dtrain <- xgb.DMatrix(train$data, label = ltrain, nthread = n_threads)
dtest <- xgb.DMatrix(test$data, label = ltest, nthread = n_threads)
-watchlist <- list(train = dtrain, test = dtest)
+evals <- list(train = dtrain, test = dtest)
err <- function(label, pr) sum((pr > 0.5) != label) / length(label)
@@ -28,79 +28,125 @@ param <- list(objective = "binary:logistic", eval_metric = "error",
max_depth = 2, nthread = n_threads)
-test_that("cb.print.evaluation works as expected", {
+test_that("xgb.cb.print.evaluation works as expected for xgb.train", {
+ logs1 <- capture.output({
+ model <- xgb.train(
+ data = dtrain,
+ params = list(
+ objective = "binary:logistic",
+ eval_metric = "auc",
+ max_depth = 2,
+ nthread = n_threads
+ ),
+ nrounds = 10,
+ evals = list(train = dtrain, test = dtest),
+ callbacks = list(xgb.cb.print.evaluation(period = 1))
+ )
+ })
+ expect_equal(length(logs1), 10)
+ expect_true(all(grepl("^\\[\\d{1,2}\\]\ttrain-auc:0\\.\\d+\ttest-auc:0\\.\\d+\\s*$", logs1)))
+ lapply(seq(1, 10), function(x) expect_true(grepl(paste0("^\\[", x), logs1[x])))
- bst_evaluation <- c('train-auc' = 0.9, 'test-auc' = 0.8)
- bst_evaluation_err <- NULL
- begin_iteration <- 1
- end_iteration <- 7
-
- f0 <- cb.print.evaluation(period = 0)
- f1 <- cb.print.evaluation(period = 1)
- f5 <- cb.print.evaluation(period = 5)
-
- expect_false(is.null(attr(f1, 'call')))
- expect_equal(attr(f1, 'name'), 'cb.print.evaluation')
-
- iteration <- 1
- expect_silent(f0())
- expect_output(f1(), "\\[1\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
- expect_output(f5(), "\\[1\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
- expect_null(f1())
-
- iteration <- 2
- expect_output(f1(), "\\[2\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
- expect_silent(f5())
-
- iteration <- 7
- expect_output(f1(), "\\[7\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
- expect_output(f5(), "\\[7\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
-
- bst_evaluation_err <- c('train-auc' = 0.1, 'test-auc' = 0.2)
- expect_output(f1(), "\\[7\\]\ttrain-auc:0.900000±0.100000\ttest-auc:0.800000±0.200000")
+ logs2 <- capture.output({
+ model <- xgb.train(
+ data = dtrain,
+ params = list(
+ objective = "binary:logistic",
+ eval_metric = "auc",
+ max_depth = 2,
+ nthread = n_threads
+ ),
+ nrounds = 10,
+ evals = list(train = dtrain, test = dtest),
+ callbacks = list(xgb.cb.print.evaluation(period = 2))
+ )
+ })
+ expect_equal(length(logs2), 6)
+ expect_true(all(grepl("^\\[\\d{1,2}\\]\ttrain-auc:0\\.\\d+\ttest-auc:0\\.\\d+\\s*$", logs2)))
+ seq_matches <- c(seq(1, 10, 2), 10)
+ lapply(seq_along(seq_matches), function(x) expect_true(grepl(paste0("^\\[", seq_matches[x]), logs2[x])))
})
-test_that("cb.evaluation.log works as expected", {
+test_that("xgb.cb.print.evaluation works as expected for xgb.cv", {
+ logs1 <- capture.output({
+ model <- xgb.cv(
+ data = dtrain,
+ params = list(
+ objective = "binary:logistic",
+ eval_metric = "auc",
+ max_depth = 2,
+ nthread = n_threads
+ ),
+ nrounds = 10,
+ nfold = 3,
+ callbacks = list(xgb.cb.print.evaluation(period = 1, showsd = TRUE))
+ )
+ })
+ expect_equal(length(logs1), 10)
+ expect_true(all(grepl("^\\[\\d{1,2}\\]\ttrain-auc:0\\.\\d+±0\\.\\d+\ttest-auc:0\\.\\d+±0\\.\\d+\\s*$", logs1)))
+ lapply(seq(1, 10), function(x) expect_true(grepl(paste0("^\\[", x), logs1[x])))
- bst_evaluation <- c('train-auc' = 0.9, 'test-auc' = 0.8)
- bst_evaluation_err <- NULL
+ logs2 <- capture.output({
+ model <- xgb.cv(
+ data = dtrain,
+ params = list(
+ objective = "binary:logistic",
+ eval_metric = "auc",
+ max_depth = 2,
+ nthread = n_threads
+ ),
+ nrounds = 10,
+ nfold = 3,
+ callbacks = list(xgb.cb.print.evaluation(period = 2, showsd = TRUE))
+ )
+ })
+ expect_equal(length(logs2), 6)
+ expect_true(all(grepl("^\\[\\d{1,2}\\]\ttrain-auc:0\\.\\d+±0\\.\\d+\ttest-auc:0\\.\\d+±0\\.\\d+\\s*$", logs2)))
+ seq_matches <- c(seq(1, 10, 2), 10)
+ lapply(seq_along(seq_matches), function(x) expect_true(grepl(paste0("^\\[", seq_matches[x]), logs2[x])))
+})
- evaluation_log <- list()
- f <- cb.evaluation.log()
+test_that("xgb.cb.evaluation.log works as expected for xgb.train", {
+ model <- xgb.train(
+ data = dtrain,
+ params = list(
+ objective = "binary:logistic",
+ eval_metric = "auc",
+ max_depth = 2,
+ nthread = n_threads
+ ),
+ nrounds = 10,
+ verbose = FALSE,
+ evals = list(train = dtrain, test = dtest),
+ callbacks = list(xgb.cb.evaluation.log())
+ )
+ logs <- attributes(model)$evaluation_log
- expect_false(is.null(attr(f, 'call')))
- expect_equal(attr(f, 'name'), 'cb.evaluation.log')
+ expect_equal(nrow(logs), 10)
+ expect_equal(colnames(logs), c("iter", "train_auc", "test_auc"))
+})
- iteration <- 1
- expect_silent(f())
- expect_equal(evaluation_log,
- list(c(iter = 1, bst_evaluation)))
- iteration <- 2
- expect_silent(f())
- expect_equal(evaluation_log,
- list(c(iter = 1, bst_evaluation), c(iter = 2, bst_evaluation)))
- expect_silent(f(finalize = TRUE))
- expect_equal(evaluation_log,
- data.table::data.table(iter = 1:2, train_auc = c(0.9, 0.9), test_auc = c(0.8, 0.8)))
+test_that("xgb.cb.evaluation.log works as expected for xgb.cv", {
+ model <- xgb.cv(
+ data = dtrain,
+ params = list(
+ objective = "binary:logistic",
+ eval_metric = "auc",
+ max_depth = 2,
+ nthread = n_threads
+ ),
+ nrounds = 10,
+ verbose = FALSE,
+ nfold = 3,
+ callbacks = list(xgb.cb.evaluation.log())
+ )
+ logs <- model$evaluation_log
- bst_evaluation_err <- c('train-auc' = 0.1, 'test-auc' = 0.2)
- evaluation_log <- list()
- f <- cb.evaluation.log()
-
- iteration <- 1
- expect_silent(f())
- expect_equal(evaluation_log,
- list(c(iter = 1, c(bst_evaluation, bst_evaluation_err))))
- iteration <- 2
- expect_silent(f())
- expect_equal(evaluation_log,
- list(c(iter = 1, c(bst_evaluation, bst_evaluation_err)),
- c(iter = 2, c(bst_evaluation, bst_evaluation_err))))
- expect_silent(f(finalize = TRUE))
- expect_equal(evaluation_log,
- data.table::data.table(iter = 1:2,
- train_auc_mean = c(0.9, 0.9), train_auc_std = c(0.1, 0.1),
- test_auc_mean = c(0.8, 0.8), test_auc_std = c(0.2, 0.2)))
+ expect_equal(nrow(logs), 10)
+ expect_equal(
+ colnames(logs),
+ c("iter", "train_auc_mean", "train_auc_std", "test_auc_mean", "test_auc_std")
+ )
})
@@ -109,26 +155,26 @@ param <- list(objective = "binary:logistic", eval_metric = "error",
test_that("can store evaluation_log without printing", {
expect_silent(
- bst <- xgb.train(param, dtrain, nrounds = 10, watchlist, eta = 1, verbose = 0)
+ bst <- xgb.train(param, dtrain, nrounds = 10, evals = evals, eta = 1, verbose = 0)
)
expect_false(is.null(attributes(bst)$evaluation_log))
expect_false(is.null(attributes(bst)$evaluation_log$train_error))
expect_lt(attributes(bst)$evaluation_log[, min(train_error)], 0.2)
})
-test_that("cb.reset.parameters works as expected", {
+test_that("xgb.cb.reset.parameters works as expected", {
# fixed eta
set.seed(111)
- bst0 <- xgb.train(param, dtrain, nrounds = 2, watchlist, eta = 0.9, verbose = 0)
+ bst0 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, eta = 0.9, verbose = 0)
expect_false(is.null(attributes(bst0)$evaluation_log))
expect_false(is.null(attributes(bst0)$evaluation_log$train_error))
# same eta but re-set as a vector parameter in the callback
set.seed(111)
my_par <- list(eta = c(0.9, 0.9))
- bst1 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
- callbacks = list(cb.reset.parameters(my_par)))
+ bst1 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
+ callbacks = list(xgb.cb.reset.parameters(my_par)))
expect_false(is.null(attributes(bst1)$evaluation_log$train_error))
expect_equal(attributes(bst0)$evaluation_log$train_error,
attributes(bst1)$evaluation_log$train_error)
@@ -136,8 +182,8 @@ test_that("cb.reset.parameters works as expected", {
# same eta but re-set via a function in the callback
set.seed(111)
my_par <- list(eta = function(itr, itr_end) 0.9)
- bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
- callbacks = list(cb.reset.parameters(my_par)))
+ bst2 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
+ callbacks = list(xgb.cb.reset.parameters(my_par)))
expect_false(is.null(attributes(bst2)$evaluation_log$train_error))
expect_equal(attributes(bst0)$evaluation_log$train_error,
attributes(bst2)$evaluation_log$train_error)
@@ -145,39 +191,39 @@ test_that("cb.reset.parameters works as expected", {
# different eta re-set as a vector parameter in the callback
set.seed(111)
my_par <- list(eta = c(0.6, 0.5))
- bst3 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
- callbacks = list(cb.reset.parameters(my_par)))
+ bst3 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
+ callbacks = list(xgb.cb.reset.parameters(my_par)))
expect_false(is.null(attributes(bst3)$evaluation_log$train_error))
expect_false(all(attributes(bst0)$evaluation_log$train_error == attributes(bst3)$evaluation_log$train_error))
# resetting multiple parameters at the same time runs with no error
my_par <- list(eta = c(1., 0.5), gamma = c(1, 2), max_depth = c(4, 8))
expect_error(
- bst4 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
- callbacks = list(cb.reset.parameters(my_par)))
+ bst4 <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
+ callbacks = list(xgb.cb.reset.parameters(my_par)))
, NA) # NA = no error
# CV works as well
expect_error(
bst4 <- xgb.cv(param, dtrain, nfold = 2, nrounds = 2, verbose = 0,
- callbacks = list(cb.reset.parameters(my_par)))
+ callbacks = list(xgb.cb.reset.parameters(my_par)))
, NA) # NA = no error
# expect no learning with 0 learning rate
my_par <- list(eta = c(0., 0.))
