diff --git a/python-package/xgboost/core.py b/python-package/xgboost/core.py index a33fe447b..b15672473 100644 --- a/python-package/xgboost/core.py +++ b/python-package/xgboost/core.py @@ -904,7 +904,8 @@ class Booster(object): preds = preds.astype(np.int32) nrow = data.num_row() if preds.size != nrow and preds.size % nrow == 0: - preds = preds.reshape(nrow, preds.size / nrow) + ncol = int(preds.size / nrow) + preds = preds.reshape(nrow, ncol) return preds def save_model(self, fname): diff --git a/python-package/xgboost/training.py b/python-package/xgboost/training.py index ed1d692b1..d21edd30d 100644 --- a/python-package/xgboost/training.py +++ b/python-package/xgboost/training.py @@ -269,7 +269,7 @@ def mknfold(dall, nfold, param, seed, evals=(), fpreproc=None, stratified=False, if stratified is False and folds is None: randidx = np.random.permutation(dall.num_row()) - kstep = len(randidx) / nfold + kstep = int(len(randidx) / nfold) idset = [randidx[(i * kstep): min(len(randidx), (i + 1) * kstep)] for i in range(nfold)] elif folds is not None: idset = [x[1] for x in folds]