Multi-GPU HostDeviceVector. (#3287)

* Multi-GPU HostDeviceVector.

- HostDeviceVector instances can now span multiple devices, defined by GPUSet struct
- the interface of HostDeviceVector has been modified accordingly
- GPU objective functions are now multi-GPU
- GPU predicting from cache is now multi-GPU
- avoiding omp_set_num_threads() calls
- other minor changes
This commit is contained in:
Andrew V. Adinetz 2018-05-04 22:00:05 +02:00 committed by Rory Mitchell
parent 90a5c4db9d
commit b8a0d66fe6
9 changed files with 569 additions and 250 deletions

View File

@ -1004,14 +1004,29 @@ class AllReducer {
template <typename T, typename FunctionT>
void ExecuteShards(std::vector<T> *shards, FunctionT f) {
auto previous_num_threads = omp_get_max_threads();
omp_set_num_threads(shards->size());
#pragma omp parallel
{
auto cpu_thread_id = omp_get_thread_num();
f(shards->at(cpu_thread_id));
#pragma omp parallel for schedule(static, 1)
for (int shard = 0; shard < shards->size(); ++shard) {
f(shards->at(shard));
}
}
/**
* \brief Executes some operation on each element of the input vector, using a
* single controlling thread for each element. In addition, passes the shard index
* into the function.
*
* \tparam T Generic type parameter.
* \tparam FunctionT Type of the function t.
* \param shards The shards.
* \param f The func_t to process.
*/
template <typename T, typename FunctionT>
void ExecuteIndexShards(std::vector<T> *shards, FunctionT f) {
#pragma omp parallel for schedule(static, 1)
for (int shard = 0; shard < shards->size(); ++shard) {
f(shard, shards->at(shard));
}
omp_set_num_threads(previous_num_threads);
}
/**
@ -1029,15 +1044,11 @@ void ExecuteShards(std::vector<T> *shards, FunctionT f) {
template <typename ReduceT,typename T, typename FunctionT>
ReduceT ReduceShards(std::vector<T> *shards, FunctionT f) {
auto previous_num_threads = omp_get_max_threads();
omp_set_num_threads(shards->size());
std::vector<ReduceT> sums(shards->size());
#pragma omp parallel
{
auto cpu_thread_id = omp_get_thread_num();
sums[cpu_thread_id] = f(shards->at(cpu_thread_id));
#pragma omp parallel for schedule(static, 1)
for (int shard = 0; shard < shards->size(); ++shard) {
sums[shard] = f(shards->at(shard));
}
omp_set_num_threads(previous_num_threads);
return std::accumulate(sums.begin(), sums.end(), ReduceT());
}
} // namespace dh

View File

@ -21,18 +21,18 @@ struct HostDeviceVectorImpl {
};
template <typename T>
HostDeviceVector<T>::HostDeviceVector(size_t size, T v, int device) : impl_(nullptr) {
HostDeviceVector<T>::HostDeviceVector(size_t size, T v, GPUSet devices) : impl_(nullptr) {
impl_ = new HostDeviceVectorImpl<T>(size, v);
}
template <typename T>
HostDeviceVector<T>::HostDeviceVector(std::initializer_list<T> init, int device)
HostDeviceVector<T>::HostDeviceVector(std::initializer_list<T> init, GPUSet devices)
: impl_(nullptr) {
impl_ = new HostDeviceVectorImpl<T>(init);
}
template <typename T>
HostDeviceVector<T>::HostDeviceVector(const std::vector<T>& init, int device)
HostDeviceVector<T>::HostDeviceVector(const std::vector<T>& init, GPUSet devices)
: impl_(nullptr) {
impl_ = new HostDeviceVectorImpl<T>(init);
}
@ -48,7 +48,7 @@ template <typename T>
size_t HostDeviceVector<T>::Size() const { return impl_->data_h_.size(); }
template <typename T>
int HostDeviceVector<T>::DeviceIdx() const { return -1; }
GPUSet HostDeviceVector<T>::Devices() const { return GPUSet::Empty(); }
template <typename T>
T* HostDeviceVector<T>::DevicePointer(int device) { return nullptr; }
@ -57,13 +57,46 @@ template <typename T>
std::vector<T>& HostDeviceVector<T>::HostVector() { return impl_->data_h_; }
template <typename T>
void HostDeviceVector<T>::Resize(size_t new_size, T v, int new_device) {