- bstX <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
- callbacks = list(cb.reset.parameters(my_par)))
+ bstX <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0,
+ callbacks = list(xgb.cb.reset.parameters(my_par)))
expect_false(is.null(attributes(bstX)$evaluation_log$train_error))
er <- unique(attributes(bstX)$evaluation_log$train_error)
expect_length(er, 1)
expect_gt(er, 0.4)
})
-test_that("cb.save.model works as expected", {
+test_that("xgb.cb.save.model works as expected", {
files <- c('xgboost_01.json', 'xgboost_02.json', 'xgboost.json')
files <- unname(sapply(files, function(f) file.path(tempdir(), f)))
for (f in files) if (file.exists(f)) file.remove(f)
- bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, eta = 1, verbose = 0,
+ bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, eta = 1, verbose = 0,
save_period = 1, save_name = file.path(tempdir(), "xgboost_%02d.json"))
expect_true(file.exists(files[1]))
expect_true(file.exists(files[2]))
@@ -193,7 +239,7 @@ test_that("cb.save.model works as expected", {
expect_equal(xgb.save.raw(bst), xgb.save.raw(b2))
# save_period = 0 saves the last iteration's model
- bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, eta = 1, verbose = 0,
+ bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, eta = 1, verbose = 0,
save_period = 0, save_name = file.path(tempdir(), 'xgboost.json'))
expect_true(file.exists(files[3]))
b2 <- xgb.load(files[3])
@@ -206,7 +252,7 @@ test_that("cb.save.model works as expected", {
test_that("early stopping xgb.train works", {
set.seed(11)
expect_output(
- bst <- xgb.train(param, dtrain, nrounds = 20, watchlist, eta = 0.3,
+ bst <- xgb.train(param, dtrain, nrounds = 20, evals = evals, eta = 0.3,
early_stopping_rounds = 3, maximize = FALSE)
, "Stopping. Best iteration")
expect_false(is.null(xgb.attr(bst, "best_iteration")))
@@ -220,7 +266,7 @@ test_that("early stopping xgb.train works", {
set.seed(11)
expect_silent(
- bst0 <- xgb.train(param, dtrain, nrounds = 20, watchlist, eta = 0.3,
+ bst0 <- xgb.train(param, dtrain, nrounds = 20, evals = evals, eta = 0.3,
early_stopping_rounds = 3, maximize = FALSE, verbose = 0)
)
expect_equal(attributes(bst)$evaluation_log, attributes(bst0)$evaluation_log)
@@ -236,10 +282,10 @@ test_that("early stopping xgb.train works", {
test_that("early stopping using a specific metric works", {
set.seed(11)
expect_output(
- bst <- xgb.train(param[-2], dtrain, nrounds = 20, watchlist, eta = 0.6,
+ bst <- xgb.train(param[-2], dtrain, nrounds = 20, evals = evals, eta = 0.6,
eval_metric = "logloss", eval_metric = "auc",
- callbacks = list(cb.early.stop(stopping_rounds = 3, maximize = FALSE,
- metric_name = 'test_logloss')))
+ callbacks = list(xgb.cb.early.stop(stopping_rounds = 3, maximize = FALSE,
+ metric_name = 'test_logloss')))
, "Stopping. Best iteration")
expect_false(is.null(xgb.attr(bst, "best_iteration")))
expect_lt(xgb.attr(bst, "best_iteration"), 19)
@@ -269,7 +315,7 @@ test_that("early stopping works with titanic", {
nrounds = 100,
early_stopping_rounds = 3,
nthread = n_threads,
- watchlist = list(train = xgb.DMatrix(dtx, label = dty))
+ evals = list(train = xgb.DMatrix(dtx, label = dty))
)
expect_true(TRUE) # should not crash
@@ -281,10 +327,10 @@ test_that("early stopping xgb.cv works", {
cv <- xgb.cv(param, dtrain, nfold = 5, eta = 0.3, nrounds = 20,
early_stopping_rounds = 3, maximize = FALSE)
, "Stopping. Best iteration")
- expect_false(is.null(cv$best_iteration))
- expect_lt(cv$best_iteration, 19)
+ expect_false(is.null(cv$early_stop$best_iteration))
+ expect_lt(cv$early_stop$best_iteration, 19)
# the best error is min error:
- expect_true(cv$evaluation_log[, test_error_mean[cv$best_iteration] == min(test_error_mean)])
+ expect_true(cv$evaluation_log[, test_error_mean[cv$early_stop$best_iteration] == min(test_error_mean)])
})
test_that("prediction in xgb.cv works", {
@@ -292,19 +338,19 @@ test_that("prediction in xgb.cv works", {
nrounds <- 4
cv <- xgb.cv(param, dtrain, nfold = 5, eta = 0.5, nrounds = nrounds, prediction = TRUE, verbose = 0)
expect_false(is.null(cv$evaluation_log))
- expect_false(is.null(cv$pred))
- expect_length(cv$pred, nrow(train$data))
- err_pred <- mean(sapply(cv$folds, function(f) mean(err(ltrain[f], cv$pred[f]))))
+ expect_false(is.null(cv$cv_predict$pred))
+ expect_length(cv$cv_predict$pred, nrow(train$data))
+ err_pred <- mean(sapply(cv$folds, function(f) mean(err(ltrain[f], cv$cv_predict$pred[f]))))
err_log <- cv$evaluation_log[nrounds, test_error_mean]
expect_equal(err_pred, err_log, tolerance = 1e-6)
# save CV models
set.seed(11)
cvx <- xgb.cv(param, dtrain, nfold = 5, eta = 0.5, nrounds = nrounds, prediction = TRUE, verbose = 0,
- callbacks = list(cb.cv.predict(save_models = TRUE)))
+ callbacks = list(xgb.cb.cv.predict(save_models = TRUE)))
expect_equal(cv$evaluation_log, cvx$evaluation_log)
- expect_length(cvx$models, 5)
- expect_true(all(sapply(cvx$models, class) == 'xgb.Booster'))
+ expect_length(cvx$cv_predict$models, 5)
+ expect_true(all(sapply(cvx$cv_predict$models, class) == 'xgb.Booster'))
})
test_that("prediction in xgb.cv works for gblinear too", {
@@ -312,8 +358,8 @@ test_that("prediction in xgb.cv works for gblinear too", {
p <- list(booster = 'gblinear', objective = "reg:logistic", nthread = n_threads)
cv <- xgb.cv(p, dtrain, nfold = 5, eta = 0.5, nrounds = 2, prediction = TRUE, verbose = 0)
expect_false(is.null(cv$evaluation_log))
- expect_false(is.null(cv$pred))
- expect_length(cv$pred, nrow(train$data))
+ expect_false(is.null(cv$cv_predict$pred))
+ expect_length(cv$cv_predict$pred, nrow(train$data))
})
test_that("prediction in early-stopping xgb.cv works", {
@@ -321,17 +367,17 @@ test_that("prediction in early-stopping xgb.cv works", {
expect_output(
cv <- xgb.cv(param, dtrain, nfold = 5, eta = 0.1, nrounds = 20,
early_stopping_rounds = 5, maximize = FALSE, stratified = FALSE,
- prediction = TRUE, base_score = 0.5)
+ prediction = TRUE, base_score = 0.5, verbose = TRUE)
, "Stopping. Best iteration")
- expect_false(is.null(cv$best_iteration))
- expect_lt(cv$best_iteration, 19)
+ expect_false(is.null(cv$early_stop$best_iteration))
+ expect_lt(cv$early_stop$best_iteration, 19)
expect_false(is.null(cv$evaluation_log))
- expect_false(is.null(cv$pred))
- expect_length(cv$pred, nrow(train$data))
+ expect_false(is.null(cv$cv_predict$pred))
+ expect_length(cv$cv_predict$pred, nrow(train$data))
- err_pred <- mean(sapply(cv$folds, function(f) mean(err(ltrain[f], cv$pred[f]))))
- err_log <- cv$evaluation_log[cv$best_iteration, test_error_mean]
+ err_pred <- mean(sapply(cv$folds, function(f) mean(err(ltrain[f], cv$cv_predict$pred[f]))))
+ err_log <- cv$evaluation_log[cv$early_stop$best_iteration, test_error_mean]
expect_equal(err_pred, err_log, tolerance = 1e-6)
err_log_last <- cv$evaluation_log[cv$niter, test_error_mean]
expect_gt(abs(err_pred - err_log_last), 1e-4)
@@ -341,14 +387,14 @@ test_that("prediction in xgb.cv for softprob works", {
lb <- as.numeric(iris$Species) - 1
set.seed(11)
expect_warning(
- cv <- xgb.cv(data = as.matrix(iris[, -5]), label = lb, nfold = 4,
+ cv <- xgb.cv(data = xgb.DMatrix(as.matrix(iris[, -5]), label = lb), nfold = 4,
eta = 0.5, nrounds = 5, max_depth = 3, nthread = n_threads,
subsample = 0.8, gamma = 2, verbose = 0,
prediction = TRUE, objective = "multi:softprob", num_class = 3)
, NA)
- expect_false(is.null(cv$pred))
- expect_equal(dim(cv$pred), c(nrow(iris), 3))
- expect_lt(diff(range(rowSums(cv$pred))), 1e-6)
+ expect_false(is.null(cv$cv_predict$pred))
+ expect_equal(dim(cv$cv_predict$pred), c(nrow(iris), 3))
+ expect_lt(diff(range(rowSums(cv$cv_predict$pred))), 1e-6)
})
test_that("prediction in xgb.cv works for multi-quantile", {
@@ -368,7 +414,7 @@ test_that("prediction in xgb.cv works for multi-quantile", {
prediction = TRUE,
verbose = 0
)
- expect_equal(dim(cv$pred), c(nrow(x), 5))
+ expect_equal(dim(cv$cv_predict$pred), c(nrow(x), 5))
})
test_that("prediction in xgb.cv works for multi-output", {
@@ -389,5 +435,46 @@ test_that("prediction in xgb.cv works for multi-output", {
prediction = TRUE,
verbose = 0
)
- expect_equal(dim(cv$pred), c(nrow(x), 2))
+ expect_equal(dim(cv$cv_predict$pred), c(nrow(x), 2))
+})
+
+test_that("prediction in xgb.cv works for multi-quantile", {
+ data(mtcars)
+ y <- mtcars$mpg
+ x <- as.matrix(mtcars[, -1])
+ dm <- xgb.DMatrix(x, label = y, nthread = 1)
+ cv <- xgb.cv(
+ data = dm,
+ params = list(
+ objective = "reg:quantileerror",
+ quantile_alpha = c(0.1, 0.2, 0.5, 0.8, 0.9),
+ nthread = 1
+ ),
+ nrounds = 5,
+ nfold = 3,
+ prediction = TRUE,
+ verbose = 0
+ )
+ expect_equal(dim(cv$cv_predict$pred), c(nrow(x), 5))
+})
+
+test_that("prediction in xgb.cv works for multi-output", {
+ data(mtcars)
+ y <- mtcars$mpg
+ x <- as.matrix(mtcars[, -1])
+ dm <- xgb.DMatrix(x, label = cbind(y, -y), nthread = 1)
+ cv <- xgb.cv(
+ data = dm,
+ params = list(
+ tree_method = "hist",
+ multi_strategy = "multi_output_tree",
+ objective = "reg:squarederror",
+ nthread = n_threads
+ ),
+ nrounds = 5,
+ nfold = 3,
+ prediction = TRUE,
+ verbose = 0
+ )
+ expect_equal(dim(cv$cv_predict$pred), c(nrow(x), 2))
})
diff --git a/R-package/tests/testthat/test_custom_objective.R b/R-package/tests/testthat/test_custom_objective.R
index c65031246..d3050b152 100644
--- a/R-package/tests/testthat/test_custom_objective.R
+++ b/R-package/tests/testthat/test_custom_objective.R
@@ -12,7 +12,7 @@ dtrain <- xgb.DMatrix(
dtest <- xgb.DMatrix(
agaricus.test$data, label = agaricus.test$label, nthread = n_threads
)
-watchlist <- list(eval = dtest, train = dtrain)
+evals <- list(eval = dtest, train = dtrain)
logregobj <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
@@ -33,7 +33,7 @@ param <- list(max_depth = 2, eta = 1, nthread = n_threads,
num_round <- 2
test_that("custom objective works", {
- bst <- xgb.train(param, dtrain, num_round, watchlist)
+ bst <- xgb.train(param, dtrain, num_round, evals)
expect_equal(class(bst), "xgb.Booster")
expect_false(is.null(attributes(bst)$evaluation_log))
expect_false(is.null(attributes(bst)$evaluation_log$eval_error))
@@ -48,7 +48,7 @@ test_that("custom objective in CV works", {
})
test_that("custom objective with early stop works", {
- bst <- xgb.train(param, dtrain, 10, watchlist)
+ bst <- xgb.train(param, dtrain, 10, evals)
expect_equal(class(bst), "xgb.Booster")
train_log <- attributes(bst)$evaluation_log$train_error
expect_true(all(diff(train_log) <= 0))
@@ -66,7 +66,7 @@ test_that("custom objective using DMatrix attr works", {
return(list(grad = grad, hess = hess))
}
param$objective <- logregobjattr
- bst <- xgb.train(param, dtrain, num_round, watchlist)
+ bst <- xgb.train(param, dtrain, num_round, evals)
expect_equal(class(bst), "xgb.Booster")
})
diff --git a/R-package/tests/testthat/test_dmatrix.R b/R-package/tests/testthat/test_dmatrix.R
index 50621f241..548afece3 100644
--- a/R-package/tests/testthat/test_dmatrix.R
+++ b/R-package/tests/testthat/test_dmatrix.R
@@ -41,13 +41,13 @@ test_that("xgb.DMatrix: basic construction", {
params <- list(tree_method = "hist", nthread = n_threads)
bst_fd <- xgb.train(
- params, nrounds = 8, fd, watchlist = list(train = fd)
+ params, nrounds = 8, fd, evals = list(train = fd)
)
bst_dgr <- xgb.train(
- params, nrounds = 8, fdgr, watchlist = list(train = fdgr)
+ params, nrounds = 8, fdgr, evals = list(train = fdgr)
)
bst_dgc <- xgb.train(
- params, nrounds = 8, fdgc, watchlist = list(train = fdgc)
+ params, nrounds = 8, fdgc, evals = list(train = fdgc)
)
raw_fd <- xgb.save.raw(bst_fd, raw_format = "ubj")
@@ -243,7 +243,7 @@ test_that("xgb.DMatrix: print", {
txt <- capture.output({
print(dtrain)
})
- expect_equal(txt, "xgb.DMatrix dim: 6513 x 126 info: label weight base_margin colnames: yes")
+ expect_equal(txt, "xgb.DMatrix dim: 6513 x 126 info: base_margin, label, weight colnames: yes")
# DMatrix with just features
dtrain <- xgb.DMatrix(
@@ -302,6 +302,37 @@ test_that("xgb.DMatrix: Inf as missing", {
file.remove(fname_nan)
})
+test_that("xgb.DMatrix: missing in CSR", {
+ x_dense <- matrix(as.numeric(1:10), nrow = 5)
+ x_dense[2, 1] <- NA_real_
+
+ x_csr <- as(x_dense, "RsparseMatrix")
+
+ m_dense <- xgb.DMatrix(x_dense, nthread = n_threads, missing = NA_real_)
+ xgb.DMatrix.save(m_dense, "dense.dmatrix")
+
+ m_csr <- xgb.DMatrix(x_csr, nthread = n_threads, missing = NA)
+ xgb.DMatrix.save(m_csr, "csr.dmatrix")
+
+ denseconn <- file("dense.dmatrix", "rb")
+ csrconn <- file("csr.dmatrix", "rb")
+
+ expect_equal(file.size("dense.dmatrix"), file.size("csr.dmatrix"))
+
+ bytes <- file.size("dense.dmatrix")
+ densedmatrix <- readBin(denseconn, "raw", n = bytes)
+ csrmatrix <- readBin(csrconn, "raw", n = bytes)
+
+ expect_equal(length(densedmatrix), length(csrmatrix))
+ expect_equal(densedmatrix, csrmatrix)
+
+ close(denseconn)
+ close(csrconn)
+
+ file.remove("dense.dmatrix")
+ file.remove("csr.dmatrix")
+})
+
test_that("xgb.DMatrix: error on three-dimensional array", {
set.seed(123)
x <- matrix(rnorm(500), nrow = 50)
@@ -692,3 +723,58 @@ test_that("xgb.DMatrix: quantile cuts look correct", {
}
)
})
+
+test_that("xgb.DMatrix: slicing keeps field indicators", {
+ data(mtcars)
+ x <- as.matrix(mtcars[, -1])
+ y <- mtcars[, 1]
+ dm <- xgb.DMatrix(
+ data = x,
+ label_lower_bound = -y,
+ label_upper_bound = y,
+ nthread = 1
+ )
+ idx_take <- seq(1, 5)
+ dm_slice <- xgb.slice.DMatrix(dm, idx_take)
+
+ expect_true(xgb.DMatrix.hasinfo(dm_slice, "label_lower_bound"))
+ expect_true(xgb.DMatrix.hasinfo(dm_slice, "label_upper_bound"))
+ expect_false(xgb.DMatrix.hasinfo(dm_slice, "label"))
+
+ expect_equal(getinfo(dm_slice, "label_lower_bound"), -y[idx_take], tolerance = 1e-6)
+ expect_equal(getinfo(dm_slice, "label_upper_bound"), y[idx_take], tolerance = 1e-6)
+})
+
+test_that("xgb.DMatrix: can slice with groups", {
+ data(iris)
+ x <- as.matrix(iris[, -5])
+ set.seed(123)
+ y <- sample(3, size = nrow(x), replace = TRUE)
+ group <- c(50, 50, 50)
+ dm <- xgb.DMatrix(x, label = y, group = group, nthread = 1)
+ idx_take <- seq(1, 50)
+ dm_slice <- xgb.slice.DMatrix(dm, idx_take, allow_groups = TRUE)
+
+ expect_true(xgb.DMatrix.hasinfo(dm_slice, "label"))
+ expect_false(xgb.DMatrix.hasinfo(dm_slice, "group"))
+ expect_false(xgb.DMatrix.hasinfo(dm_slice, "qid"))
+ expect_null(getinfo(dm_slice, "group"))
+ expect_equal(getinfo(dm_slice, "label"), y[idx_take], tolerance = 1e-6)
+})
+
+test_that("xgb.DMatrix: can read CSV", {
+ txt <- paste(
+ "1,2,3",
+ "-1,3,2",
+ sep = "\n"
+ )
+ fname <- file.path(tempdir(), "data.csv")
+ writeChar(txt, fname)
+ uri <- paste0(fname, "?format=csv&label_column=0")
+ dm <- xgb.DMatrix(uri, silent = TRUE)
+ expect_equal(getinfo(dm, "label"), c(1, -1))
+ expect_equal(
+ as.matrix(xgb.get.DMatrix.data(dm)),
+ matrix(c(2, 3, 3, 2), nrow = 2, byrow = TRUE)
+ )
+})
diff --git a/R-package/tests/testthat/test_feature_weights.R b/R-package/tests/testthat/test_feature_weights.R
index 4ed78c9b6..54fec67cf 100644
--- a/R-package/tests/testthat/test_feature_weights.R
+++ b/R-package/tests/testthat/test_feature_weights.R
