Remove text loading in basic walk through demo. (#7753)

This commit is contained in:
Jiaming Yuan 2022-04-01 00:59:42 +08:00 committed by GitHub
parent c467e90ac1
commit bcce17e688
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 43 additions and 62 deletions

View File

@ -1,50 +1,65 @@
"""
Getting started with XGBoost
============================
This is a simple example of using the native XGBoost interface, there are other
interfaces in the Python package like scikit-learn interface and Dask interface.
See :doc:`/python/python_intro` and :doc:`/tutorials/index` for other references.
"""
import numpy as np
import scipy.sparse
import pickle
import xgboost as xgb
import os
from sklearn.datasets import load_svmlight_file
# Make sure the demo knows where to load the data.
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
XGBOOST_ROOT_DIR = os.path.dirname(os.path.dirname(CURRENT_DIR))
DEMO_DIR = os.path.join(XGBOOST_ROOT_DIR, 'demo')
DEMO_DIR = os.path.join(XGBOOST_ROOT_DIR, "demo")
# simple example
# load file from text file, also binary buffer generated by xgboost
dtrain = xgb.DMatrix(os.path.join(DEMO_DIR, 'data', 'agaricus.txt.train?indexing_mode=1'))
dtest = xgb.DMatrix(os.path.join(DEMO_DIR, 'data', 'agaricus.txt.test?indexing_mode=1'))
# X is a scipy csr matrix, XGBoost supports many other input types,
X, y = load_svmlight_file(os.path.join(DEMO_DIR, "data", "agaricus.txt.train"))
dtrain = xgb.DMatrix(X, y)
# validation set
X_test, y_test = load_svmlight_file(os.path.join(DEMO_DIR, "data", "agaricus.txt.test"))
dtest = xgb.DMatrix(X_test, y_test)
# specify parameters via map, definition are same as c++ version
param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
# specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
watchlist = [(dtest, "eval"), (dtrain, "train")]
# number of boosting rounds
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
bst = xgb.train(param, dtrain, num_boost_round=num_round, evals=watchlist)
# this is prediction
# run prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
print('error=%f' %
(sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) /
float(len(preds))))
bst.save_model('0001.model')
print(
"error=%f"
% (
sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i])
/ float(len(preds))
)
)
bst.save_model("model-0.json")
# dump model
bst.dump_model('dump.raw.txt')
bst.dump_model("dump.raw.txt")
# dump model with feature map
bst.dump_model('dump.nice.txt', os.path.join(DEMO_DIR, 'data/featmap.txt'))
bst.dump_model("dump.nice.txt", os.path.join(DEMO_DIR, "data/featmap.txt"))
# save dmatrix into binary buffer
dtest.save_binary('dtest.buffer')
dtest.save_binary("dtest.dmatrix")
# save model
bst.save_model('xgb.model')
bst.save_model("model-1.json")
# load model and data in
bst2 = xgb.Booster(model_file='xgb.model')
dtest2 = xgb.DMatrix('dtest.buffer')
bst2 = xgb.Booster(model_file="model-1.json")
dtest2 = xgb.DMatrix("dtest.dmatrix")
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0
@ -56,40 +71,3 @@ bst3 = pickle.loads(pks)
preds3 = bst3.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds3 - preds)) == 0
###
# build dmatrix from scipy.sparse
print('start running example of build DMatrix from scipy.sparse CSR Matrix')
labels = []
row = []
col = []
dat = []
i = 0
for l in open(os.path.join(DEMO_DIR, 'data', 'agaricus.txt.train')):
arr = l.split()
labels.append(int(arr[0]))
for it in arr[1:]:
k, v = it.split(':')
row.append(i)
col.append(int(k))
dat.append(float(v))
i += 1
csr = scipy.sparse.csr_matrix((dat, (row, col)))
dtrain = xgb.DMatrix(csr, label=labels)
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
bst = xgb.train(param, dtrain, num_round, watchlist)
print('start running example of build DMatrix from scipy.sparse CSC Matrix')
# we can also construct from csc matrix
csc = scipy.sparse.csc_matrix((dat, (row, col)))
dtrain = xgb.DMatrix(csc, label=labels)
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
bst = xgb.train(param, dtrain, num_round, watchlist)
print('start running example of build DMatrix from numpy array')
# NOTE: npymat is numpy array, we will convert it into scipy.sparse.csr_matrix
# in internal implementation then convert to DMatrix
npymat = csr.todense()
dtrain = xgb.DMatrix(npymat, label=labels)
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
bst = xgb.train(param, dtrain, num_round, watchlist)

View File

@ -45,6 +45,7 @@ including:
- XGBoost binary buffer file.
- LIBSVM text format file
- Comma-separated values (CSV) file
- Arrow table.
(See :doc:`/tutorials/input_format` for detailed description of text input format.)

View File

@ -565,12 +565,14 @@ class DMatrix: # pylint: disable=too-many-instance-attributes
"""Parameters
----------
data : os.PathLike/string/numpy.array/scipy.sparse/pd.DataFrame/
dt.Frame/cudf.DataFrame/cupy.array/dlpack
dt.Frame/cudf.DataFrame/cupy.array/dlpack/arrow.Table
Data source of DMatrix.
When data is string or os.PathLike type, it represents the path
libsvm format txt file, csv file (by specifying uri parameter
'path_to_csv?format=csv'), or binary file that xgboost can read
from.
When data is string or os.PathLike type, it represents the path libsvm
format txt file, csv file (by specifying uri parameter
'path_to_csv?format=csv'), or binary file that xgboost can read from.
label : array_like
Label of the training data.
weight : array_like