void HostDeviceVector<T>::Resize(size_t new_size, T v) {
impl_->data_h_.resize(new_size, v);
}
template <typename T>
size_t HostDeviceVector<T>::DeviceStart(int device) { return 0; }
template <typename T>
size_t HostDeviceVector<T>::DeviceSize(int device) { return 0; }
template <typename T>
void HostDeviceVector<T>::Fill(T v) {
std::fill(HostVector().begin(), HostVector().end(), v);
}
template <typename T>
void HostDeviceVector<T>::Copy(HostDeviceVector<T>* other) {
CHECK_EQ(Size(), other->Size());
std::copy(other->HostVector().begin(), other->HostVector().end(), HostVector().begin());
}
template <typename T>
void HostDeviceVector<T>::Copy(const std::vector<T>& other) {
CHECK_EQ(Size(), other.size());
std::copy(other.begin(), other.end(), HostVector().begin());
}
template <typename T>
void HostDeviceVector<T>::Copy(std::initializer_list<T> other) {
CHECK_EQ(Size(), other.size());
std::copy(other.begin(), other.end(), HostVector().begin());
}
template <typename T>
void HostDeviceVector<T>::Reshard(GPUSet devices) { }
// explicit instantiations are required, as HostDeviceVector isn't header-only
template class HostDeviceVector<bst_float>;
template class HostDeviceVector<GradientPair>;
template class HostDeviceVector<unsigned int>;
} // namespace xgboost

View File

@ -2,122 +2,309 @@
* Copyright 2017 XGBoost contributors
*/
#include <thrust/fill.h>
#include "./host_device_vector.h"
#include "./device_helpers.cuh"
namespace xgboost {
template <typename T>
struct HostDeviceVectorImpl {
HostDeviceVectorImpl(size_t size, T v, int device)
: device_(device), on_d_(device >= 0) {
if (on_d_) {
struct DeviceShard {
DeviceShard() : index_(-1), device_(-1), start_(0), on_d_(false), vec_(nullptr) {}
static size_t ShardStart(size_t size, int ndevices, int index) {
size_t portion = dh::DivRoundUp(size, ndevices);
size_t begin = index * portion;
begin = begin > size ? size : begin;
return begin;
}
static size_t ShardSize(size_t size, int ndevices, int index) {
size_t portion = dh::DivRoundUp(size, ndevices);
size_t begin = index * portion, end = (index + 1) * portion;
begin = begin > size ? size : begin;
end = end > size ? size : end;
return end - begin;
}
void Init(HostDeviceVectorImpl<T>* vec, int device) {
if (vec_ == nullptr) { vec_ = vec; }
CHECK_EQ(vec, vec_);
device_ = device;
index_ = vec_->devices_.Index(device);
size_t size_h = vec_->Size();
int ndevices = vec_->devices_.Size();
start_ = ShardStart(size_h, ndevices, index_);
size_t size_d = ShardSize(size_h, ndevices, index_);
dh::safe_cuda(cudaSetDevice(device_));
data_d_.resize(size, v);
data_.resize(size_d);
on_d_ = !vec_->on_h_;
}
void ScatterFrom(const T* begin) {
// TODO(canonizer): avoid full copy of host data
LazySyncDevice();
dh::safe_cuda(cudaSetDevice(device_));
dh::safe_cuda(cudaMemcpy(data_.data().get(), begin + start_,
data_.size() * sizeof(T), cudaMemcpyDefault));
}
void GatherTo(thrust::device_ptr<T> begin) {
LazySyncDevice();
dh::safe_cuda(cudaSetDevice(device_));
dh::safe_cuda(cudaMemcpy(begin.get() + start_, data_.data().get(),
data_.size() * sizeof(T), cudaMemcpyDefault));
}
void Fill(T v) {
// TODO(canonizer): avoid full copy of host data
LazySyncDevice();
dh::safe_cuda(cudaSetDevice(device_));
thrust::fill(data_.begin(), data_.end(), v);
}
void Copy(DeviceShard* other) {
// TODO(canonizer): avoid full copy of host data for this (but not for other)
LazySyncDevice();
other->LazySyncDevice();
dh::safe_cuda(cudaSetDevice(device_));
dh::safe_cuda(cudaMemcpy(data_.data().get(), other->data_.data().get(),
data_.size() * sizeof(T), cudaMemcpyDefault));
}
void LazySyncHost() {
dh::safe_cuda(cudaSetDevice(device_));
thrust::copy(data_.begin(), data_.end(), vec_->data_h_.begin() + start_);
