diff --git a/R-package/R/utils.R b/R-package/R/utils.R index b0a86e2b6..39609744e 100644 --- a/R-package/R/utils.R +++ b/R-package/R/utils.R @@ -214,34 +214,49 @@ xgb.iter.eval <- function(booster, watchlist, iter, feval = NULL, prediction = F #------------------------------------------ # helper functions for cross validation # -xgb.cv.mknfold <- function(dall, nfold, param) { +xgb.cv.mknfold <- function(dall, nfold, param, stratified, folds) { if (nfold <= 1) { stop("nfold must be bigger than 1") } - randidx <- sample(1 : xgb.numrow(dall)) - kstep <- length(randidx) %/% nfold - idset <- list() - for (i in 1:(nfold-1)) { - idset[[i]] = randidx[1:kstep] - randidx = setdiff(randidx,idset[[i]]) + if(is.null(folds)) { + y <- getinfo(dall, 'label') + randidx <- sample(1 : xgb.numrow(dall)) + if (stratified & length(y) == length(randidx)) { + y <- y[randidx] + # By default assume that y is a classification label, + # and only leave it numeric for the reg:linear objective. + # WARNING: if there would be any other objectives with truly + # numerical labels, they currently would not be treated correctly! + if (param[['objective']] != 'reg:linear') y <- factor(y) + folds <- xgb.createFolds(y, nfold) + } else { + # make simple non-stratified folds + kstep <- length(randidx) %/% nfold + folds <- list() + for (i in 1:(nfold-1)) { + folds[[i]] = randidx[1:kstep] + randidx = setdiff(randidx, folds[[i]]) + } + folds[[nfold]] = randidx + } } - idset[[nfold]] = randidx ret <- list() for (k in 1:nfold) { - dtest <- slice(dall, idset[[k]]) + dtest <- slice(dall, folds[[k]]) didx = c() for (i in 1:nfold) { if (i != k) { - didx <- append(didx, idset[[i]]) + didx <- append(didx, folds[[i]]) } } dtrain <- slice(dall, didx) bst <- xgb.Booster(param, list(dtrain, dtest)) watchlist = list(train=dtrain, test=dtest) - ret[[k]] <- list(dtrain=dtrain, booster=bst, watchlist=watchlist, index=idset[[k]]) + ret[[k]] <- list(dtrain=dtrain, booster=bst, watchlist=watchlist, index=folds[[k]]) } return (ret) } + xgb.cv.aggcv <- function(res, showsd = TRUE) { header <- res[[1]] ret <- header[1] @@ -261,3 +276,53 @@ xgb.cv.aggcv <- function(res, showsd = TRUE) { } return (ret) } + +# Shamelessly copied from caret::createFolds +# and simplified by always returning an unnamed list of test indices +xgb.createFolds <- function(y, k = 10) +{ + if(is.numeric(y)) { + ## Group the numeric data based on their magnitudes + ## and sample within those groups. + + ## When the number of samples is low, we may have + ## issues further slicing the numeric data into + ## groups. The number of groups will depend on the + ## ratio of the number of folds to the sample size. + ## At most, we will use quantiles. If the sample + ## is too small, we just do regular unstratified + ## CV + cuts <- floor(length(y)/k) + if(cuts < 2) cuts <- 2 + if(cuts > 5) cuts <- 5 + y <- cut(y, + unique(quantile(y, probs = seq(0, 1, length = cuts))), + include.lowest = TRUE) + } + + if(k < length(y)) { + ## reset levels so that the possible levels and + ## the levels in the vector are the same + y <- factor(as.character(y)) + numInClass <- table(y) + foldVector <- vector(mode = "integer", length(y)) + + ## For each class, balance the fold allocation as far + ## as possible, then resample the remainder. + ## The final assignment of folds is also randomized. + for(i in 1:length(numInClass)) { + ## create a vector of integers from 1:k as many times as possible without + ## going over the number of samples in the class. Note that if the number + ## of samples in a class is less than k, nothing is producd here. + seqVector <- rep(1:k, numInClass[i] %/% k) + ## add enough random integers to get length(seqVector) == numInClass[i] + if(numInClass[i] %% k > 0) seqVector <- c(seqVector, sample(1:k, numInClass[i] %% k)) + ## shuffle the integers for fold assignment and assign to this classes's data + foldVector[which(y == dimnames(numInClass)$y[i])] <- sample(seqVector) + } + } else foldVector <- seq(along = y) + + out <- split(seq(along = y), foldVector) + names(out) <- NULL + out +} diff --git a/R-package/R/xgb.cv.R b/R-package/R/xgb.cv.R index 3472ead4d..e5f5c7b72 100644 --- a/R-package/R/xgb.cv.R +++ b/R-package/R/xgb.cv.R @@ -46,15 +46,25 @@ #' \item \code{merror} Exact matching error, used to evaluate multi-class classification #' } #' @param obj customized objective function. Returns gradient and second order -#' gradient with given prediction and dtrain, +#' gradient with given prediction and dtrain. #' @param feval custimized evaluation function. Returns #' \code{list(metric='metric-name', value='metric-value')} with given -#' prediction and dtrain, -#' @param verbose \code{boolean}, print the statistics during the process. +#' prediction and dtrain. +#' @param stratified \code{boolean} whether sampling of folds should be stratified by the values of labels in \code{data} +#' @param folds \code{list} provides a possibility of using a list of pre-defined CV folds (each element must be a vector of fold's indices). +#' If