[R] in predict: doc, examples, reshape parameter
This commit is contained in:
parent
c342614a81
commit
b9aeeda074
@ -1,14 +1,11 @@
|
||||
# Construct a Booster from cachelist
|
||||
# internal utility function
|
||||
xgb.Booster <- function(params = list(), cachelist = list(), modelfile = NULL) {
|
||||
if (typeof(cachelist) != "list") {
|
||||
if (typeof(cachelist) != "list" ||
|
||||
any(sapply(cachelist, class) != 'xgb.DMatrix')) {
|
||||
stop("xgb.Booster only accepts list of DMatrix as cachelist")
|
||||
}
|
||||
for (dm in cachelist) {
|
||||
if (class(dm) != "xgb.DMatrix") {
|
||||
stop("xgb.Booster only accepts list of DMatrix as cachelist")
|
||||
}
|
||||
}
|
||||
|
||||
handle <- .Call("XGBoosterCreate_R", cachelist, PACKAGE = "xgboost")
|
||||
if (!is.null(modelfile)) {
|
||||
if (typeof(modelfile) == "character") {
|
||||
@ -54,6 +51,9 @@ xgb.get.handle <- function(object) {
|
||||
# Check whether an xgb.Booster object is complete
|
||||
# internal utility function
|
||||
xgb.Booster.check <- function(bst, saveraw = TRUE) {
|
||||
if (class(bst) != "xgb.Booster")
|
||||
stop("argument type must be xgb.Booster")
|
||||
|
||||
isnull <- is.null(bst$handle)
|
||||
if (!isnull) {
|
||||
isnull <- .Call("XGCheckNullPtr_R", bst$handle, PACKAGE="xgboost")
|
||||
@ -67,48 +67,118 @@ xgb.Booster.check <- function(bst, saveraw = TRUE) {
|
||||
return(bst)
|
||||
}
|
||||
|
||||
|
||||
#' Predict method for eXtreme Gradient Boosting model
|
||||
#'
|
||||
#' Predicted values based on either xgboost model or model handle object.
|
||||
#'
|
||||
#' @param object Object of class \code{xgb.Booster} or \code{xgb.Booster.handle}
|
||||
#' @param newdata takes \code{matrix}, \code{dgCMatrix}, local data file or
|
||||
#' \code{xgb.DMatrix}.
|
||||
#' @param missing Missing is only used when input is dense matrix, pick a float
|
||||
#' value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
|
||||
#' @param outputmargin whether the prediction should be shown in the original
|
||||
#' value of sum of functions, when outputmargin=TRUE, the prediction is
|
||||
#' untransformed margin value. In logistic regression, outputmargin=T will
|
||||
#' output value before logistic transformation.
|
||||
#' @param ntreelimit limit number of trees used in prediction, this parameter is
|
||||
#' only valid for gbtree, but not for gblinear. set it to be value bigger
|
||||
#' than 0. It will use all trees by default.
|
||||
#' @param predleaf whether predict leaf index instead. If set to TRUE, the output will be a matrix object.
|
||||
#' @param ... Parameters pass to \code{predict.xgb.Booster}
|
||||
#' @param newdata takes \code{matrix}, \code{dgCMatrix}, local data file or \code{xgb.DMatrix}.
|
||||
#' @param missing Missing is only used when input is dense matrix. Pick a float value that represents
|
||||
#' missing values in data (e.g., sometimes 0 or some other extreme value is used).
|
||||
#' @param outputmargin whether the prediction should be returned in the for of original untransformed
|
||||
#' sum of predictions from boosting iterations' results. E.g., setting \code{outputmargin=TRUE} for
|
||||
#' logistic regression would result in predictions for log-odds instead of probabilities.
|
||||
#' @param ntreelimit limit the number of model's trees or boosting iterations used in prediction (see Details).
|
||||
#' It will use all the trees by default (\code{NULL} value).
|
||||
#' @param predleaf whether predict leaf index instead.
|
||||
#' @param reshape whether to reshape the vector of predictions to a matrix form when there are several
|
||||
#' prediction outputs per case. This option has no effect when \code{predleaf = TRUE}.
|
||||
#' @param ... Parameters passed to \code{predict.xgb.Booster}
|
||||
#'
|
||||
#' @details
|
||||
#' The option \code{ntreelimit} purpose is to let the user train a model with lots
|
||||
#' of trees but use only the first trees for prediction to avoid overfitting
|
||||
#' (without having to train a new model with less trees).
|
||||
#' Note that \code{ntreelimit} is not necesserily equal to the number of boosting iterations
|
||||
#' and it is not necesserily equal to the number of trees in a model.
|
||||
#' E.g., in a random forest-like model, \code{ntreelimit} would limit the number of trees.
|
||||
#' But for multiclass classification, there are multiple trees per iteration,
|
||||
#' but \code{ntreelimit} limits the number of boosting iterations.
|
||||
#'
|
||||
#' The option \code{predleaf} purpose is inspired from §3.1 of the paper
|
||||
#' \code{Practical Lessons from Predicting Clicks on Ads at Facebook}.