@@ -25,7 +25,7 @@ test_that("training with feature weights works", {
expect_lt(importance[1, Frequency], importance[9, Frequency])
}
- for (tm in c("hist", "approx", "exact")) {
+ for (tm in c("hist", "approx")) {
test(tm)
}
})
diff --git a/R-package/tests/testthat/test_glm.R b/R-package/tests/testthat/test_glm.R
index 349bcce8d..b59de8b62 100644
--- a/R-package/tests/testthat/test_glm.R
+++ b/R-package/tests/testthat/test_glm.R
@@ -14,37 +14,37 @@ test_that("gblinear works", {
param <- list(objective = "binary:logistic", eval_metric = "error", booster = "gblinear",
nthread = n_threads, eta = 0.8, alpha = 0.0001, lambda = 0.0001)
- watchlist <- list(eval = dtest, train = dtrain)
+ evals <- list(eval = dtest, train = dtrain)
n <- 5 # iterations
ERR_UL <- 0.005 # upper limit for the test set error
VERB <- 0 # chatterbox switch
param$updater <- 'shotgun'
- bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'shuffle')
+ bst <- xgb.train(param, dtrain, n, evals, verbose = VERB, feature_selector = 'shuffle')
ypred <- predict(bst, dtest)
expect_equal(length(getinfo(dtest, 'label')), 1611)
expect_lt(attributes(bst)$evaluation_log$eval_error[n], ERR_UL)
- bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'cyclic',
- callbacks = list(cb.gblinear.history()))
+ bst <- xgb.train(param, dtrain, n, evals, verbose = VERB, feature_selector = 'cyclic',
+ callbacks = list(xgb.cb.gblinear.history()))
expect_lt(attributes(bst)$evaluation_log$eval_error[n], ERR_UL)
h <- xgb.gblinear.history(bst)
expect_equal(dim(h), c(n, ncol(dtrain) + 1))
expect_is(h, "matrix")
param$updater <- 'coord_descent'
- bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'cyclic')
+ bst <- xgb.train(param, dtrain, n, evals, verbose = VERB, feature_selector = 'cyclic')
expect_lt(attributes(bst)$evaluation_log$eval_error[n], ERR_UL)
- bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'shuffle')
+ bst <- xgb.train(param, dtrain, n, evals, verbose = VERB, feature_selector = 'shuffle')
expect_lt(attributes(bst)$evaluation_log$eval_error[n], ERR_UL)
- bst <- xgb.train(param, dtrain, 2, watchlist, verbose = VERB, feature_selector = 'greedy')
+ bst <- xgb.train(param, dtrain, 2, evals, verbose = VERB, feature_selector = 'greedy')
expect_lt(attributes(bst)$evaluation_log$eval_error[2], ERR_UL)
- bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'thrifty',
- top_k = 50, callbacks = list(cb.gblinear.history(sparse = TRUE)))
+ bst <- xgb.train(param, dtrain, n, evals, verbose = VERB, feature_selector = 'thrifty',
+ top_k = 50, callbacks = list(xgb.cb.gblinear.history(sparse = TRUE)))
expect_lt(attributes(bst)$evaluation_log$eval_error[n], ERR_UL)
h <- xgb.gblinear.history(bst)
expect_equal(dim(h), c(n, ncol(dtrain) + 1))
diff --git a/R-package/tests/testthat/test_ranking.R b/R-package/tests/testthat/test_ranking.R
index e49a32025..0e7db42da 100644
--- a/R-package/tests/testthat/test_ranking.R
+++ b/R-package/tests/testthat/test_ranking.R
@@ -15,7 +15,7 @@ test_that('Test ranking with unweighted data', {
params <- list(eta = 1, tree_method = 'exact', objective = 'rank:pairwise', max_depth = 1,
eval_metric = 'auc', eval_metric = 'aucpr', nthread = n_threads)
- bst <- xgb.train(params, dtrain, nrounds = 10, watchlist = list(train = dtrain))
+ bst <- xgb.train(params, dtrain, nrounds = 10, evals = list(train = dtrain))
# Check if the metric is monotone increasing
expect_true(all(diff(attributes(bst)$evaluation_log$train_auc) >= 0))
expect_true(all(diff(attributes(bst)$evaluation_log$train_aucpr) >= 0))
@@ -39,7 +39,7 @@ test_that('Test ranking with weighted data', {
eta = 1, tree_method = "exact", objective = "rank:pairwise", max_depth = 1,
eval_metric = "auc", eval_metric = "aucpr", nthread = n_threads
)
- bst <- xgb.train(params, dtrain, nrounds = 10, watchlist = list(train = dtrain))
+ bst <- xgb.train(params, dtrain, nrounds = 10, evals = list(train = dtrain))
# Check if the metric is monotone increasing
expect_true(all(diff(attributes(bst)$evaluation_log$train_auc) >= 0))
expect_true(all(diff(attributes(bst)$evaluation_log$train_aucpr) >= 0))
diff --git a/R-package/tests/testthat/test_update.R b/R-package/tests/testthat/test_update.R
index 3c88178e0..7fdc6eb84 100644
--- a/R-package/tests/testthat/test_update.R
+++ b/R-package/tests/testthat/test_update.R
@@ -17,7 +17,7 @@ dtest <- xgb.DMatrix(
win32_flag <- .Platform$OS.type == "windows" && .Machine$sizeof.pointer != 8
test_that("updating the model works", {
- watchlist <- list(train = dtrain, test = dtest)
+ evals <- list(train = dtrain, test = dtest)
# no-subsampling
p1 <- list(
@@ -25,19 +25,19 @@ test_that("updating the model works", {
updater = "grow_colmaker,prune"
)
set.seed(11)
- bst1 <- xgb.train(p1, dtrain, nrounds = 10, watchlist, verbose = 0)
+ bst1 <- xgb.train(p1, dtrain, nrounds = 10, evals = evals, verbose = 0)
tr1 <- xgb.model.dt.tree(model = bst1)
# with subsampling
p2 <- modifyList(p1, list(subsample = 0.1))
set.seed(11)
- bst2 <- xgb.train(p2, dtrain, nrounds = 10, watchlist, verbose = 0)
+ bst2 <- xgb.train(p2, dtrain, nrounds = 10, evals = evals, verbose = 0)
tr2 <- xgb.model.dt.tree(model = bst2)
# the same no-subsampling boosting with an extra 'refresh' updater:
p1r <- modifyList(p1, list(updater = 'grow_colmaker,prune,refresh', refresh_leaf = FALSE))
set.seed(11)
- bst1r <- xgb.train(p1r, dtrain, nrounds = 10, watchlist, verbose = 0)
+ bst1r <- xgb.train(p1r, dtrain, nrounds = 10, evals = evals, verbose = 0)
tr1r <- xgb.model.dt.tree(model = bst1r)
# all should be the same when no subsampling
expect_equal(attributes(bst1)$evaluation_log, attributes(bst1r)$evaluation_log)
@@ -53,7 +53,7 @@ test_that("updating the model works", {
# the same boosting with subsampling with an extra 'refresh' updater:
p2r <- modifyList(p2, list(updater = 'grow_colmaker,prune,refresh', refresh_leaf = FALSE))
set.seed(11)
- bst2r <- xgb.train(p2r, dtrain, nrounds = 10, watchlist, verbose = 0)
+ bst2r <- xgb.train(p2r, dtrain, nrounds = 10, evals = evals, verbose = 0)
tr2r <- xgb.model.dt.tree(model = bst2r)
# should be the same evaluation but different gains and larger cover
expect_equal(attributes(bst2)$evaluation_log, attributes(bst2r)$evaluation_log)
@@ -66,7 +66,7 @@ test_that("updating the model works", {
# process type 'update' for no-subsampling model, refreshing the tree stats AND leaves from training data:
set.seed(123)
p1u <- modifyList(p1, list(process_type = 'update', updater = 'refresh', refresh_leaf = TRUE))
- bst1u <- xgb.train(p1u, dtrain, nrounds = 10, watchlist, verbose = 0, xgb_model = bst1)
+ bst1u <- xgb.train(p1u, dtrain, nrounds = 10, evals = evals, verbose = 0, xgb_model = bst1)
tr1u <- xgb.model.dt.tree(model = bst1u)
# all should be the same when no subsampling
expect_equal(attributes(bst1)$evaluation_log, attributes(bst1u)$evaluation_log)
@@ -79,7 +79,7 @@ test_that("updating the model works", {
# same thing but with a serialized model
set.seed(123)
- bst1u <- xgb.train(p1u, dtrain, nrounds = 10, watchlist, verbose = 0, xgb_model = xgb.save.raw(bst1))
+ bst1u <- xgb.train(p1u, dtrain, nrounds = 10, evals = evals, verbose = 0, xgb_model = xgb.save.raw(bst1))
tr1u <- xgb.model.dt.tree(model = bst1u)
# all should be the same when no subsampling
expect_equal(attributes(bst1)$evaluation_log, attributes(bst1u)$evaluation_log)
@@ -87,7 +87,7 @@ test_that("updating the model works", {
# process type 'update' for model with subsampling, refreshing only the tree stats from training data:
p2u <- modifyList(p2, list(process_type = 'update', updater = 'refresh', refresh_leaf = FALSE))
- bst2u <- xgb.train(p2u, dtrain, nrounds = 10, watchlist, verbose = 0, xgb_model = bst2)
+ bst2u <- xgb.train(p2u, dtrain, nrounds = 10, evals = evals, verbose = 0, xgb_model = bst2)
tr2u <- xgb.model.dt.tree(model = bst2u)
# should be the same evaluation but different gains and larger cover
expect_equal(attributes(bst2)$evaluation_log, attributes(bst2u)$evaluation_log)
@@ -102,7 +102,7 @@ test_that("updating the model works", {
# process type 'update' for no-subsampling model, refreshing only the tree stats from TEST data:
p1ut <- modifyList(p1, list(process_type = 'update', updater = 'refresh', refresh_leaf = FALSE))
- bst1ut <- xgb.train(p1ut, dtest, nrounds = 10, watchlist, verbose = 0, xgb_model = bst1)
+ bst1ut <- xgb.train(p1ut, dtest, nrounds = 10, evals = evals, verbose = 0, xgb_model = bst1)
tr1ut <- xgb.model.dt.tree(model = bst1ut)
# should be the same evaluations but different gains and smaller cover (test data is smaller)
expect_equal(attributes(bst1)$evaluation_log, attributes(bst1ut)$evaluation_log)
@@ -115,18 +115,18 @@ test_that("updating works for multiclass & multitree", {
dtr <- xgb.DMatrix(
as.matrix(iris[, -5]), label = as.numeric(iris$Species) - 1, nthread = n_threads
)
- watchlist <- list(train = dtr)
+ evals <- list(train = dtr)
p0 <- list(max_depth = 2, eta = 0.5, nthread = n_threads, subsample = 0.6,
objective = "multi:softprob", num_class = 3, num_parallel_tree = 2,
base_score = 0)
set.seed(121)
- bst0 <- xgb.train(p0, dtr, 5, watchlist, verbose = 0)
+ bst0 <- xgb.train(p0, dtr, 5, evals = evals, verbose = 0)
tr0 <- xgb.model.dt.tree(model = bst0)
# run update process for an original model with subsampling
p0u <- modifyList(p0, list(process_type = 'update', updater = 'refresh', refresh_leaf = FALSE))
bst0u <- xgb.train(p0u, dtr, nrounds = xgb.get.num.boosted.rounds(bst0),
- watchlist, xgb_model = bst0, verbose = 0)
+ evals = evals, xgb_model = bst0, verbose = 0)
tr0u <- xgb.model.dt.tree(model = bst0u)
# should be the same evaluation but different gains and larger cover
diff --git a/R-package/vignettes/xgboostPresentation.Rmd b/R-package/vignettes/xgboostPresentation.Rmd
index efafc624d..fc49adc0f 100644
--- a/R-package/vignettes/xgboostPresentation.Rmd
+++ b/R-package/vignettes/xgboostPresentation.Rmd
@@ -341,10 +341,10 @@ One way to measure progress in learning of a model is to provide to **XGBoost**
> in some way it is similar to what we have done above with the average error. The main difference is that below it was after building the model, and now it is during the construction that we measure errors.
-For the purpose of this example, we use `watchlist` parameter. It is a list of `xgb.DMatrix`, each of them tagged with a name.
+For the purpose of this example, we use the `evals` parameter. It is a list of `xgb.DMatrix` objects, each of them tagged with a name.
-```{r watchlist, message=F, warning=F}
-watchlist <- list(train = dtrain, test = dtest)
+```{r evals, message=F, warning=F}
+evals <- list(train = dtrain, test = dtest)
bst <- xgb.train(
data = dtrain
@@ -355,7 +355,7 @@ bst <- xgb.train(
, objective = "binary:logistic"
)
, nrounds = 2
- , watchlist = watchlist
+ , evals = evals
)
```
@@ -367,7 +367,7 @@ If with your own dataset you have not such results, you should think about how y
For a better understanding of the learning progression, you may want to have some specific metric or even use multiple evaluation metrics.
-```{r watchlist2, message=F, warning=F}
+```{r evals2, message=F, warning=F}
bst <- xgb.train(
data = dtrain
, max_depth = 2
@@ -379,7 +379,7 @@ bst <- xgb.train(
, eval_metric = "logloss"
)
, nrounds = 2
- , watchlist = watchlist
+ , evals = evals
)
```
@@ -401,7 +401,7 @@ bst <- xgb.train(
, eval_metric = "logloss"
)
, nrounds = 2
- , watchlist = watchlist
+ , evals = evals
)
```
@@ -430,7 +430,7 @@ bst <- xgb.train(
, objective = "binary:logistic"
)
, nrounds = 2
- , watchlist = watchlist
+ , evals = evals
)
```
@@ -496,6 +496,9 @@ An interesting test to see how identical our saved model is to the original one
```{r loadModel, message=F, warning=F}
# load binary model to R
+# Note that the number of threads for 'xgb.load' is taken from global config,
+# can be modified like this:
+RhpcBLASctl::omp_set_num_threads(1)
bst2 <- xgb.load(fname)
xgb.parameters(bst2) <- list(nthread = 2)
pred2 <- predict(bst2, test$data)
diff --git a/cmake/Utils.cmake b/cmake/Utils.cmake
index f295d1446..fbc24a315 100644
--- a/cmake/Utils.cmake
+++ b/cmake/Utils.cmake
@@ -1,6 +1,5 @@
# Automatically set source group based on folder
function(auto_source_group SOURCES)
-
foreach(FILE ${SOURCES})
get_filename_component(PARENT_DIR "${FILE}" PATH)
diff --git a/demo/dask/cpu_training.py b/demo/dask/cpu_training.py
index 2bee444f7..7117eddd9 100644
--- a/demo/dask/cpu_training.py
+++ b/demo/dask/cpu_training.py
@@ -40,7 +40,7 @@ def main(client):
# you can pass output directly into `predict` too.
prediction = dxgb.predict(client, bst, dtrain)
print("Evaluation history:", history)
- return prediction
+ print("Error:", da.sqrt((prediction - y) ** 2).mean().compute())
if __name__ == "__main__":
diff --git a/doc/R-package/index.rst b/doc/R-package/index.rst
index 8a27d0174..bf9c1f8d9 100644
--- a/doc/R-package/index.rst
+++ b/doc/R-package/index.rst
@@ -34,4 +34,5 @@ Other topics
.. toctree::
:maxdepth: 2
:titlesonly:
+
Handling of indexable elements
diff --git a/doc/contrib/unit_tests.rst b/doc/contrib/unit_tests.rst
index 662a632e2..908e5ed99 100644
--- a/doc/contrib/unit_tests.rst
+++ b/doc/contrib/unit_tests.rst
@@ -144,6 +144,14 @@ which provides higher flexibility. For example:
ctest --verbose
+If you need to debug errors on Windows using the debugger from VS, you can append the gtest flags in `test_main.cc`:
+
+.. code-block::
+
+ ::testing::GTEST_FLAG(filter) = "Suite.Test";
+ ::testing::GTEST_FLAG(repeat) = 10;
+
+
***********************************************
Sanitizers: Detect memory errors and data races
***********************************************
diff --git a/doc/index.rst b/doc/index.rst
index a2ae9bbd3..7b241c0a1 100644
--- a/doc/index.rst
+++ b/doc/index.rst
@@ -28,7 +28,7 @@ Contents
Python Package
R Package
JVM Package
- Ruby Package
+ Ruby Package
Swift Package
Julia Package
C Package
diff --git a/doc/parameter.rst b/doc/parameter.rst
index a7d8203b0..00f0eaea6 100644
--- a/doc/parameter.rst
+++ b/doc/parameter.rst
@@ -118,7 +118,7 @@ Parameters for Tree Booster
- All ``colsample_by*`` parameters have a range of (0, 1], the default value of 1, and specify the fraction of columns to be subsampled.
- ``colsample_bytree`` is the subsample ratio of columns when constructing each tree. Subsampling occurs once for every tree constructed.
- ``colsample_bylevel`` is the subsample ratio of columns for each level. Subsampling occurs once for every new depth level reached in a tree. Columns are subsampled from the set of columns chosen for the current tree.
- - ``colsample_bynode`` is the subsample ratio of columns for each node (split). Subsampling occurs once every time a new split is evaluated. Columns are subsampled from the set of columns chosen for the current level.
+ - ``colsample_bynode`` is the subsample ratio of columns for each node (split). Subsampling occurs once every time a new split is evaluated. Columns are subsampled from the set of columns chosen for the current level. This is not supported by the exact tree method.