on_d_ = false;
}
void LazySyncDevice() {
if (on_d_) { return; }
// data is on the host
size_t size_h = vec_->data_h_.size();
int ndevices = vec_->devices_.Size();
start_ = ShardStart(size_h, ndevices, index_);
size_t size_d = ShardSize(size_h, ndevices, index_);
dh::safe_cuda(cudaSetDevice(device_));
data_.resize(size_d);
thrust::copy(vec_->data_h_.begin() + start_,
vec_->data_h_.begin() + start_ + size_d, data_.begin());
on_d_ = true;
// this may cause a race condition if LazySyncDevice() is called
// from multiple threads in parallel;
// however, the race condition is benign, and will not cause problems
vec_->on_h_ = false;
vec_->size_d_ = vec_->data_h_.size();
}
int index_;
int device_;
thrust::device_vector<T> data_;
size_t start_;
// true if there is an up-to-date copy of data on device, false otherwise
bool on_d_;
HostDeviceVectorImpl<T>* vec_;
};
HostDeviceVectorImpl(size_t size, T v, GPUSet devices)
: devices_(devices), on_h_(devices.IsEmpty()), size_d_(0) {
if (!devices.IsEmpty()) {
size_d_ = size;
InitShards();
Fill(v);
} else {
data_h_.resize(size, v);
}
}
// Init can be std::vector<T> or std::initializer_list<T>
template <class Init>
HostDeviceVectorImpl(const Init& init, int device)
: device_(device), on_d_(device >= 0) {
if (on_d_) {
dh::safe_cuda(cudaSetDevice(device_));
data_d_.resize(init.size());
thrust::copy(init.begin(), init.end(), data_d_.begin());
HostDeviceVectorImpl(const Init& init, GPUSet devices)
: devices_(devices), on_h_(devices.IsEmpty()), size_d_(0) {
if (!devices.IsEmpty()) {
size_d_ = init.size();
InitShards();
Copy(init);
} else {
data_h_ = init;
}
}
void InitShards() {
int ndevices = devices_.Size();
shards_.resize(ndevices);
dh::ExecuteIndexShards(&shards_, [&](int i, DeviceShard& shard) {
shard.Init(this, devices_[i]);
});
}
HostDeviceVectorImpl(const HostDeviceVectorImpl<T>&) = delete;
HostDeviceVectorImpl(HostDeviceVectorImpl<T>&&) = delete;
void operator=(const HostDeviceVectorImpl<T>&) = delete;
void operator=(HostDeviceVectorImpl<T>&&) = delete;
size_t Size() const { return on_d_ ? data_d_.size() : data_h_.size(); }
size_t Size() const { return on_h_ ? data_h_.size() : size_d_; }
int DeviceIdx() const { return device_; }
GPUSet Devices() const { return devices_; }
T* DevicePointer(int device) {
CHECK(devices_.Contains(device));
LazySyncDevice(device);
return data_d_.data().get();
return shards_[devices_.Index(device)].data_.data().get();
}
size_t DeviceSize(int device) {
CHECK(devices_.Contains(device));
LazySyncDevice(device);
return shards_[devices_.Index(device)].data_.size();
}
size_t DeviceStart(int device) {
CHECK(devices_.Contains(device));
LazySyncDevice(device);
return shards_[devices_.Index(device)].start_;
}
thrust::device_ptr<T> tbegin(int device) { // NOLINT
return thrust::device_ptr<T>(DevicePointer(device));
}
thrust::device_ptr<T> tend(int device) { // NOLINT
auto begin = tbegin(device);
return begin + Size();
return tbegin(device) + DeviceSize(device);
}
void ScatterFrom(thrust::device_ptr<T> begin, thrust::device_ptr<T> end) {
CHECK_EQ(end - begin, Size());
if (on_h_) {
thrust::copy(begin, end, data_h_.begin());
} else {
dh::ExecuteShards(&shards_, [&](DeviceShard& shard) {
shard.ScatterFrom(begin.get());
});
}
}
void GatherTo(thrust::device_ptr<T> begin, thrust::device_ptr<T> end) {
CHECK_EQ(end - begin, Size());
if (on_h_) {
thrust::copy(data_h_.begin(), data_h_.end(), begin);
} else {
dh::ExecuteShards(&shards_, [&](DeviceShard& shard) { shard.GatherTo(begin); });
}
}
void Fill(T v) {
if (on_h_) {
std::fill(data_h_.begin(), data_h_.end(), v);
} else {
dh::ExecuteShards(&shards_, [&](DeviceShard& shard) { shard.Fill(v); });
}
}
void Copy(HostDeviceVectorImpl<T>* other) {