|
||||
#' The idea is to use the model as a generator of new features which capture non linear link
|
||||
#' from original features.
|
||||
#' Also note that \code{ntreelimit} would currently do nothing for predictions from gblinear,
|
||||
#' since gblinear doesn't keep its boosting history.
|
||||
#'
|
||||
#' One possible practical applications of the \code{predleaf} option is to use the model
|
||||
#' as a generator of new features which capture non-linearity and interactions,
|
||||
#' e.g., as implemented in \code{\link{xgb.create.features}}.
|
||||
#'
|
||||
#' @return
|
||||
#' For regression or binary classification, it returns a vector of length \code{nrows(newdata)}.
|
||||
#' For multiclass classification, either a \code{num_class * nrows(newdata)} vector or
|
||||
#' a \code{(nrows(newdata), num_class)} dimension matrix is returned, depending on
|
||||
#' the \code{reshape} value.
|
||||
#'
|
||||
#' When \code{predleaf = TRUE}, the output is a matrix object with the
|
||||
#' number of columns corresponding to the number of trees.
|
||||
#'
|
||||
#' @seealso
|
||||
#' \code{\link{xgb.train}}.
|
||||
#'
|
||||
#' @examples
|
||||
#' ## binary classification:
|
||||
#'
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' test <- agaricus.test
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nthread = 2, nround = 2,objective = "binary:logistic")
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#' # use all trees by default
|
||||
#' pred <- predict(bst, test$data)
|
||||
#' # use only the 1st tree
|
||||
#' pred <- predict(bst, test$data, ntreelimit = 1)
|
||||
#'
|
||||
#'
|
||||
#' ## multiclass classification in iris dataset:
|
||||
#'
|
||||
#' lb <- as.numeric(iris$Species) - 1
|
||||
#' num_class <- 3
|
||||
#' set.seed(11)
|
||||
#' bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
|
||||
#' max_depth = 4, eta = 0.5, nthread = 2, nrounds = 10, subsample = 0.5,
|
||||
#' objective = "multi:softprob", num_class = num_class)
|
||||
#' # predict for softmax returns num_class probability numbers per case:
|
||||
#' pred <- predict(bst, as.matrix(iris[, -5]))
|
||||
#' str(pred)
|
||||
#' # reshape it to a num_class-columns matrix
|
||||
#' pred <- matrix(pred, ncol=num_class, byrow=TRUE)
|
||||
#' # convert the probabilities to softmax labels
|
||||
#' pred_labels <- max.col(pred) - 1
|
||||
#' # the following should result in the same error as seen in the last iteration
|
||||
#' sum(pred_labels != lb)/length(lb)
|
||||
#'
|
||||
#' # compare that to the predictions from softmax:
|
||||
#' set.seed(11)
|
||||
#' bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
|
||||
#' max_depth = 4, eta = 0.5, nthread = 2, nrounds = 10, subsample = 0.5,
|
||||
#' objective = "multi:softmax", num_class = num_class)
|
||||
#' pred <- predict(bst, as.matrix(iris[, -5]))
|
||||
#' str(pred)
|
||||
#' all.equal(pred, pred_labels)
|
||||
#' # prediction from using only 5 iterations should result
|
||||
#' # in the same error as seen in iteration 5:
|
||||
#' pred5 <- predict(bst, as.matrix(iris[, -5]), ntreelimit=5)
|
||||
#' sum(pred5 != lb)/length(lb)
|
||||
#'
|
||||
#'
|
||||
#' ## random forest-like model of 25 trees for binary classification:
|
||||
#'
|
||||
#' set.seed(11)
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 5,
|
||||
#' nthread = 2, nrounds = 1, objective = "binary:logistic",
|
||||
#' num_parallel_tree = 25, subsample = 0.6, colsample_bytree = 0.1)
|
||||
#' # Inspect the prediction error vs number of trees:
|
||||
#' lb <- test$label
|
||||
#' dtest <- xgb.DMatrix(test$data, label=lb)
|
||||
#' err <- sapply(1:25, function(n) {
|
||||
#' pred <- predict(bst, dtest, ntreelimit=n)
|
||||
#' sum((pred > 0.5) != lb)/length(lb)
|
||||
#' })
|
||||
#' plot(err, type='l', ylim=c(0,0.1), xlab='#trees')
|
||||
#'
|
||||
#' @rdname predict.xgb.Booster
|
||||
#' @export
|
||||
predict.xgb.Booster <- function(object, newdata, missing = NA,
|
||||
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE) {
|
||||
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE, reshape = FALSE) {
|
||||
|
||||
object <- xgb.Booster.check(object, saveraw = FALSE)
|
||||
if (class(newdata) != "xgb.DMatrix")
|
||||
@ -116,16 +186,26 @@ predict.xgb.Booster <- function(object, newdata, missing = NA,
|
||||
if (is.null(ntreelimit))
|
||||
ntreelimit <- NVL(object$best_ntreelimit, 0)
|
||||
if (ntreelimit < 0)
|
||||
stop("ntreelimit must be positive")
|
||||
stop("ntreelimit cannot be negative")
|
||||
|
||||
option <- 0L + 1L * as.logical(outputmargin) + 2L * as.logical(predleaf)
|
||||
|
||||
ret <- .Call("XGBoosterPredict_R", object$handle, newdata, option[1],
|
||||
as.integer(ntreelimit), PACKAGE = "xgboost")
|
||||
|
||||
if (length(ret) %% nrow(newdata) != 0)
|
||||
stop("prediction length ", length(ret)," is not multiple of nrows(newdata) ", nrow(newdata))
|
||||
npred_per_case <- length(ret) / nrow(newdata)
|
||||
|
||||
if (predleaf){
|
||||
len <- nrow(newdata)
|
||||
ret <- if (length(ret) == len) matrix(ret, ncol = 1)
|
||||
else t(matrix(ret, ncol = len))
|
||||
ret <- if (length(ret) == len) {
|
||||
matrix(ret, ncol = 1)
|
||||
} else {
|
||||
t(matrix(ret, ncol = len))
|
||||
}
|
||||
} else if (reshape && npred_per_case > 1) {
|
||||
ret <- matrix(ret, ncol = length(ret) / nrow(newdata), byrow = TRUE)
|
||||
}
|
||||
return(ret)
|
||||
}
|
||||
@ -169,9 +249,13 @@ predict.xgb.Booster.handle <- function(object, ...) {
|
||||
#'
|
||||
#' The attribute setters would usually work more efficiently for \code{xgb.Booster.handle}
|
||||
#' than for \code{xgb.Booster}, since only just a handle (pointer) would need to be copied.