- ``colsample_by*`` parameters work cumulatively. For instance,
the combination ``{'colsample_bytree':0.5, 'colsample_bylevel':0.5,
'colsample_bynode':0.5}`` with 64 features will leave 8 features to choose from at
@@ -450,7 +450,7 @@ Specify the learning task and the corresponding learning objective. The objectiv
* ``seed`` [default=0]
- - Random number seed. This parameter is ignored in R package, use `set.seed()` instead.
+ - Random number seed. In the R package, if not specified, instead of defaulting to seed 'zero', will take a random seed through R's own RNG engine.
* ``seed_per_iteration`` [default= ``false``]
@@ -489,7 +489,7 @@ Parameters for learning to rank (``rank:ndcg``, ``rank:map``, ``rank:pairwise``)
These are parameters specific to learning to rank task. See :doc:`Learning to Rank ` for an in-depth explanation.
-* ``lambdarank_pair_method`` [default = ``mean``]
+* ``lambdarank_pair_method`` [default = ``topk``]
How to construct pairs for pair-wise learning.
@@ -500,7 +500,13 @@ These are parameters specific to learning to rank task. See :doc:`Learning to Ra
It specifies the number of pairs sampled for each document when pair method is ``mean``, or the truncation level for queries when the pair method is ``topk``. For example, to train with ``ndcg@6``, set ``lambdarank_num_pair_per_sample`` to :math:`6` and ``lambdarank_pair_method`` to ``topk``.
-* ``lambdarank_unbiased`` [default = ``false``]
+* ``lambdarank_normalization`` [default = ``true``]
+
+ .. versionadded:: 2.1.0
+
+ Whether to normalize the leaf value by lambda gradient. This can sometimes stagnate the training progress.
+
+* ``lambdarank_unbiased`` [default = ``false``]
Specify whether do we need to debias input click data.
diff --git a/doc/python/callbacks.rst b/doc/python/callbacks.rst
index 7cb257a81..6d8b43a11 100644
--- a/doc/python/callbacks.rst
+++ b/doc/python/callbacks.rst
@@ -36,7 +36,7 @@ inside iteration loop. You can also pass this callback function directly into X
# Specify which dataset and which metric should be used for early stopping.
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
metric_name='CustomErr',
- data_name='Train')
+ data_name='Valid')
booster = xgb.train(
{'objective': 'binary:logistic',
diff --git a/doc/python/python_intro.rst b/doc/python/python_intro.rst
index 0d26a5253..cfdd20da0 100644
--- a/doc/python/python_intro.rst
+++ b/doc/python/python_intro.rst
@@ -63,7 +63,7 @@ The input data is stored in a :py:class:`DMatrix ` object. For
.. code-block:: python
- dtrain = xgb.DMatrix('train.svm.txt')
+ dtrain = xgb.DMatrix('train.svm.txt?format=libsvm')
dtrain.save_binary('train.buffer')
* Missing values can be replaced by a default value in the :py:class:`DMatrix ` constructor:
@@ -86,7 +86,7 @@ to number of groups.
.. code-block:: python
- dtrain = xgb.DMatrix('train.svm.txt')
+ dtrain = xgb.DMatrix('train.svm.txt?format=libsvm')
dtest = xgb.DMatrix('test.svm.buffer')
The parser in XGBoost has limited functionality. When using Python interface, it's
@@ -176,7 +176,6 @@ Support Matrix
+-------------------------+-----------+-------------------+-----------+-----------+--------------------+-------------+
| pyarrow.Table | NPA | NPA | NPA | NPA | NPA | NPA |
+-------------------------+-----------+-------------------+-----------+-----------+--------------------+-------------+
-+-------------------------+-----------+-------------------+-----------+-----------+--------------------+-------------+
| _\_array\_\_ | NPA | F | NPA | NPA | H | |
+-------------------------+-----------+-------------------+-----------+-----------+--------------------+-------------+
| Others | SciCSR | F | | F | F | |
@@ -240,7 +239,7 @@ A saved model can be loaded as follows:
.. code-block:: python
bst = xgb.Booster({'nthread': 4}) # init model
- bst.load_model('model.bin') # load data
+ bst.load_model('model.bin') # load model data
Methods including `update` and `boost` from `xgboost.Booster` are designed for
internal usage only. The wrapper function `xgboost.train` does some
diff --git a/doc/python/sklearn_estimator.rst b/doc/python/sklearn_estimator.rst
index 207b9fa30..1aaa340b1 100644
--- a/doc/python/sklearn_estimator.rst
+++ b/doc/python/sklearn_estimator.rst
@@ -62,7 +62,7 @@ stack of trees:
.. code-block:: python
early_stop = xgb.callback.EarlyStopping(
- rounds=2, metric_name='logloss', data_name='Validation_0', save_best=True
+ rounds=2, metric_name='logloss', data_name='validation_0', save_best=True
)
clf = xgb.XGBClassifier(tree_method="hist", callbacks=[early_stop])
clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
diff --git a/doc/requirements.txt b/doc/requirements.txt
index 667ef268f..ddff9be92 100644
--- a/doc/requirements.txt
+++ b/doc/requirements.txt
@@ -7,7 +7,9 @@ sh
matplotlib
graphviz
numpy
+scipy
myst-parser
+ray[train]
xgboost_ray
sphinx-gallery
pyspark
diff --git a/doc/tutorials/learning_to_rank.rst b/doc/tutorials/learning_to_rank.rst
index 015f736e0..15a611bd0 100644
--- a/doc/tutorials/learning_to_rank.rst
+++ b/doc/tutorials/learning_to_rank.rst
@@ -48,11 +48,11 @@ Notice that the samples are sorted based on their query index in a non-decreasin
import xgboost as xgb
# Make a synthetic ranking dataset for demonstration
- seed = 1994
+ seed = 1994
X, y = make_classification(random_state=seed)
rng = np.random.default_rng(seed)
n_query_groups = 3
- qid = rng.integers(0, 3, size=X.shape[0])
+ qid = rng.integers(0, n_query_groups, size=X.shape[0])
# Sort the inputs based on query index
sorted_idx = np.argsort(qid)
@@ -65,14 +65,14 @@ The simplest way to train a ranking model is by using the scikit-learn estimator
.. code-block:: python
ranker = xgb.XGBRanker(tree_method="hist", lambdarank_num_pair_per_sample=8, objective="rank:ndcg", lambdarank_pair_method="topk")
- ranker.fit(X, y, qid=qid)
+ ranker.fit(X, y, qid=qid[sorted_idx])
Please note that, as of writing, there's no learning-to-rank interface in scikit-learn. As a result, the :py:class:`xgboost.XGBRanker` class does not fully conform the scikit-learn estimator guideline and can not be directly used with some of its utility functions. For instances, the ``auc_score`` and ``ndcg_score`` in scikit-learn don't consider query group information nor the pairwise loss. Most of the metrics are implemented as part of XGBoost, but to use scikit-learn utilities like :py:func:`sklearn.model_selection.cross_validation`, we need to make some adjustments in order to pass the ``qid`` as an additional parameter for :py:meth:`xgboost.XGBRanker.score`. Given a data frame ``X`` (either pandas or cuDF), add the column ``qid`` as follows:
.. code-block:: python
df = pd.DataFrame(X, columns=[str(i) for i in range(X.shape[1])])
- df["qid"] = qid
+ df["qid"] = qid[sorted_idx]
ranker.fit(df, y) # No need to pass qid as a separate argument
from sklearn.model_selection import StratifiedGroupKFold, cross_val_score
@@ -146,7 +146,8 @@ The consideration of effective pairs also applies to the choice of pair method (
When using the mean strategy for generating pairs, where the target metric (like ``NDCG``) is computed over the whole query list, users can specify how many pairs should be generated per each document, by setting the ``lambdarank_num_pair_per_sample``. XGBoost will randomly sample ``lambdarank_num_pair_per_sample`` pairs for each element in the query group (:math:`|pairs| = |query| \times num\_pairsample`). Often, setting it to 1 can produce reasonable results. In cases where performance is inadequate due to insufficient number of effective pairs being generated, set ``lambdarank_num_pair_per_sample`` to a higher value. As more document pairs are generated, more effective pairs will be generated as well.
-On the other hand, if you are prioritizing the top :math:`k` documents, the ``lambdarank_num_pair_per_sample`` should be set slightly higher than :math:`k` (with a few more documents) to obtain a good training result.
+On the other hand, if you are prioritizing the top :math:`k` documents, the ``lambdarank_num_pair_per_sample`` should be set slightly higher than :math:`k` (with a few more documents) to obtain a good training result. Lastly, XGBoost employs additional regularization for learning to rank objectives, which can be disabled by setting the ``lambdarank_normalization`` to ``False``.
+
**Summary** If you have large amount of training data:
diff --git a/doc/tutorials/spark_estimator.rst b/doc/tutorials/spark_estimator.rst
index 8bd1dcd97..4e608440a 100644
--- a/doc/tutorials/spark_estimator.rst
+++ b/doc/tutorials/spark_estimator.rst
@@ -28,7 +28,7 @@ We can create a ``SparkXGBRegressor`` estimator like:
.. code-block:: python
from xgboost.spark import SparkXGBRegressor
- spark_reg_estimator = SparkXGBRegressor(
+ xgb_regressor = SparkXGBRegressor(
features_col="features",
label_col="label",
num_workers=2,
@@ -61,7 +61,7 @@ type or spark array type.
.. code-block:: python
- transformed_test_spark_dataframe = xgb_regressor.predict(test_spark_dataframe)
+ transformed_test_spark_dataframe = xgb_regressor_model.transform(test_spark_dataframe)
The above snippet code returns a ``transformed_test_spark_dataframe`` that contains the input
diff --git a/doc/xgboost_doc.yml b/doc/xgboost_doc.yml
index 90b877e73..177e8758f 100644
--- a/doc/xgboost_doc.yml
+++ b/doc/xgboost_doc.yml
@@ -1,15 +1,23 @@
name: xgboost_docs
dependencies:
- - python
+ - python=3.10
- pip
- pygraphviz
- sphinx
+ - sphinx-gallery
- recommonmark
- mock
- sh
- matplotlib
+ - numpy
+ - scipy
+ - scikit-learn
+ - myst-parser
+ - pyspark
- pip:
- breathe
- sphinx_rtd_theme
- pydot-ng
- graphviz
+ - ray[train]
+ - xgboost_ray
diff --git a/include/xgboost/base.h b/include/xgboost/base.h
index 1c4b6568e..d6379d0d0 100644
--- a/include/xgboost/base.h
+++ b/include/xgboost/base.h
@@ -1,20 +1,18 @@
/**
- * Copyright 2015-2023 by XGBoost Contributors
+ * Copyright 2015-2024, XGBoost Contributors
* \file base.h
* \brief Defines configuration macros and basic types for xgboost.
*/
#ifndef XGBOOST_BASE_H_
#define XGBOOST_BASE_H_
-#include
-#include
+#include // for omp_uint, omp_ulong
-#include
-#include
-#include
-#include
-#include
-#include
+#include // for int32_t, uint64_t, int16_t
+#include // for ostream
+#include // for string
+#include // for pair
+#include // for vector
/*!
* \brief string flag for R library, to leave hooks when needed.
@@ -37,7 +35,7 @@
* \brief Whether to customize global PRNG.
*/
#ifndef XGBOOST_CUSTOMIZE_GLOBAL_PRNG
-#define XGBOOST_CUSTOMIZE_GLOBAL_PRNG XGBOOST_STRICT_R_MODE
+#define XGBOOST_CUSTOMIZE_GLOBAL_PRNG 0
#endif // XGBOOST_CUSTOMIZE_GLOBAL_PRNG
/*!
@@ -86,34 +84,31 @@
#endif // !defined(XGBOOST_MM_PREFETCH_PRESENT) && !defined()
-/*! \brief namespace of xgboost*/
namespace xgboost {
-
/*! \brief unsigned integer type used for feature index. */
-using bst_uint = uint32_t; // NOLINT
+using bst_uint = std::uint32_t; // NOLINT
/*! \brief unsigned long integers */
-using bst_ulong = uint64_t; // NOLINT
+using bst_ulong = std::uint64_t; // NOLINT
/*! \brief float type, used for storing statistics */
using bst_float = float; // NOLINT
/*! \brief Categorical value type. */
-using bst_cat_t = int32_t; // NOLINT
+using bst_cat_t = std::int32_t; // NOLINT
/*! \brief Type for data column (feature) index. */
-using bst_feature_t = uint32_t; // NOLINT
-/*! \brief Type for histogram bin index. */
-using bst_bin_t = int32_t; // NOLINT
-/*! \brief Type for data row index.
- *
- * Be careful `std::size_t' is implementation-defined. Meaning that the binary
- * representation of DMatrix might not be portable across platform. Booster model should
- * be portable as parameters are floating points.
+using bst_feature_t = std::uint32_t; // NOLINT
+/**
+ * @brief Type for histogram bin index. We sometimes use -1 to indicate invalid bin.
*/
-using bst_row_t = std::size_t; // NOLINT
+using bst_bin_t = std::int32_t; // NOLINT
+/**
+ * @brief Type for data row index (sample).
+ */
+using bst_idx_t = std::uint64_t; // NOLINT
/*! \brief Type for tree node index. */
using bst_node_t = std::int32_t; // NOLINT
/*! \brief Type for ranking group index. */
using bst_group_t = std::uint32_t; // NOLINT
/**
- * \brief Type for indexing into output targets.
+ * @brief Type for indexing into output targets.
*/
using bst_target_t = std::uint32_t; // NOLINT
/**
@@ -306,8 +301,7 @@ class GradientPairInt64 {
XGBOOST_DEVICE bool operator==(const GradientPairInt64 &rhs) const {
return grad_ == rhs.grad_ && hess_ == rhs.hess_;
}
- friend std::ostream &operator<<(std::ostream &os,
- const GradientPairInt64 &g) {
+ friend std::ostream &operator<<(std::ostream &os, const GradientPairInt64 &g) {
os << g.GetQuantisedGrad() << "/" << g.GetQuantisedHess();
return os;
}
@@ -323,7 +317,7 @@ using omp_ulong = dmlc::omp_ulong; // NOLINT
/*! \brief define unsigned int for openmp loop */
using bst_omp_uint = dmlc::omp_uint; // NOLINT
/*! \brief Type used for representing version number in binary form.*/
-using XGBoostVersionT = int32_t;
+using XGBoostVersionT = std::int32_t;
} // namespace xgboost
#endif // XGBOOST_BASE_H_
diff --git a/include/xgboost/c_api.h b/include/xgboost/c_api.h
index 795c78946..19b93c644 100644
--- a/include/xgboost/c_api.h
+++ b/include/xgboost/c_api.h
@@ -1,5 +1,5 @@
/**
- * Copyright 2015~2023 by XGBoost Contributors
+ * Copyright 2015-2024, XGBoost Contributors
* \file c_api.h
* \author Tianqi Chen
* \brief C API of XGBoost, used for interfacing to other languages.
@@ -639,21 +639,14 @@ XGB_DLL int XGDMatrixSetInfoFromInterface(DMatrixHandle handle,
* \param len length of array
* \return 0 when success, -1 when failure happens
*/
-XGB_DLL int XGDMatrixSetFloatInfo(DMatrixHandle handle,
- const char *field,
- const float *array,
+XGB_DLL int XGDMatrixSetFloatInfo(DMatrixHandle handle, const char *field, const float *array,
bst_ulong len);
-/*!
- * \brief set uint32 vector to a content in info
- * \param handle a instance of data matrix
- * \param field field name
- * \param array pointer to unsigned int vector
- * \param len length of array
- * \return 0 when success, -1 when failure happens
+/**
+ * @deprecated since 2.1.0
+ *
+ * Use @ref XGDMatrixSetInfoFromInterface instead.
*/
-XGB_DLL int XGDMatrixSetUIntInfo(DMatrixHandle handle,
- const char *field,
- const unsigned *array,
+XGB_DLL int XGDMatrixSetUIntInfo(DMatrixHandle handle, const char *field, const unsigned *array,
bst_ulong len);
/*!