CHECK_EQ(Size(), other->Size());
if (on_h_ && other->on_h_) {
std::copy(other->data_h_.begin(), other->data_h_.end(), data_h_.begin());
} else {
CHECK(devices_ == other->devices_);
dh::ExecuteIndexShards(&shards_, [&](int i, DeviceShard& shard) {
shard.Copy(&other->shards_[i]);
});
}
}
void Copy(const std::vector<T>& other) {
CHECK_EQ(Size(), other.size());
if (on_h_) {
std::copy(other.begin(), other.end(), data_h_.begin());
} else {
dh::ExecuteShards(&shards_, [&](DeviceShard& shard) {
shard.ScatterFrom(other.data());
});
}
}
void Copy(std::initializer_list<T> other) {
CHECK_EQ(Size(), other.size());
if (on_h_) {
std::copy(other.begin(), other.end(), data_h_.begin());
} else {
dh::ExecuteShards(&shards_, [&](DeviceShard& shard) {
shard.ScatterFrom(other.begin());
});
}
}
std::vector<T>& HostVector() {
LazySyncHost();
return data_h_;
}
void Resize(size_t new_size, T v, int new_device) {
if (new_size == this->Size() && new_device == device_)
void Reshard(GPUSet new_devices) {
if (devices_ == new_devices)
return;
if (new_device != -1)
device_ = new_device;
// if !on_d_, but the data size is 0 and the device is set,
// resize the data on device instead
if (!on_d_ && (data_h_.size() > 0 || device_ == -1)) {
data_h_.resize(new_size, v);
CHECK(devices_.IsEmpty());
devices_ = new_devices;
InitShards();
}
void Resize(size_t new_size, T v) {
if (new_size == Size())
return;
if (Size() == 0 && !devices_.IsEmpty()) {
// fast on-device resize
on_h_ = false;
size_d_ = new_size;
InitShards();
Fill(v);
} else {
dh::safe_cuda(cudaSetDevice(device_));
data_d_.resize(new_size, v);
on_d_ = true;
// resize on host
LazySyncHost();
data_h_.resize(new_size, v);
}
}
void LazySyncHost() {
if (!on_d_)
if (on_h_)
return;
if (data_h_.size() != this->Size())
data_h_.resize(this->Size());
dh::safe_cuda(cudaSetDevice(device_));
thrust::copy(data_d_.begin(), data_d_.end(), data_h_.begin());
on_d_ = false;
if (data_h_.size() != size_d_)
data_h_.resize(size_d_);
dh::ExecuteShards(&shards_, [&](DeviceShard& shard) { shard.LazySyncHost(); });
on_h_ = true;
}
void LazySyncDevice(int device) {
if (on_d_)
return;
if (device != device_) {
CHECK_EQ(device_, -1);
device_ = device;
}
if (data_d_.size() != this->Size()) {
dh::safe_cuda(cudaSetDevice(device_));
data_d_.resize(this->Size());
}
dh::safe_cuda(cudaSetDevice(device_));
thrust::copy(data_h_.begin(), data_h_.end(), data_d_.begin());
on_d_ = true;
CHECK(devices_.Contains(device));
shards_[devices_.Index(device)].LazySyncDevice();
}
std::vector<T> data_h_;
thrust::device_vector<T> data_d_;
// true if there is an up-to-date copy of data on device, false otherwise
bool on_d_;
int device_;
bool on_h_;
// the total size of the data stored on the devices
size_t size_d_;
GPUSet devices_;
std::vector<DeviceShard> shards_;
};
template <typename T>
HostDeviceVector<T>::HostDeviceVector(size_t size, T v, int device) : impl_(nullptr) {
impl_ = new HostDeviceVectorImpl<T>(size, v, device);
HostDeviceVector<T>::HostDeviceVector(size_t size, T v, GPUSet devices)
: impl_(nullptr) {
impl_ = new HostDeviceVectorImpl<T>(size, v, devices);
}
template <typename T>
HostDeviceVector<T>::HostDeviceVector(std::initializer_list<T> init, int device)
HostDeviceVector<T>::HostDeviceVector(std::initializer_list<T> init, GPUSet devices)
: impl_(nullptr) {
impl_ = new HostDeviceVectorImpl<T>(init, device);
impl_ = new HostDeviceVectorImpl<T>(init, devices);
}
template <typename T>
HostDeviceVector<T>::HostDeviceVector(const std::vector<T>& init, int device)
HostDeviceVector<T>::HostDeviceVector(const std::vector<T>& init, GPUSet devices)
: impl_(nullptr) {
impl_ = new HostDeviceVectorImpl<T>(init, device);
impl_ = new HostDeviceVectorImpl<T>(init, devices);