folds are supplied, the nfold and stratified parameters would be ignored. +#' @param verbose \code{boolean}, print the statistics during the process #' @param ... other parameters to pass to \code{params}. #' -#' @return A \code{data.table} with each mean and standard deviation stat for training set and test set. -#' +#' @return +#' If \code{prediction = TRUE}, a list with the following elements is returned: +#' \itemize{ +#' \item \code{dt} a \code{data.table} with each mean and standard deviation stat for training set and test set +#' \item \code{pred} an array or matrix (for multiclass classification) with predictions for each CV-fold for the model having been trained on the data in all other folds. +#' } +#' +#' If \code{prediction = FALSE}, just a \code{data.table} with each mean and standard deviation stat for training set and test set is returned. +#' #' @details #' The original sample is randomly partitioned into \code{nfold} equal size subsamples. #' @@ -76,10 +86,16 @@ #' xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = NULL, prediction = FALSE, showsd = TRUE, metrics=list(), - obj = NULL, feval = NULL, verbose = T,...) { + obj = NULL, feval = NULL, stratified = TRUE, folds = NULL, verbose = T,...) { if (typeof(params) != "list") { stop("xgb.cv: first argument params must be list") } + if(!is.null(folds)) { + if(class(folds)!="list" | length(folds) < 2) { + stop("folds must be a list with 2 or more elements that are vectors of indices for each CV-fold") + } + nfold <- length(folds) + } if (nfold <= 1) { stop("nfold must be bigger than 1") } @@ -94,7 +110,7 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = params <- append(params, list("eval_metric"=mc)) } - folds <- xgb.cv.mknfold(dtrain, nfold, params) + xgb_folds <- xgb.cv.mknfold(dtrain, nfold, params, stratified, folds) obj_type = params[['objective']] mat_pred = FALSE if (!is.null(obj_type) && obj_type=='multi:softprob') @@ -111,7 +127,7 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = for (i in 1:nrounds) { msg <- list() for (k in 1:nfold) { - fd <- folds[[k]] + fd <- xgb_folds[[k]] succ <- xgb.iter.update(fd$booster, fd$dtrain, i - 1, obj) if (i% str_split("\t") %>% .[[1]] @@ -147,7 +163,7 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = dt <- read.table(text = "", colClasses = type, col.names = colnames) %>% as.data.table split <- str_split(string = history, pattern = "\t") - for(line in split) dt <- line[2:length(line)] %>% str_extract_all(pattern = "\\d*\\.+\\d*") %>% unlist %>% as.list %>% {vec <- .; rbindlist(list(dt, vec), use.names = F, fill = F)} + for(line in split) dt <- line[2:length(line)] %>% str_extract_all(pattern = "\\d*\\.+\\d*") %>% unlist %>% as.numeric %>% as.list %>% {rbindlist(list(dt, .), use.names = F, fill = F)} if (prediction) { return(list(dt = dt,pred = predictValues)) diff --git a/R-package/man/xgb.cv.Rd b/R-package/man/xgb.cv.Rd index 8b65d9d4d..feee4e18f 100644 --- a/R-package/man/xgb.cv.Rd +++ b/R-package/man/xgb.cv.Rd @@ -6,7 +6,8 @@ \usage{ xgb.cv(params = list(), data, nrounds, nfold, label = NULL, missing = NULL, prediction = FALSE, showsd = TRUE, metrics = list(), - obj = NULL, feval = NULL, verbose = T, ...) + obj = NULL, feval = NULL, stratified = TRUE, folds = NULL, + verbose = T, ...) } \arguments{ \item{params}{the list of parameters. Commonly used ones are: @@ -51,18 +52,29 @@ value that represents missing value. Sometime a data use 0 or other extreme valu }} \item{obj}{customized objective function. Returns gradient and second order -gradient with given prediction and dtrain,} +gradient with given prediction and dtrain.} \item{feval}{custimized evaluation function. Returns \code{list(metric='metric-name', value='metric-value')} with given -prediction and dtrain,} +prediction and dtrain.} -\item{verbose}{\code{boolean}, print the statistics during the process.} +\item{stratified}{\code{boolean} whether sampling of folds should be stratified by the values of labels in \code{data}} + +\item{folds}{\code{list} provides a possibility of using a list of pre-defined CV folds (each element must be a vector of fold's indices). +If folds are supplied, the nfold and stratified parameters would be ignored.} + +\item{verbose}{\code{boolean}, print the statistics during the process} \item{...}{other parameters to pass to \code{params}.} } \value{ -A \code{data.table} with each mean and standard deviation stat for training set and test set. +If \code{prediction = TRUE}, a list with the following elements is returned: +\itemize{ + \item \code{dt} a \code{data.table} with each mean and standard deviation stat for training set and test set + \item \code{pred} an array or matrix (for multiclass classification) with predictions for each CV-fold for the model having been trained on the data in all other folds. +} + +If \code{prediction = FALSE}, just a \code{data.table} with each mean and standard deviation stat for training set and test set is returned. } \description{ The cross valudation function of xgboost