@@ -725,42 +718,13 @@ XGB_DLL int XGDMatrixGetStrFeatureInfo(DMatrixHandle handle, const char *field,
bst_ulong *size,
const char ***out_features);
-/*!
- * \brief Set meta info from dense matrix. Valid field names are:
+/**
+ * @deprecated since 2.1.0
*
- * - label
- * - weight
- * - base_margin
- * - group
- * - label_lower_bound
- * - label_upper_bound
- * - feature_weights
- *
- * \param handle An instance of data matrix
- * \param field Field name
- * \param data Pointer to consecutive memory storing data.
- * \param size Size of the data, this is relative to size of type. (Meaning NOT number
- * of bytes.)
- * \param type Indicator of data type. This is defined in xgboost::DataType enum class.
- * - float = 1
- * - double = 2
- * - uint32_t = 3
- * - uint64_t = 4
- * \return 0 when success, -1 when failure happens
+ * Use @ref XGDMatrixSetInfoFromInterface instead.
*/
-XGB_DLL int XGDMatrixSetDenseInfo(DMatrixHandle handle, const char *field,
- void const *data, bst_ulong size, int type);
-
-/*!
- * \brief (deprecated) Use XGDMatrixSetUIntInfo instead. Set group of the training matrix
- * \param handle a instance of data matrix
- * \param group pointer to group size
- * \param len length of array
- * \return 0 when success, -1 when failure happens
- */
-XGB_DLL int XGDMatrixSetGroup(DMatrixHandle handle,
- const unsigned *group,
- bst_ulong len);
+XGB_DLL int XGDMatrixSetDenseInfo(DMatrixHandle handle, const char *field, void const *data,
+ bst_ulong size, int type);
/*!
* \brief get float info vector from matrix.
@@ -1591,7 +1555,7 @@ XGB_DLL int XGTrackerCreate(char const *config, TrackerHandle *handle);
/**
* @brief Get the arguments needed for running workers. This should be called after
- * XGTrackerRun() and XGTrackerWait()
+ * XGTrackerRun().
*
* @param handle The handle to the tracker.
* @param args The arguments returned as a JSON document.
@@ -1601,16 +1565,19 @@ XGB_DLL int XGTrackerCreate(char const *config, TrackerHandle *handle);
XGB_DLL int XGTrackerWorkerArgs(TrackerHandle handle, char const **args);
/**
- * @brief Run the tracker.
+ * @brief Start the tracker. The tracker runs in the background and this function returns
+ * once the tracker is started.
*
* @param handle The handle to the tracker.
+ * @param config Unused at the moment, preserved for the future.
*
* @return 0 for success, -1 for failure.
*/
-XGB_DLL int XGTrackerRun(TrackerHandle handle);
+XGB_DLL int XGTrackerRun(TrackerHandle handle, char const *config);
/**
- * @brief Wait for the tracker to finish, should be called after XGTrackerRun().
+ * @brief Wait for the tracker to finish, should be called after XGTrackerRun(). This
+ * function will block until the tracker task is finished or timeout is reached.
*
* @param handle The handle to the tracker.
* @param config JSON encoded configuration. No argument is required yet, preserved for
@@ -1618,11 +1585,12 @@ XGB_DLL int XGTrackerRun(TrackerHandle handle);
*
* @return 0 for success, -1 for failure.
*/
-XGB_DLL int XGTrackerWait(TrackerHandle handle, char const *config);
+XGB_DLL int XGTrackerWaitFor(TrackerHandle handle, char const *config);
/**
- * @brief Free a tracker instance. XGTrackerWait() is called internally. If the tracker
- * cannot close properly, manual interruption is required.
+ * @brief Free a tracker instance. This should be called after XGTrackerWaitFor(). If the
+ * tracker is not properly waited, this function will shutdown all connections with
+ * the tracker, potentially leading to undefined behavior.
*
* @param handle The handle to the tracker.
*
diff --git a/include/xgboost/collective/result.h b/include/xgboost/collective/result.h
index 507171dd4..23e70a8e6 100644
--- a/include/xgboost/collective/result.h
+++ b/include/xgboost/collective/result.h
@@ -1,13 +1,13 @@
/**
- * Copyright 2023, XGBoost Contributors
+ * Copyright 2023-2024, XGBoost Contributors
*/
#pragma once
-#include // for unique_ptr
-#include // for stringstream
-#include // for stack
-#include // for string
-#include // for move
+#include // for int32_t
+#include // for unique_ptr
+#include // for string
+#include // for error_code
+#include // for move
namespace xgboost::collective {
namespace detail {
@@ -46,48 +46,19 @@ struct ResultImpl {
return cur_eq;
}
- [[nodiscard]] std::string Report() {
- std::stringstream ss;
- ss << "\n- " << this->message;
- if (this->errc != std::error_code{}) {
- ss << " system error:" << this->errc.message();
- }
+ [[nodiscard]] std::string Report() const;
+ [[nodiscard]] std::error_code Code() const;
- auto ptr = prev.get();
- while (ptr) {
- ss << "\n- ";
- ss << ptr->message;
-
- if (ptr->errc != std::error_code{}) {
- ss << " " << ptr->errc.message();
- }
- ptr = ptr->prev.get();
- }
-
- return ss.str();
- }
- [[nodiscard]] auto Code() const {
- // Find the root error.
- std::stack stack;
- auto ptr = this;
- while (ptr) {
- stack.push(ptr);
- if (ptr->prev) {
- ptr = ptr->prev.get();
- } else {
- break;
- }
- }
- while (!stack.empty()) {
- auto frame = stack.top();
- stack.pop();
- if (frame->errc != std::error_code{}) {
- return frame->errc;
- }
- }
- return std::error_code{};
- }
+ void Concat(std::unique_ptr rhs);
};
+
+#if (!defined(__GNUC__) && !defined(__clang__)) || defined(__MINGW32__)
+#define __builtin_FILE() nullptr
+#define __builtin_LINE() (-1)
+std::string MakeMsg(std::string&& msg, char const*, std::int32_t);
+#else
+std::string MakeMsg(std::string&& msg, char const* file, std::int32_t line);
+#endif
} // namespace detail
/**
@@ -129,8 +100,21 @@ struct Result {
}
return *impl_ == *that.impl_;
}
+
+ friend Result operator+(Result&& lhs, Result&& rhs);
};
+[[nodiscard]] inline Result operator+(Result&& lhs, Result&& rhs) {
+ if (lhs.OK()) {
+ return std::forward(rhs);
+ }
+ if (rhs.OK()) {
+ return std::forward(lhs);
+ }
+ lhs.impl_->Concat(std::move(rhs.impl_));
+ return std::forward(lhs);
+}
+
/**
* @brief Return success.
*/
@@ -138,32 +122,43 @@ struct Result {
/**
* @brief Return failure.
*/
-[[nodiscard]] inline auto Fail(std::string msg) { return Result{std::move(msg)}; }
+[[nodiscard]] inline auto Fail(std::string msg, char const* file = __builtin_FILE(),
+ std::int32_t line = __builtin_LINE()) {
+ return Result{detail::MakeMsg(std::move(msg), file, line)};
+}
/**
* @brief Return failure with `errno`.
*/
-[[nodiscard]] inline auto Fail(std::string msg, std::error_code errc) {
- return Result{std::move(msg), std::move(errc)};
+[[nodiscard]] inline auto Fail(std::string msg, std::error_code errc,
+ char const* file = __builtin_FILE(),
+ std::int32_t line = __builtin_LINE()) {
+ return Result{detail::MakeMsg(std::move(msg), file, line), std::move(errc)};
}
/**
* @brief Return failure with a previous error.
*/
-[[nodiscard]] inline auto Fail(std::string msg, Result&& prev) {
- return Result{std::move(msg), std::forward(prev)};
+[[nodiscard]] inline auto Fail(std::string msg, Result&& prev, char const* file = __builtin_FILE(),
+ std::int32_t line = __builtin_LINE()) {
+ return Result{detail::MakeMsg(std::move(msg), file, line), std::forward(prev)};
}
/**
* @brief Return failure with a previous error and a new `errno`.
*/
-[[nodiscard]] inline auto Fail(std::string msg, std::error_code errc, Result&& prev) {
- return Result{std::move(msg), std::move(errc), std::forward(prev)};
+[[nodiscard]] inline auto Fail(std::string msg, std::error_code errc, Result&& prev,
+ char const* file = __builtin_FILE(),
+ std::int32_t line = __builtin_LINE()) {
+ return Result{detail::MakeMsg(std::move(msg), file, line), std::move(errc),
+ std::forward(prev)};
}
// We don't have monad, a simple helper would do.
template
-Result operator<<(Result&& r, Fn&& fn) {
+[[nodiscard]] std::enable_if_t, Result> operator<<(Result&& r, Fn&& fn) {
if (!r.OK()) {
return std::forward(r);
}
return fn();
}
+
+void SafeColl(Result const& rc);
} // namespace xgboost::collective
diff --git a/include/xgboost/collective/socket.h b/include/xgboost/collective/socket.h
index 844534110..0e098052c 100644
--- a/include/xgboost/collective/socket.h
+++ b/include/xgboost/collective/socket.h
@@ -1,5 +1,5 @@
/**
- * Copyright (c) 2022-2023, XGBoost Contributors
+ * Copyright (c) 2022-2024, XGBoost Contributors
*/
#pragma once
@@ -12,7 +12,6 @@
#include // std::size_t
#include // std::int32_t, std::uint16_t
#include // memset
-#include // std::numeric_limits
#include // std::string
#include // std::error_code, std::system_category
#include // std::swap
@@ -125,6 +124,21 @@ inline std::int32_t CloseSocket(SocketT fd) {
#endif
}
+inline std::int32_t ShutdownSocket(SocketT fd) {
+#if defined(_WIN32)
+ auto rc = shutdown(fd, SD_BOTH);
+ if (rc != 0 && LastError() == WSANOTINITIALISED) {
+ return 0;
+ }
+#else
+ auto rc = shutdown(fd, SHUT_RDWR);
+ if (rc != 0 && LastError() == ENOTCONN) {
+ return 0;
+ }
+#endif
+ return rc;
+}
+
inline bool ErrorWouldBlock(std::int32_t errsv) noexcept(true) {
#ifdef _WIN32
return errsv == WSAEWOULDBLOCK;
@@ -436,41 +450,62 @@ class TCPSocket {
* \brief Accept new connection, returns a new TCP socket for the new connection.
*/
TCPSocket Accept() {
- HandleT newfd = accept(Handle(), nullptr, nullptr);
+ SockAddress addr;
+ TCPSocket newsock;
+ auto rc = this->Accept(&newsock, &addr);
+ SafeColl(rc);
+ return newsock;
+ }
+
+ [[nodiscard]] Result Accept(TCPSocket *out, SockAddress *addr) {
#if defined(_WIN32)
auto interrupt = WSAEINTR;
#else
auto interrupt = EINTR;
#endif
- if (newfd == InvalidSocket() && system::LastError() != interrupt) {
- system::ThrowAtError("accept");
+ if (this->Domain() == SockDomain::kV4) {
+ struct sockaddr_in caddr;
+ socklen_t caddr_len = sizeof(caddr);
+ HandleT newfd = accept(Handle(), reinterpret_cast(&caddr), &caddr_len);
+ if (newfd == InvalidSocket() && system::LastError() != interrupt) {
+ return system::FailWithCode("Failed to accept.");
+ }
+ *addr = SockAddress{SockAddrV4{caddr}};
+ *out = TCPSocket{newfd};
+ } else {
+ struct sockaddr_in6 caddr;
+ socklen_t caddr_len = sizeof(caddr);
+ HandleT newfd = accept(Handle(), reinterpret_cast(&caddr), &caddr_len);
+ if (newfd == InvalidSocket() && system::LastError() != interrupt) {
+ return system::FailWithCode("Failed to accept.");
+ }
+ *addr = SockAddress{SockAddrV6{caddr}};
+ *out = TCPSocket{newfd};
}
- TCPSocket newsock{newfd};
- return newsock;
- }
-
- [[nodiscard]] Result Accept(TCPSocket *out, SockAddrV4 *addr) {
- struct sockaddr_in caddr;
- socklen_t caddr_len = sizeof(caddr);
- HandleT newfd = accept(Handle(), reinterpret_cast(&caddr), &caddr_len);
- if (newfd == InvalidSocket()) {
- return system::FailWithCode("Failed to accept.");
+ // On MacOS, this is automatically set to async socket if the parent socket is async
+ // We make sure all socket are blocking by default.
+ //
+ // On Windows, a closed socket is returned during shutdown. We guard against it when
+ // setting non-blocking.
+ if (!out->IsClosed()) {
+ return out->NonBlocking(false);
}
- *addr = SockAddrV4{caddr};
- *out = TCPSocket{newfd};
return Success();
}
~TCPSocket() {
if (!IsClosed()) {
- Close();
+ auto rc = this->Close();
+ if (!rc.OK()) {
+ LOG(WARNING) << rc.Report();
+ }
}
}
TCPSocket(TCPSocket const &that) = delete;
TCPSocket(TCPSocket &&that) noexcept(true) { std::swap(this->handle_, that.handle_); }
TCPSocket &operator=(TCPSocket const &that) = delete;
- TCPSocket &operator=(TCPSocket &&that) {
+ TCPSocket &operator=(TCPSocket &&that) noexcept(true) {
std::swap(this->handle_, that.handle_);
return *this;
}
@@ -479,36 +514,49 @@ class TCPSocket {
*/
[[nodiscard]] HandleT const &Handle() const { return handle_; }
/**
- * \brief Listen to incoming requests. Should be called after bind.
+ * @brief Listen to incoming requests. Should be called after bind.
*/
- void Listen(std::int32_t backlog = 16) { xgboost_CHECK_SYS_CALL(listen(handle_, backlog), 0); }
+ [[nodiscard]] Result Listen(std::int32_t backlog = 16) {
+ if (listen(handle_, backlog) != 0) {
+ return system::FailWithCode("Failed to listen.");
+ }
+ return Success();
+ }
/**
- * \brief Bind socket to INADDR_ANY, return the port selected by the OS.
+ * @brief Bind socket to INADDR_ANY, return the port selected by the OS.
*/
- [[nodiscard]] in_port_t BindHost() {
+ [[nodiscard]] Result BindHost(std::int32_t* p_out) {
+ // Use int32 instead of in_port_t for consistency. We take port as parameter from
+ // users using other languages, the port is usually stored and passed around as int.
if (Domain() == SockDomain::kV6) {
auto addr = SockAddrV6::InaddrAny();
auto handle = reinterpret_cast(&addr.Handle());
- xgboost_CHECK_SYS_CALL(
- bind(handle_, handle, sizeof(std::remove_reference_t)), 0);
+ if (bind(handle_, handle, sizeof(std::remove_reference_t)) != 0) {
+ return system::FailWithCode("bind failed.");
+ }
sockaddr_in6 res_addr;
socklen_t addrlen = sizeof(res_addr);
- xgboost_CHECK_SYS_CALL(
- getsockname(handle_, reinterpret_cast(&res_addr), &addrlen), 0);
- return ntohs(res_addr.sin6_port);
+ if (getsockname(handle_, reinterpret_cast(&res_addr), &addrlen) != 0) {
+ return system::FailWithCode("getsockname failed.");
+ }
+ *p_out = ntohs(res_addr.sin6_port);
} else {
auto addr = SockAddrV4::InaddrAny();
auto handle = reinterpret_cast(&addr.Handle());
- xgboost_CHECK_SYS_CALL(
- bind(handle_, handle, sizeof(std::remove_reference_t)), 0);
+ if (bind(handle_, handle, sizeof(std::remove_reference_t)) != 0) {
+ return system::FailWithCode("bind failed.");
+ }
sockaddr_in res_addr;
socklen_t addrlen = sizeof(res_addr);
- xgboost_CHECK_SYS_CALL(
- getsockname(handle_, reinterpret_cast(&res_addr), &addrlen), 0);
- return ntohs(res_addr.sin_port);
+ if (getsockname(handle_, reinterpret_cast(&res_addr), &addrlen) != 0) {
+ return system::FailWithCode("getsockname failed.");
+ }
+ *p_out = ntohs(res_addr.sin_port);
}
+
+ return Success();
}
[[nodiscard]] auto Port() const {
@@ -621,26 +669,49 @@ class TCPSocket {
*/
std::size_t Send(StringView str);
/**
- * \brief Receive string, format is matched with the Python socket wrapper in RABIT.