|
||||
#' That would only matter if attributes need to be set many times.
|
||||
#' Note, however, that when feeding a handle of an \code{xgb.Booster} object to the attribute setters,
|
||||
#' the raw model cache of an \code{xgb.Booster} object would not be automatically updated,
|
||||
#' and it would be user's responsibility to call \code{xgb.save.raw} to update it.
|
||||
#'
|
||||
#' The \code{xgb.attributes<-} setter either updates the existing or adds one or several attributes,
|
||||
#' but doesn't delete the existing attributes which don't have their names in \code{names(attributes)}.
|
||||
#' but it doesn't delete the other existing attributes.
|
||||
#'
|
||||
#' @return
|
||||
#' \code{xgb.attr} returns either a string value of an attribute
|
||||
@ -184,8 +268,8 @@ predict.xgb.Booster.handle <- function(object, ...) {
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nthread = 2, nround = 2, objective = "binary:logistic")
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#'
|
||||
#' xgb.attr(bst, "my_attribute") <- "my attribute value"
|
||||
#' print(xgb.attr(bst, "my_attribute"))
|
||||
@ -279,8 +363,8 @@ xgb.attributes <- function(object) {
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nthread = 2, nround = 2, objective = "binary:logistic")
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#'
|
||||
#' xgb.parameters(bst) <- list(eta = 0.1)
|
||||
#'
|
||||
@ -304,6 +388,12 @@ xgb.attributes <- function(object) {
|
||||
object
|
||||
}
|
||||
|
||||
# Extract # of trees in a model
|
||||
# TODO: either add a getter to C-interface, or simply set an 'ntree' attribute after each iteration
|
||||
# internal utility function
|
||||
xgb.ntree <- function(bst) {
|
||||
length(grep('^booster', xgb.dump(bst)))
|
||||
}
|
||||
|
||||
|
||||
#' Print xgb.Booster
|
||||
@ -317,8 +407,8 @@ xgb.attributes <- function(object) {
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nthread = 2, nround = 2, objective = "binary:logistic")
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#' attr(bst, 'myattr') <- 'memo'
|
||||
#'
|
||||
#' print(bst)
|
||||
@ -334,9 +424,11 @@ print.xgb.Booster <- function(x, verbose=FALSE, ...) {
|
||||
}
|
||||
|
||||
cat('raw: ')
|
||||
if (!is.null(x$raw)) cat(format(object.size(x$raw), units="auto"), '\n')
|
||||
else cat('NULL\n')
|
||||
|
||||
if (!is.null(x$raw)) {
|
||||
cat(format(object.size(x$raw), units="auto"), '\n')
|
||||
} else {
|
||||
cat('NULL\n')
|
||||
}
|
||||
if (!is.null(x$call)) {
|
||||
cat('call:\n ')
|
||||
print(x$call)
|
||||
@ -371,7 +463,11 @@ print.xgb.Booster <- function(x, verbose=FALSE, ...) {
|
||||
})
|
||||
}
|
||||
|
||||
for (n in setdiff(names(x), c('handle', 'raw', 'call', 'params', 'callbacks','evaluation_log'))) {
|
||||
cat('niter: ', x$niter, '\n', sep='')
|
||||
# TODO: uncomment when faster xgb.ntree is implemented
|
||||
#cat('ntree: ', xgb.ntree(x), '\n', sep='')
|
||||
|
||||
for (n in setdiff(names(x), c('handle', 'raw', 'call', 'params', 'callbacks','evaluation_log','niter'))) {
|
||||
if (is.atomic(x[[n]])) {
|
||||
cat(n, ': ', x[[n]], '\n', sep='')
|
||||
} else {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user