}
template <typename T>
@ -131,11 +318,17 @@ template <typename T>
size_t HostDeviceVector<T>::Size() const { return impl_->Size(); }
template <typename T>
int HostDeviceVector<T>::DeviceIdx() const { return impl_->DeviceIdx(); }
GPUSet HostDeviceVector<T>::Devices() const { return impl_->Devices(); }
template <typename T>
T* HostDeviceVector<T>::DevicePointer(int device) { return impl_->DevicePointer(device); }
template <typename T>
size_t HostDeviceVector<T>::DeviceStart(int device) { return impl_->DeviceStart(device); }
template <typename T>
size_t HostDeviceVector<T>::DeviceSize(int device) { return impl_->DeviceSize(device); }
template <typename T>
thrust::device_ptr<T> HostDeviceVector<T>::tbegin(int device) { // NOLINT
return impl_->tbegin(device);
@ -146,16 +339,54 @@ thrust::device_ptr<T> HostDeviceVector<T>::tend(int device) { // NOLINT
return impl_->tend(device);
}
template <typename T>
void HostDeviceVector<T>::ScatterFrom
(thrust::device_ptr<T> begin, thrust::device_ptr<T> end) {
impl_->ScatterFrom(begin, end);
}
template <typename T>
void HostDeviceVector<T>::GatherTo
(thrust::device_ptr<T> begin, thrust::device_ptr<T> end) {
impl_->GatherTo(begin, end);
}
template <typename T>
void HostDeviceVector<T>::Fill(T v) {
impl_->Fill(v);
}
template <typename T>
void HostDeviceVector<T>::Copy(HostDeviceVector<T>* other) {
impl_->Copy(other->impl_);
}
template <typename T>
void HostDeviceVector<T>::Copy(const std::vector<T>& other) {
impl_->Copy(other);
}
template <typename T>
void HostDeviceVector<T>::Copy(std::initializer_list<T> other) {
impl_->Copy(other);
}
template <typename T>
std::vector<T>& HostDeviceVector<T>::HostVector() { return impl_->HostVector(); }
template <typename T>
void HostDeviceVector<T>::Resize(size_t new_size, T v, int new_device) {
impl_->Resize(new_size, v, new_device);
void HostDeviceVector<T>::Reshard(GPUSet new_devices) {
impl_->Reshard(new_devices);
}
template <typename T>
void HostDeviceVector<T>::Resize(size_t new_size, T v) {
impl_->Resize(new_size, v);
}
// explicit instantiations are required, as HostDeviceVector isn't header-only
template class HostDeviceVector<bst_float>;
template class HostDeviceVector<GradientPair>;
template class HostDeviceVector<unsigned int>;
} // namespace xgboost

View File

@ -4,6 +4,9 @@
#ifndef XGBOOST_COMMON_HOST_DEVICE_VECTOR_H_
#define XGBOOST_COMMON_HOST_DEVICE_VECTOR_H_
#include <dmlc/logging.h>
#include <algorithm>
#include <cstdlib>
#include <initializer_list>
#include <vector>
@ -18,6 +21,40 @@ namespace xgboost {
template <typename T> struct HostDeviceVectorImpl;
// set of devices across which HostDeviceVector can be distributed;
// currently implemented as a range, but can be changed later to something else,
// e.g. a bitset
class GPUSet {
public:
explicit GPUSet(int start = 0, int ndevices = 0)
: start_(start), ndevices_(ndevices) {}
static GPUSet Empty() { return GPUSet(); }
static GPUSet Range(int start, int ndevices) { return GPUSet(start, ndevices); }
int Size() const { return ndevices_; }
int operator[](int index) const {
CHECK(index >= 0 && index < ndevices_);
return start_ + index;
}
bool IsEmpty() const { return ndevices_ <= 0; }
int Index(int device) const {
CHECK(device >= start_ && device < start_ + ndevices_);
return device - start_;
}
bool Contains(int device) const {
return start_ <= device && device < start_ + ndevices_;
}
friend bool operator==(GPUSet a, GPUSet b) {
return a.start_ == b.start_ && a.ndevices_ == b.ndevices_;
}
friend bool operator!=(GPUSet a, GPUSet b) {
return a.start_ != b.start_ || a.ndevices_ != b.ndevices_;
}
private:
int start_, ndevices_;
};
/**
* @file host_device_vector.h
* @brief A device-and-host vector abstraction layer.