+ * @brief Receive string, format is matched with the Python socket wrapper in RABIT.
*/
- std::size_t Recv(std::string *p_str);
+ [[nodiscard]] Result Recv(std::string *p_str);
/**
- * \brief Close the socket, called automatically in destructor if the socket is not closed.
+ * @brief Close the socket, called automatically in destructor if the socket is not closed.
*/
- void Close() {
+ [[nodiscard]] Result Close() {
if (InvalidSocket() != handle_) {
-#if defined(_WIN32)
auto rc = system::CloseSocket(handle_);
+#if defined(_WIN32)
// it's possible that we close TCP sockets after finalizing WSA due to detached thread.
if (rc != 0 && system::LastError() != WSANOTINITIALISED) {
- system::ThrowAtError("close", rc);
+ return system::FailWithCode("Failed to close the socket.");
}
#else
- xgboost_CHECK_SYS_CALL(system::CloseSocket(handle_), 0);
+ if (rc != 0) {
+ return system::FailWithCode("Failed to close the socket.");
+ }
#endif
handle_ = InvalidSocket();
}
+ return Success();
}
+ /**
+ * @brief Call shutdown on the socket.
+ */
+ [[nodiscard]] Result Shutdown() {
+ if (this->IsClosed()) {
+ return Success();
+ }
+ auto rc = system::ShutdownSocket(this->Handle());
+#if defined(_WIN32)
+ // Windows cannot shutdown a socket if it's not connected.
+ if (rc == -1 && system::LastError() == WSAENOTCONN) {
+ return Success();
+ }
+#endif
+ if (rc != 0) {
+ return system::FailWithCode("Failed to shutdown socket.");
+ }
+ return Success();
+ }
+
/**
* \brief Create a TCP socket on specified domain.
*/
diff --git a/include/xgboost/data.h b/include/xgboost/data.h
index 08d3d119a..ec06a9c86 100644
--- a/include/xgboost/data.h
+++ b/include/xgboost/data.h
@@ -19,7 +19,6 @@
#include
#include
#include
-#include
#include
#include
#include
@@ -137,14 +136,6 @@ class MetaInfo {
* \param fo The output stream.
*/
void SaveBinary(dmlc::Stream* fo) const;
- /*!
- * \brief Set information in the meta info.
- * \param key The key of the information.
- * \param dptr The data pointer of the source array.
- * \param dtype The type of the source data.
- * \param num Number of elements in the source array.
- */
- void SetInfo(Context const& ctx, const char* key, const void* dptr, DataType dtype, size_t num);
/*!
* \brief Set information in the meta info with array interface.
* \param key The key of the information.
@@ -315,7 +306,7 @@ struct BatchParam {
struct HostSparsePageView {
using Inst = common::Span;
- common::Span offset;
+ common::Span offset;
common::Span data;
Inst operator[](size_t i) const {
@@ -333,7 +324,7 @@ struct HostSparsePageView {
class SparsePage {
public:
// Offset for each row.
- HostDeviceVector offset;
+ HostDeviceVector offset;
/*! \brief the data of the segments */
HostDeviceVector data;
@@ -517,10 +508,6 @@ class DMatrix {
DMatrix() = default;
/*! \brief meta information of the dataset */
virtual MetaInfo& Info() = 0;
- virtual void SetInfo(const char* key, const void* dptr, DataType dtype, size_t num) {
- auto const& ctx = *this->Ctx();
- this->Info().SetInfo(ctx, key, dptr, dtype, num);
- }
virtual void SetInfo(const char* key, std::string const& interface_str) {
auto const& ctx = *this->Ctx();
this->Info().SetInfo(ctx, key, StringView{interface_str});
diff --git a/include/xgboost/json.h b/include/xgboost/json.h
index a5872ec3a..1416b8899 100644
--- a/include/xgboost/json.h
+++ b/include/xgboost/json.h
@@ -1,5 +1,5 @@
/**
- * Copyright 2019-2023 by XGBoost Contributors
+ * Copyright 2019-2024, XGBoost Contributors
*/
#ifndef XGBOOST_JSON_H_
#define XGBOOST_JSON_H_
@@ -42,7 +42,8 @@ class Value {
kBoolean,
kNull,
// typed array for ubjson
- kNumberArray,
+ kF32Array,
+ kF64Array,
kU8Array,
kI32Array,
kI64Array
@@ -59,9 +60,7 @@ class Value {
virtual Json& operator[](int ind);
virtual bool operator==(Value const& rhs) const = 0;
-#if !defined(__APPLE__)
virtual Value& operator=(Value const& rhs) = delete;
-#endif // !defined(__APPLE__)
std::string TypeStr() const;
@@ -104,6 +103,7 @@ class JsonString : public Value {
std::string& GetString() & { return str_; }
bool operator==(Value const& rhs) const override;
+ Value& operator=(Value const& rhs) override = delete;
static bool IsClassOf(Value const* value) {
return value->Type() == ValueKind::kString;
@@ -133,6 +133,7 @@ class JsonArray : public Value {
std::vector& GetArray() & { return vec_; }
bool operator==(Value const& rhs) const override;
+ Value& operator=(Value const& rhs) override = delete;
static bool IsClassOf(Value const* value) {
return value->Type() == ValueKind::kArray;
@@ -157,6 +158,7 @@ class JsonTypedArray : public Value {
JsonTypedArray(JsonTypedArray&& that) noexcept : Value{kind}, vec_{std::move(that.vec_)} {}
bool operator==(Value const& rhs) const override;
+ Value& operator=(Value const& rhs) override = delete;
void Set(size_t i, T v) { vec_[i] = v; }
size_t Size() const { return vec_.size(); }
@@ -173,7 +175,11 @@ class JsonTypedArray : public Value {
/**
* @brief Typed UBJSON array for 32-bit floating point.
*/
-using F32Array = JsonTypedArray;
+using F32Array = JsonTypedArray;
+/**
+ * @brief Typed UBJSON array for 64-bit floating point.
+ */
+using F64Array = JsonTypedArray;
/**
* @brief Typed UBJSON array for uint8_t.
*/
@@ -211,6 +217,7 @@ class JsonObject : public Value {
Map& GetObject() & { return object_; }
bool operator==(Value const& rhs) const override;
+ Value& operator=(Value const& rhs) override = delete;
static bool IsClassOf(Value const* value) { return value->Type() == ValueKind::kObject; }
~JsonObject() override = default;
@@ -244,6 +251,7 @@ class JsonNumber : public Value {
Float& GetNumber() & { return number_; }
bool operator==(Value const& rhs) const override;
+ Value& operator=(Value const& rhs) override = delete;
static bool IsClassOf(Value const* value) {
return value->Type() == ValueKind::kNumber;
@@ -282,6 +290,7 @@ class JsonInteger : public Value {
: Value{ValueKind::kInteger}, integer_{that.integer_} {}
bool operator==(Value const& rhs) const override;
+ Value& operator=(Value const& rhs) override = delete;
Int const& GetInteger() && { return integer_; }
Int const& GetInteger() const & { return integer_; }
@@ -302,6 +311,7 @@ class JsonNull : public Value {
void Save(JsonWriter* writer) const override;
bool operator==(Value const& rhs) const override;
+ Value& operator=(Value const& rhs) override = delete;
static bool IsClassOf(Value const* value) {
return value->Type() == ValueKind::kNull;
@@ -331,6 +341,7 @@ class JsonBoolean : public Value {
bool& GetBoolean() & { return boolean_; }
bool operator==(Value const& rhs) const override;
+ Value& operator=(Value const& rhs) override = delete;
static bool IsClassOf(Value const* value) {
return value->Type() == ValueKind::kBoolean;
@@ -457,9 +468,9 @@ class Json {
Json& operator[](int ind) const { return (*ptr_)[ind]; }
/*! \brief Return the reference to stored Json value. */
- Value const& GetValue() const & { return *ptr_; }
- Value const& GetValue() && { return *ptr_; }
- Value& GetValue() & { return *ptr_; }
+ [[nodiscard]] Value const& GetValue() const& { return *ptr_; }
+ Value const& GetValue() && { return *ptr_; }
+ Value& GetValue() & { return *ptr_; }
bool operator==(Json const& rhs) const {
return *ptr_ == *(rhs.ptr_);
@@ -472,7 +483,7 @@ class Json {
return os;
}
- IntrusivePtr const& Ptr() const { return ptr_; }
+ [[nodiscard]] IntrusivePtr const& Ptr() const { return ptr_; }
private:
IntrusivePtr ptr_{new JsonNull};
diff --git a/include/xgboost/json_io.h b/include/xgboost/json_io.h
index 3a73d170a..ce3d25c37 100644
--- a/include/xgboost/json_io.h
+++ b/include/xgboost/json_io.h
@@ -142,6 +142,7 @@ class JsonWriter {
virtual void Visit(JsonArray const* arr);
virtual void Visit(F32Array const* arr);
+ virtual void Visit(F64Array const*) { LOG(FATAL) << "Only UBJSON format can handle f64 array."; }
virtual void Visit(U8Array const* arr);
virtual void Visit(I32Array const* arr);
virtual void Visit(I64Array const* arr);
@@ -244,7 +245,8 @@ class UBJReader : public JsonReader {
*/
class UBJWriter : public JsonWriter {
void Visit(JsonArray const* arr) override;
- void Visit(F32Array const* arr) override;
+ void Visit(F32Array const* arr) override;
+ void Visit(F64Array const* arr) override;
void Visit(U8Array const* arr) override;
void Visit(I32Array const* arr) override;
void Visit(I64Array const* arr) override;
diff --git a/include/xgboost/linalg.h b/include/xgboost/linalg.h
index 26a072e52..79810d4d0 100644
--- a/include/xgboost/linalg.h
+++ b/include/xgboost/linalg.h
@@ -190,13 +190,14 @@ constexpr auto ArrToTuple(T (&arr)[N]) {
// uint division optimization inspired by the CIndexer in cupy. Division operation is
// slow on both CPU and GPU, especially 64 bit integer. So here we first try to avoid 64
// bit when the index is smaller, then try to avoid division when it's exp of 2.
-template
+template
LINALG_HD auto UnravelImpl(I idx, common::Span shape) {
- size_t index[D]{0};
+ std::size_t index[D]{0};
static_assert(std::is_signed::value,
"Don't change the type without changing the for loop.");
+ auto const sptr = shape.data();
for (int32_t dim = D; --dim > 0;) {
- auto s = static_cast>>(shape[dim]);
+ auto s = static_cast>>(sptr[dim]);
if (s & (s - 1)) {
auto t = idx / s;
index[dim] = idx - t * s;
@@ -295,6 +296,9 @@ class TensorView {
using ShapeT = std::size_t[kDim];
using StrideT = ShapeT;
+ using element_type = T; // NOLINT
+ using value_type = std::remove_cv_t; // NOLINT
+
private:
StrideT stride_{1};
ShapeT shape_{0};
@@ -314,7 +318,7 @@ class TensorView {
}
template
- LINALG_HD size_t MakeSliceDim(size_t new_shape[D], size_t new_stride[D],
+ LINALG_HD size_t MakeSliceDim(std::size_t new_shape[D], std::size_t new_stride[D],
detail::RangeTag &&range) const {
static_assert(new_dim < D);
static_assert(old_dim < kDim);
@@ -528,9 +532,10 @@ class TensorView {
LINALG_HD auto Stride(size_t i) const { return stride_[i]; }
/**
- * \brief Number of items in the tensor.
+ * @brief Number of items in the tensor.
*/
[[nodiscard]] LINALG_HD std::size_t Size() const { return size_; }
+ [[nodiscard]] bool Empty() const { return Size() == 0; }
/**
* \brief Whether this is a contiguous array, both C and F contiguous returns true.
*/
@@ -741,6 +746,14 @@ auto ArrayInterfaceStr(TensorView const &t) {
return str;
}
+template
+auto Make1dInterface(T const *vec, std::size_t len) {
+ Context ctx;
+ auto t = linalg::MakeTensorView(&ctx, common::Span{vec, len}, len);
+ auto str = linalg::ArrayInterfaceStr(t);
+ return str;
+}
+
/**
* \brief A tensor storage. To use it for other functionality like slicing one needs to
* obtain a view first. This way we can use it on both host and device.
@@ -865,7 +878,9 @@ class Tensor {
auto HostView() { return this->View(DeviceOrd::CPU()); }
auto HostView() const { return this->View(DeviceOrd::CPU()); }
- [[nodiscard]] size_t Size() const { return data_.Size(); }
+ [[nodiscard]] std::size_t Size() const { return data_.Size(); }
+ [[nodiscard]] bool Empty() const { return Size() == 0; }
+
auto Shape() const { return common::Span{shape_}; }
auto Shape(size_t i) const { return shape_[i]; }
diff --git a/include/xgboost/span.h b/include/xgboost/span.h
index b0c1a5c1e..468f5ff50 100644
--- a/include/xgboost/span.h
+++ b/include/xgboost/span.h
@@ -30,9 +30,8 @@
#define XGBOOST_SPAN_H_
#include
-#include
-#include // size_t
+#include // size_t
#include
#include
#include // numeric_limits
@@ -75,8 +74,7 @@
#endif // defined(_MSC_VER) && _MSC_VER < 1910
-namespace xgboost {
-namespace common {
+namespace xgboost::common {
#if defined(__CUDA_ARCH__)
// Usual logging facility is not available inside device code.
@@ -738,14 +736,14 @@ class IterSpan {
return {data() + _offset, _count == dynamic_extent ? size() - _offset : _count};
}
[[nodiscard]] XGBOOST_DEVICE constexpr iterator begin() const noexcept { // NOLINT
- return {this, 0};
+ return it_;
}
[[nodiscard]] XGBOOST_DEVICE constexpr iterator end() const noexcept { // NOLINT
- return {this, size()};
+ return it_ + size();
}
};
-} // namespace common
-} // namespace xgboost
+} // namespace xgboost::common
+
#if defined(_MSC_VER) &&_MSC_VER < 1910
#undef constexpr
diff --git a/include/xgboost/tree_model.h b/include/xgboost/tree_model.h
index 4c475da2e..32b93c5ca 100644
--- a/include/xgboost/tree_model.h
+++ b/include/xgboost/tree_model.h
@@ -1,5 +1,5 @@
/**
- * Copyright 2014-2023 by Contributors
+ * Copyright 2014-2024, XGBoost Contributors
* \file tree_model.h
* \brief model structure for tree
* \author Tianqi Chen
@@ -688,6 +688,9 @@ class RegTree : public Model {
}
return (*this)[nidx].DefaultLeft();
}
+ [[nodiscard]] bst_node_t DefaultChild(bst_node_t nidx) const {
+ return this->DefaultLeft(nidx) ? this->LeftChild(nidx) : this->RightChild(nidx);
+ }
[[nodiscard]] bool IsRoot(bst_node_t nidx) const {
if (IsMultiTarget()) {
return nidx == kRoot;
diff --git a/jvm-packages/create_jni.py b/jvm-packages/create_jni.py
index 395bc79b0..ff7bba693 100755
--- a/jvm-packages/create_jni.py
+++ b/jvm-packages/create_jni.py
@@ -83,44 +83,59 @@ def native_build(args):
with cd(".."):
build_dir = 'build-gpu' if cli_args.use_cuda == 'ON' or cli_args.use_hip == 'ON' else 'build'
maybe_makedirs(build_dir)
+
+ if sys.platform == "linux":
+ maybe_parallel_build = " -- -j $(nproc)"
+ else:
+ maybe_parallel_build = ""
+
+ if cli_args.log_capi_invocation == "ON":
+ CONFIG["LOG_CAPI_INVOCATION"] = "ON"
+
+ if cli_args.use_cuda == "ON":
+ CONFIG["USE_CUDA"] = "ON"
+ CONFIG["USE_NCCL"] = "ON"
+ CONFIG["USE_DLOPEN_NCCL"] = "OFF"
+ elif cli_args.use_hip== 'ON':
+ CONFIG['USE_HIP'] = 'ON'
+ CONFIG['USE_RCCL'] = 'ON'
+ CONFIG["USE_DLOPEN_RCCL"] = "OFF"
+
+ args = ["-D{0}:BOOL={1}".format(k, v) for k, v in CONFIG.items()]
+
+ # if enviorment set rabit_mock
+ if os.getenv("RABIT_MOCK", None) is not None:
+ args.append("-DRABIT_MOCK:BOOL=ON")
+
+ # if enviorment set GPU_ARCH_FLAG
+ gpu_arch_flag = os.getenv("GPU_ARCH_FLAG", None)
+ if gpu_arch_flag is not None:
+ args.append("%s" % gpu_arch_flag)
+
with cd(build_dir):
- if sys.platform == "win32":
- # Force x64 build on Windows.
- maybe_generator = " -A x64"
- else:
- maybe_generator = ""
- if sys.platform == "linux":
- maybe_parallel_build = " -- -j $(nproc)"
- else:
- maybe_parallel_build = ""
-
- if cli_args.log_capi_invocation == "ON":
- CONFIG["LOG_CAPI_INVOCATION"] = "ON"
-
- if cli_args.use_cuda == "ON":
- CONFIG["USE_CUDA"] = "ON"
- CONFIG["USE_NCCL"] = "ON"
- CONFIG["USE_DLOPEN_NCCL"] = "OFF"
- elif cli_args.use_hip== 'ON':
- CONFIG['USE_HIP'] = 'ON'
- CONFIG['USE_RCCL'] = 'ON'
- CONFIG["USE_DLOPEN_RCCL"] = "OFF"
-
- args = ["-D{0}:BOOL={1}".format(k, v) for k, v in CONFIG.items()]
-
- # if enviorment set rabit_mock
- if os.getenv("RABIT_MOCK", None) is not None:
- args.append("-DRABIT_MOCK:BOOL=ON")
-
- # if enviorment set GPU_ARCH_FLAG
- gpu_arch_flag = os.getenv("GPU_ARCH_FLAG", None)
- if gpu_arch_flag is not None:
- args.append("%s" % gpu_arch_flag)
-
lib_dir = os.path.join(os.pardir, "lib")
if os.path.exists(lib_dir):
shutil.rmtree(lib_dir)
- run("cmake .. " + " ".join(args) + maybe_generator)
+
+ # Same trick as Python build, just test all possible generators.
+ if sys.platform == "win32":
+ supported_generators = (
+ "", # empty, decided by cmake
+ '-G"Visual Studio 17 2022" -A x64',
+ '-G"Visual Studio 16 2019" -A x64',
+ '-G"Visual Studio 15 2017" -A x64',
+ )
+ for generator in supported_generators:
+ try:
+ run("cmake .. " + " ".join(args + [generator]))
+ break
+ except subprocess.CalledProcessError as e:
+ print(f"Failed to build with generator: {generator}", e)
+ with cd(os.path.pardir):
+ shutil.rmtree(build_dir)
+ maybe_makedirs(build_dir)
+ else:
+ run("cmake .. " + " ".join(args))
run("cmake --build . --config Release" + maybe_parallel_build)
with cd("demo/CLI/regression"):
diff --git a/jvm-packages/pom.xml b/jvm-packages/pom.xml
index 5b6f82b6a..70e054d3a 100644
--- a/jvm-packages/pom.xml
+++ b/jvm-packages/pom.xml
@@ -33,7 +33,7 @@
UTF-8
1.8
1.8
- 1.18.0
+ 1.19.0
4.13.2
3.4.1
3.4.1
@@ -46,9 +46,9 @@
23.12.1
23.12.1
cuda12
+ 3.2.18
+ 2.12.0
OFF
- 3.2.17
- 2.11.0
@@ -124,7 +124,7 @@
org.apache.maven.plugins
maven-jar-plugin
- 3.3.0
+ 3.4.0
empty-javadoc-jar
@@ -153,7 +153,7 @@
org.apache.maven.plugins
maven-gpg-plugin
- 3.1.0
+ 3.2.3
sign-artifacts
@@ -167,7 +167,7 @@
org.apache.maven.plugins
maven-source-plugin
- 3.3.0
+ 3.3.1
attach-sources
@@ -205,7 +205,7 @@
org.apache.maven.plugins
maven-assembly-plugin
- 3.6.0
+ 3.7.1
jar-with-dependencies
@@ -446,7 +446,7 @@
org.apache.maven.plugins
maven-surefire-plugin
- 3.2.2
+ 3.2.5
false
false
@@ -488,12 +488,12 @@
com.esotericsoftware
kryo
- 5.5.0
+ 5.6.0
commons-logging
commons-logging
- 1.3.0
+ 1.3.1
org.scalatest
diff --git a/jvm-packages/xgboost4j-gpu/pom.xml b/jvm-packages/xgboost4j-gpu/pom.xml
index 2dc36d52d..26ad9cafd 100644
--- a/jvm-packages/xgboost4j-gpu/pom.xml
+++ b/jvm-packages/xgboost4j-gpu/pom.xml
@@ -72,7 +72,7 @@
org.apache.maven.plugins
maven-javadoc-plugin
- 3.6.2
+ 3.6.3
protected
true
@@ -88,7 +88,7 @@
exec-maven-plugin
org.codehaus.mojo
- 3.1.0
+ 3.2.0
native
@@ -115,7 +115,7 @@
org.apache.maven.plugins
maven-jar-plugin
- 3.3.0
+ 3.4.0
diff --git a/jvm-packages/xgboost4j-tester/generate_pom.py b/jvm-packages/xgboost4j-tester/generate_pom.py
index b9c274c28..eb7cf94b3 100644
--- a/jvm-packages/xgboost4j-tester/generate_pom.py
+++ b/jvm-packages/xgboost4j-tester/generate_pom.py
@@ -22,7 +22,7 @@ pom_template = """
{scala_version}
3.2.15
{scala_binary_version}
- 5.5.0
+ 5.6.0
diff --git a/jvm-packages/xgboost4j/pom.xml b/jvm-packages/xgboost4j/pom.xml
index 7eb186919..5012eaf14 100644
--- a/jvm-packages/xgboost4j/pom.xml
+++ b/jvm-packages/xgboost4j/pom.xml
@@ -60,7 +60,7 @@
org.apache.maven.plugins
maven-javadoc-plugin
- 3.6.2
+ 3.6.3
protected
true
@@ -76,7 +76,7 @@
exec-maven-plugin
org.codehaus.mojo
- 3.1.0
+ 3.2.0
native
@@ -99,7 +99,7 @@
org.apache.maven.plugins
maven-jar-plugin
- 3.3.0
+ 3.4.0
diff --git a/jvm-packages/xgboost4j/src/native/xgboost4j.cpp b/jvm-packages/xgboost4j/src/native/xgboost4j.cpp
index 332b1a127..9ba944d5a 100644
--- a/jvm-packages/xgboost4j/src/native/xgboost4j.cpp
+++ b/jvm-packages/xgboost4j/src/native/xgboost4j.cpp
@@ -408,7 +408,8 @@ JNIEXPORT jint JNICALL Java_ml_dmlc_xgboost4j_java_XGBoostJNI_XGDMatrixSetFloatI
jfloat* array = jenv->GetFloatArrayElements(jarray, NULL);
bst_ulong len = (bst_ulong)jenv->GetArrayLength(jarray);
- int ret = XGDMatrixSetFloatInfo(handle, field, (float const *)array, len);
+ auto str = xgboost::linalg::Make1dInterface(array, len);
+ int ret = XGDMatrixSetInfoFromInterface(handle, field, str.c_str());
JVM_CHECK_CALL(ret);
//release
if (field) jenv->ReleaseStringUTFChars(jfield, field);
@@ -427,7 +428,8 @@ JNIEXPORT jint JNICALL Java_ml_dmlc_xgboost4j_java_XGBoostJNI_XGDMatrixSetUIntIn
const char* field = jenv->GetStringUTFChars(jfield, 0);
jint* array = jenv->GetIntArrayElements(jarray, NULL);
bst_ulong len = (bst_ulong)jenv->GetArrayLength(jarray);
- int ret = XGDMatrixSetUIntInfo(handle, (char const *)field, (unsigned int const *)array, len);
+ auto str = xgboost::linalg::Make1dInterface(array, len);
+ int ret = XGDMatrixSetInfoFromInterface(handle, field, str.c_str());
JVM_CHECK_CALL(ret);
//release
if (field) jenv->ReleaseStringUTFChars(jfield, (const char *)field);
@@ -730,8 +732,8 @@ JNIEXPORT jint JNICALL Java_ml_dmlc_xgboost4j_java_XGBoostJNI_XGBoosterPredictFr
if (jmargin) {
margin = jenv->GetFloatArrayElements(jmargin, nullptr);
JVM_CHECK_CALL(XGProxyDMatrixCreate(&proxy));
- JVM_CHECK_CALL(
- XGDMatrixSetFloatInfo(proxy, "base_margin", margin, jenv->GetArrayLength(jmargin)));
+ auto str = xgboost::linalg::Make1dInterface(margin, jenv->GetArrayLength(jmargin));
+ JVM_CHECK_CALL(XGDMatrixSetInfoFromInterface(proxy, "base_margin", str.c_str()));
}
bst_ulong const *out_shape;
diff --git a/plugin/CMakeLists.txt b/plugin/CMakeLists.txt
index e575f1a41..5d20e120e 100644
--- a/plugin/CMakeLists.txt
+++ b/plugin/CMakeLists.txt
@@ -1,10 +1,7 @@
if(PLUGIN_SYCL)
set(CMAKE_CXX_COMPILER "icpx")
- add_library(plugin_sycl OBJECT
- ${xgboost_SOURCE_DIR}/plugin/sycl/objective/regression_obj.cc
- ${xgboost_SOURCE_DIR}/plugin/sycl/objective/multiclass_obj.cc
- ${xgboost_SOURCE_DIR}/plugin/sycl/device_manager.cc
- ${xgboost_SOURCE_DIR}/plugin/sycl/predictor/predictor.cc)
+ file(GLOB_RECURSE SYCL_SOURCES "sycl/*.cc")
+ add_library(plugin_sycl OBJECT ${SYCL_SOURCES})
target_include_directories(plugin_sycl
PRIVATE
${xgboost_SOURCE_DIR}/include
diff --git a/plugin/federated/federated_coll.cc b/plugin/federated/federated_coll.cc
index b3dc23dba..34670715a 100644
--- a/plugin/federated/federated_coll.cc
+++ b/plugin/federated/federated_coll.cc
@@ -89,19 +89,15 @@ Coll *FederatedColl::MakeCUDAVar() {
[[nodiscard]] Result FederatedColl::Broadcast(Comm const &comm, common::Span data,
std::int32_t root) {
- if (comm.Rank() == root) {
- return BroadcastImpl(comm, &this->sequence_number_, data, root);
- } else {
- return BroadcastImpl(comm, &this->sequence_number_, data, root);
- }
+ return BroadcastImpl(comm, &this->sequence_number_, data, root);
}
-[[nodiscard]] Result FederatedColl::Allgather(Comm const &comm, common::Span data,
- std::int64_t size) {
+[[nodiscard]] Result FederatedColl::Allgather(Comm const &comm, common::Span data) {
using namespace federated; // NOLINT
auto fed = dynamic_cast(&comm);
CHECK(fed);
auto stub = fed->Handle();
+ auto size = data.size_bytes() / comm.World();
auto offset = comm.Rank() * size;
auto segment = data.subspan(offset, size);
diff --git a/plugin/federated/federated_coll.cu b/plugin/federated/federated_coll.cu
index a922e1c11..3f604c50d 100644
--- a/plugin/federated/federated_coll.cu
+++ b/plugin/federated/federated_coll.cu
@@ -53,8 +53,7 @@ Coll *FederatedColl::MakeCUDAVar() {
};
}
-[[nodiscard]] Result CUDAFederatedColl::Allgather(Comm const &comm, common::Span data,
- std::int64_t size) {
+[[nodiscard]] Result CUDAFederatedColl::Allgather(Comm const &comm, common::Span data) {
auto cufed = dynamic_cast(&comm);
CHECK(cufed);
std::vector h_data(data.size());
@@ -63,7 +62,7 @@ Coll *FederatedColl::MakeCUDAVar() {
return GetCUDAResult(
cudaMemcpy(h_data.data(), data.data(), data.size(), cudaMemcpyDeviceToHost));
} << [&] {
- return p_impl_->Allgather(comm, common::Span{h_data.data(), h_data.size()}, size);
+ return p_impl_->Allgather(comm, common::Span{h_data.data(), h_data.size()});
} << [&] {
return GetCUDAResult(cudaMemcpyAsync(data.data(), h_data.data(), data.size(),
cudaMemcpyHostToDevice, cufed->Stream()));
diff --git a/plugin/federated/federated_coll.cuh b/plugin/federated/federated_coll.cuh
index a1121d88f..6a690a33d 100644
--- a/plugin/federated/federated_coll.cuh
+++ b/plugin/federated/federated_coll.cuh
@@ -1,5 +1,5 @@
/**
- * Copyright 2023, XGBoost contributors
+ * Copyright 2023-2024, XGBoost contributors
*/
#include "../../src/collective/comm.h" // for Comm, Coll
#include "federated_coll.h" // for FederatedColl
@@ -16,8 +16,7 @@ class CUDAFederatedColl : public Coll {
ArrayInterfaceHandler::Type type, Op op) override;
[[nodiscard]] Result Broadcast(Comm const &comm, common::Span data,
std::int32_t root) override;
- [[nodiscard]] Result Allgather(Comm const &, common::Span data,
- std::int64_t size) override;
+ [[nodiscard]] Result Allgather(Comm const &, common::Span data) override;
[[nodiscard]] Result AllgatherV(Comm const &comm, common::Span data,
common::Span sizes,
common::Span recv_segments,
diff --git a/plugin/federated/federated_coll.h b/plugin/federated/federated_coll.h
index c261b01e1..12443a3e1 100644
--- a/plugin/federated/federated_coll.h
+++ b/plugin/federated/federated_coll.h
@@ -1,12 +1,9 @@
/**
- * Copyright 2023, XGBoost contributors
+ * Copyright 2023-2024, XGBoost contributors
*/
#pragma once
#include "../../src/collective/coll.h" // for Coll
#include "../../src/collective/comm.h" // for Comm
-#include "../../src/common/io.h" // for ReadAll
-#include "../../src/common/json_utils.h" // for OptionalArg
-#include "xgboost/json.h" // for Json
namespace xgboost::collective {
class FederatedColl : public Coll {
@@ -20,8 +17,7 @@ class FederatedColl : public Coll {
ArrayInterfaceHandler::Type type, Op op) override;
[[nodiscard]] Result Broadcast(Comm const &comm, common::Span data,
std::int32_t root) override;
- [[nodiscard]] Result Allgather(Comm const &, common::Span data,
- std::int64_t) override;
+ [[nodiscard]] Result Allgather(Comm const &, common::Span data) override;
[[nodiscard]] Result AllgatherV(Comm const &comm, common::Span data,
common::Span sizes,
common::Span recv_segments,
diff --git a/plugin/federated/federated_comm.cuh b/plugin/federated/federated_comm.cuh
index 58c52f67e..85cecb3eb 100644
--- a/plugin/federated/federated_comm.cuh
+++ b/plugin/federated/federated_comm.cuh
@@ -1,5 +1,5 @@
/**
- * Copyright 2023, XGBoost Contributors
+ * Copyright 2023-2024, XGBoost Contributors
*/
#pragma once
@@ -9,7 +9,6 @@
#include "../../src/common/device_helpers.cuh" // for CUDAStreamView
#include "federated_comm.h" // for FederatedComm
#include "xgboost/context.h" // for Context
-#include "xgboost/logging.h"
namespace xgboost::collective {
class CUDAFederatedComm : public FederatedComm {
diff --git a/plugin/federated/federated_comm.h b/plugin/federated/federated_comm.h
index 750d94abd..b39e1878a 100644
--- a/plugin/federated/federated_comm.h
+++ b/plugin/federated/federated_comm.h
@@ -1,5 +1,5 @@
/**
- * Copyright 2023, XGBoost contributors
+ * Copyright 2023-2024, XGBoost contributors
*/
#pragma once
@@ -11,7 +11,6 @@
#include // for string
#include "../../src/collective/comm.h" // for HostComm
-#include "../../src/common/json_utils.h" // for OptionalArg
#include "xgboost/json.h"
namespace xgboost::collective {
@@ -51,6 +50,10 @@ class FederatedComm : public HostComm {
std::int32_t rank) {
this->Init(host, port, world, rank, {}, {}, {});
}
+ [[nodiscard]] Result Shutdown() final {
+ this->ResetState();
+ return Success();
+ }
~FederatedComm() override { stub_.reset(); }
[[nodiscard]] std::shared_ptr Chan(std::int32_t) const override {
@@ -65,5 +68,13 @@ class FederatedComm : public HostComm {
[[nodiscard]] federated::Federated::Stub* Handle() const { return stub_.get(); }
[[nodiscard]] Comm* MakeCUDAVar(Context const* ctx, std::shared_ptr pimpl) const override;
+ /**
+ * @brief Get a string ID for the current process.
+ */
+ [[nodiscard]] Result ProcessorName(std::string* out) const final {
+ auto rank = this->Rank();
+ *out = "rank:" + std::to_string(rank);
+ return Success();
+ };
};
} // namespace xgboost::collective
diff --git a/plugin/federated/federated_server.h b/plugin/federated/federated_server.h
index de760d9d8..4692ad6c2 100644
--- a/plugin/federated/federated_server.h
+++ b/plugin/federated/federated_server.h
@@ -1,22 +1,18 @@
/**
- * Copyright 2022-2023, XGBoost contributors
+ * Copyright 2022-2024, XGBoost contributors
*/
#pragma once
#include
#include // for int32_t
-#include // for future
#include "../../src/collective/in_memory_handler.h"
-#include "../../src/collective/tracker.h" // for Tracker
-#include "xgboost/collective/result.h" // for Result
namespace xgboost::federated {
class FederatedService final : public Federated::Service {
public:
- explicit FederatedService(std::int32_t world_size)
- : handler_{static_cast(world_size)} {}
+ explicit FederatedService(std::int32_t world_size) : handler_{world_size} {}
grpc::Status Allgather(grpc::ServerContext* context, AllgatherRequest const* request,
AllgatherReply* reply) override;
diff --git a/plugin/federated/federated_tracker.cc b/plugin/federated/federated_tracker.cc
index 37b6c3639..5051d43cb 100644
--- a/plugin/federated/federated_tracker.cc
+++ b/plugin/federated/federated_tracker.cc
@@ -125,14 +125,14 @@ Result FederatedTracker::Shutdown() {
[[nodiscard]] Json FederatedTracker::WorkerArgs() const {
auto rc = this->WaitUntilReady();
- CHECK(rc.OK()) << rc.Report();
+ SafeColl(rc);
std::string host;
rc = GetHostAddress(&host);
CHECK(rc.OK());
Json args{Object{}};
- args["DMLC_TRACKER_URI"] = String{host};
- args["DMLC_TRACKER_PORT"] = this->Port();
+ args["dmlc_tracker_uri"] = String{host};
+ args["dmlc_tracker_port"] = this->Port();
return args;
}
} // namespace xgboost::collective
diff --git a/plugin/federated/federated_tracker.h b/plugin/federated/federated_tracker.h
index 33592fefe..ac46b6eaa 100644
--- a/plugin/federated/federated_tracker.h
+++ b/plugin/federated/federated_tracker.h
@@ -17,8 +17,7 @@ namespace xgboost::collective {
namespace federated {
class FederatedService final : public Federated::Service {
public:
- explicit FederatedService(std::int32_t world_size)
- : handler_{static_cast(world_size)} {}
+ explicit FederatedService(std::int32_t world_size) : handler_{world_size} {}
grpc::Status Allgather(grpc::ServerContext* context, AllgatherRequest const* request,
AllgatherReply* reply) override;
diff --git a/plugin/sycl/common/hist_util.cc b/plugin/sycl/common/hist_util.cc
new file mode 100644
index 000000000..fd813a92c
--- /dev/null
+++ b/plugin/sycl/common/hist_util.cc
@@ -0,0 +1,334 @@
+/*!
+ * Copyright 2017-2023 by Contributors
+ * \file hist_util.cc
+ */
+#include
+#include
+#include
+
+#include "../data/gradient_index.h"
+#include "hist_util.h"
+
+#include
+
+namespace xgboost {
+namespace sycl {
+namespace common {
+
+/*!
+ * \brief Fill histogram with zeroes
+ */
+template
+void InitHist(::sycl::queue qu, GHistRow* hist,
+ size_t size, ::sycl::event* event) {
+ *event = qu.fill(hist->Begin(),
+ xgboost::detail::GradientPairInternal(), size, *event);
+}
+template void InitHist(::sycl::queue qu,
+ GHistRow* hist,
+ size_t size, ::sycl::event* event);
+template void InitHist(::sycl::queue qu,
+ GHistRow* hist,
+ size_t size, ::sycl::event* event);
+
+/*!
+ * \brief Compute Subtraction: dst = src1 - src2
+ */
+template
+::sycl::event SubtractionHist(::sycl::queue qu,
+ GHistRow* dst,
+ const GHistRow& src1,
+ const GHistRow& src2,
+ size_t size, ::sycl::event event_priv) {
+ GradientSumT* pdst = reinterpret_cast(dst->Data());
+ const GradientSumT* psrc1 = reinterpret_cast(src1.DataConst());
+ const GradientSumT* psrc2 = reinterpret_cast(src2.DataConst());
+
+ auto event_final = qu.submit([&](::sycl::handler& cgh) {
+ cgh.depends_on(event_priv);
+ cgh.parallel_for<>(::sycl::range<1>(2 * size), [pdst, psrc1, psrc2](::sycl::item<1> pid) {
+ const size_t i = pid.get_id(0);
+ pdst[i] = psrc1[i] - psrc2[i];
+ });
+ });
+ return event_final;
+}
+template ::sycl::event SubtractionHist(::sycl::queue qu,
+ GHistRow* dst,
+ const GHistRow& src1,
+ const GHistRow& src2,
+ size_t size, ::sycl::event event_priv);
+template ::sycl::event SubtractionHist(::sycl::queue qu,
+ GHistRow* dst,
+ const GHistRow& src1,
+ const GHistRow& src2,
+ size_t size, ::sycl::event event_priv);
+
+// Kernel with buffer using
+template
+::sycl::event BuildHistKernel(::sycl::queue qu,
+ const USMVector& gpair_device,
+ const RowSetCollection::Elem& row_indices,
+ const GHistIndexMatrix& gmat,
+ GHistRow* hist,
+ GHistRow* hist_buffer,
+ ::sycl::event event_priv) {
+ const size_t size = row_indices.Size();
+ const size_t* rid = row_indices.begin;
+ const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
+ const GradientPair::ValueT* pgh =
+ reinterpret_cast(gpair_device.DataConst());
+ const BinIdxType* gradient_index = gmat.index.data();
+ const uint32_t* offsets = gmat.index.Offset();
+ FPType* hist_data = reinterpret_cast(hist->Data());
+ const size_t nbins = gmat.nbins;
+
+ const size_t max_work_group_size =
+ qu.get_device().get_info<::sycl::info::device::max_work_group_size>();
+ const size_t work_group_size = n_columns < max_work_group_size ? n_columns : max_work_group_size;
+
+ const size_t max_nblocks = hist_buffer->Size() / (nbins * 2);
+ const size_t min_block_size = 128;
+ size_t nblocks = std::min(max_nblocks, size / min_block_size + !!(size % min_block_size));
+ const size_t block_size = size / nblocks + !!(size % nblocks);
+ FPType* hist_buffer_data = reinterpret_cast(hist_buffer->Data());
+
+ auto event_fill = qu.fill(hist_buffer_data, FPType(0), nblocks * nbins * 2, event_priv);
+ auto event_main = qu.submit([&](::sycl::handler& cgh) {
+ cgh.depends_on(event_fill);
+ cgh.parallel_for<>(::sycl::nd_range<2>(::sycl::range<2>(nblocks, work_group_size),
+ ::sycl::range<2>(1, work_group_size)),
+ [=](::sycl::nd_item<2> pid) {
+ size_t block = pid.get_global_id(0);
+ size_t feat = pid.get_global_id(1);
+
+ FPType* hist_local = hist_buffer_data + block * nbins * 2;
+ for (size_t idx = 0; idx < block_size; ++idx) {
+ size_t i = block * block_size + idx;
+ if (i < size) {
+ const size_t icol_start = n_columns * rid[i];
+ const size_t idx_gh = rid[i];
+
+ pid.barrier(::sycl::access::fence_space::local_space);
+ const BinIdxType* gr_index_local = gradient_index + icol_start;
+
+ for (size_t j = feat; j < n_columns; j += work_group_size) {
+ uint32_t idx_bin = static_cast(gr_index_local[j]);
+ if constexpr (isDense) {
+ idx_bin += offsets[j];
+ }
+ if (idx_bin < nbins) {
+ hist_local[2 * idx_bin] += pgh[2 * idx_gh];
+ hist_local[2 * idx_bin+1] += pgh[2 * idx_gh+1];
+ }
+ }
+ }
+ }
+ });
+ });
+
+ auto event_save = qu.submit([&](::sycl::handler& cgh) {
+ cgh.depends_on(event_main);
+ cgh.parallel_for<>(::sycl::range<1>(nbins), [=](::sycl::item<1> pid) {
+ size_t idx_bin = pid.get_id(0);
+
+ FPType gsum = 0.0f;
+ FPType hsum = 0.0f;
+
+ for (size_t j = 0; j < nblocks; ++j) {
+ gsum += hist_buffer_data[j * nbins * 2 + 2 * idx_bin];
+ hsum += hist_buffer_data[j * nbins * 2 + 2 * idx_bin + 1];
+ }
+
+ hist_data[2 * idx_bin] = gsum;
+ hist_data[2 * idx_bin + 1] = hsum;
+ });
+ });
+ return event_save;
+}
+
+// Kernel with atomic using
+template
+::sycl::event BuildHistKernel(::sycl::queue qu,
+ const USMVector& gpair_device,
+ const RowSetCollection::Elem& row_indices,
+ const GHistIndexMatrix& gmat,
+ GHistRow* hist,
+ ::sycl::event event_priv) {
+ const size_t size = row_indices.Size();
+ const size_t* rid = row_indices.begin;
+ const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
+ const GradientPair::ValueT* pgh =
+ reinterpret_cast(gpair_device.DataConst());
+ const BinIdxType* gradient_index = gmat.index.data();
+ const uint32_t* offsets = gmat.index.Offset();
+ FPType* hist_data = reinterpret_cast(hist->Data());
+ const size_t nbins = gmat.nbins;
+
+ const size_t max_work_group_size =
+ qu.get_device().get_info<::sycl::info::device::max_work_group_size>();
+ const size_t feat_local = n_columns < max_work_group_size ? n_columns : max_work_group_size;
+
+ auto event_fill = qu.fill(hist_data, FPType(0), nbins * 2, event_priv);
+ auto event_main = qu.submit([&](::sycl::handler& cgh) {
+ cgh.depends_on(event_fill);
+ cgh.parallel_for<>(::sycl::range<2>(size, feat_local),
+ [=](::sycl::item<2> pid) {
+ size_t i = pid.get_id(0);
+ size_t feat = pid.get_id(1);
+
+ const size_t icol_start = n_columns * rid[i];
+ const size_t idx_gh = rid[i];
+
+ const BinIdxType* gr_index_local = gradient_index + icol_start;
+
+ for (size_t j = feat; j < n_columns; j += feat_local) {
+ uint32_t idx_bin = static_cast(gr_index_local[j]);
+ if constexpr (isDense) {
+ idx_bin += offsets[j];
+ }
+ if (idx_bin < nbins) {
+ AtomicRef gsum(hist_data[2 * idx_bin]);
+ AtomicRef hsum(hist_data[2 * idx_bin + 1]);
+ gsum.fetch_add(pgh[2 * idx_gh]);
+ hsum.fetch_add(pgh[2 * idx_gh + 1]);
+ }
+ }
+ });
+ });
+ return event_main;
+}
+
+template
+::sycl::event BuildHistDispatchKernel(
+ ::sycl::queue qu,
+ const USMVector& gpair_device,
+ const RowSetCollection::Elem& row_indices,
+ const GHistIndexMatrix& gmat,
+ GHistRow* hist,
+ bool isDense,
+ GHistRow* hist_buffer,
+ ::sycl::event events_priv,
+ bool force_atomic_use) {
+ const size_t size = row_indices.Size();
+ const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
+ const size_t nbins = gmat.nbins;
+
+ // max cycle size, while atomics are still effective
+ const size_t max_cycle_size_atomics = nbins;
+ const size_t cycle_size = size;
+
+ // TODO(razdoburdin): replace the add-hock dispatching criteria by more sutable one
+ bool use_atomic = (size < nbins) || (gmat.max_num_bins == gmat.nbins / n_columns);
+
+ // force_atomic_use flag is used only for testing
+ use_atomic = use_atomic || force_atomic_use;
+ if (!use_atomic) {
+ if (isDense) {
+ return BuildHistKernel(qu, gpair_device, row_indices,
+ gmat, hist, hist_buffer,
+ events_priv);
+ } else {
+ return BuildHistKernel(qu, gpair_device, row_indices,
+ gmat, hist, hist_buffer,
+ events_priv);
+ }
+ } else {
+ if (isDense) {
+ return BuildHistKernel(qu, gpair_device, row_indices,
+ gmat, hist, events_priv);
+ } else {
+ return BuildHistKernel(qu, gpair_device, row_indices,
+ gmat, hist, events_priv);
+ }
+ }
+}
+
+template
+::sycl::event BuildHistKernel(::sycl::queue qu,
+ const USMVector& gpair_device,
+ const RowSetCollection::Elem& row_indices,
+ const GHistIndexMatrix& gmat, const bool isDense,
+ GHistRow* hist,
+ GHistRow* hist_buffer,
+ ::sycl::event event_priv,
+ bool force_atomic_use) {
+ const bool is_dense = isDense;
+ switch (gmat.index.GetBinTypeSize()) {
+ case BinTypeSize::kUint8BinsTypeSize:
+ return BuildHistDispatchKernel(qu, gpair_device, row_indices,
+ gmat, hist, is_dense, hist_buffer,
+ event_priv, force_atomic_use);
+ break;
+ case BinTypeSize::kUint16BinsTypeSize:
+ return BuildHistDispatchKernel(qu, gpair_device, row_indices,
+ gmat, hist, is_dense, hist_buffer,
+ event_priv, force_atomic_use);
+ break;
+ case BinTypeSize::kUint32BinsTypeSize:
+ return BuildHistDispatchKernel(qu, gpair_device, row_indices,
+ gmat, hist, is_dense, hist_buffer,
+ event_priv, force_atomic_use);
+ break;
+ default:
+ CHECK(false); // no default behavior
+ }
+}
+
+template
+::sycl::event GHistBuilder::BuildHist(
+ const USMVector& gpair_device,
+ const RowSetCollection::Elem& row_indices,
+ const GHistIndexMatrix &gmat,
+ GHistRowT* hist,
+ bool isDense,
+ GHistRowT* hist_buffer,
+ ::sycl::event event_priv,
+ bool force_atomic_use) {
+ return BuildHistKernel(qu_, gpair_device, row_indices, gmat,
+ isDense, hist, hist_buffer, event_priv,
+ force_atomic_use);
+}
+
+template
+::sycl::event GHistBuilder::BuildHist(
+ const USMVector& gpair_device,
+ const RowSetCollection::Elem& row_indices,
+ const GHistIndexMatrix& gmat,
+ GHistRow* hist,
+ bool isDense,
+ GHistRow* hist_buffer,
+ ::sycl::event event_priv,
+ bool force_atomic_use);
+template
+::sycl::event GHistBuilder::BuildHist(
+ const USMVector