@ -29,24 +66,26 @@ template <typename T> struct HostDeviceVectorImpl;
*
* Initialization/Allocation:<br/>
* One can choose to initialize the vector on CPU or GPU during constructor.
* (use the 'device' argument) Or, can choose to use the 'resize' method to
* allocate/resize memory explicitly.
* (use the 'devices' argument) Or, can choose to use the 'Resize' method to
* allocate/resize memory explicitly, and use the 'Reshard' method
* to specify the devices.
*
* Accessing underling data:<br/>
* Use 'data_h' method to explicitly query for the underlying std::vector.
* If you need the raw device pointer, use the 'ptr_d' method. For perf
* Accessing underlying data:<br/>
* Use 'HostVector' method to explicitly query for the underlying std::vector.
* If you need the raw device pointer, use the 'DevicePointer' method. For perf
* implications of these calls, see below.
*
* Accessing underling data and their perf implications:<br/>
* There are 4 scenarios to be considered here:
* data_h and data on CPU --> no problems, std::vector returned immediately
* data_h but data on GPU --> this causes a cudaMemcpy to be issued internally.
* subsequent calls to data_h, will NOT incur this penalty.
* (assuming 'ptr_d' is not called in between)
* ptr_d but data on CPU --> this causes a cudaMemcpy to be issued internally.
* subsequent calls to ptr_d, will NOT incur this penalty.
* (assuming 'data_h' is not called in between)
* ptr_d and data on GPU --> no problems, the device ptr will be returned immediately
* HostVector and data on CPU --> no problems, std::vector returned immediately
* HostVector but data on GPU --> this causes a cudaMemcpy to be issued internally.
* subsequent calls to HostVector, will NOT incur this penalty.
* (assuming 'DevicePointer' is not called in between)
* DevicePointer but data on CPU --> this causes a cudaMemcpy to be issued internally.
* subsequent calls to DevicePointer, will NOT incur this penalty.
* (assuming 'HostVector' is not called in between)
* DevicePointer and data on GPU --> no problems, the device ptr
* will be returned immediately.
*
* What if xgboost is compiled without CUDA?<br/>
* In that case, there's a special implementation which always falls-back to
@ -57,35 +96,49 @@ template <typename T> struct HostDeviceVectorImpl;
* compiling with and without CUDA toolkit. It was easier to have
* 'HostDeviceVector' with a special-case implementation in host_device_vector.cc
*
* @note: This is not thread-safe!
* @note: Size and Devices methods are thread-safe.
* DevicePointer, DeviceStart, DeviceSize, tbegin and tend methods are thread-safe
* if different threads call these methods with different values of the device argument.
* All other methods are not thread safe.
*/
template <typename T>
class HostDeviceVector {
public:
explicit HostDeviceVector(size_t size = 0, T v = T(), int device = -1);
HostDeviceVector(std::initializer_list<T> init, int device = -1);
explicit HostDeviceVector(const std::vector<T>& init, int device = -1);
explicit HostDeviceVector(size_t size = 0, T v = T(),
GPUSet devices = GPUSet::Empty());
HostDeviceVector(std::initializer_list<T> init, GPUSet devices = GPUSet::Empty());
explicit HostDeviceVector(const std::vector<T>& init,
GPUSet devices = GPUSet::Empty());
~HostDeviceVector();
HostDeviceVector(const HostDeviceVector<T>&) = delete;
HostDeviceVector(HostDeviceVector<T>&&) = delete;
void operator=(const HostDeviceVector<T>&) = delete;
void operator=(HostDeviceVector<T>&&) = delete;
size_t Size() const;
int DeviceIdx() const;
GPUSet Devices() const;
T* DevicePointer(int device);
T* HostPointer() { return HostVector().data(); }
size_t DeviceStart(int device);
size_t DeviceSize(int device);
// only define functions returning device_ptr
// if HostDeviceVector.h is included from a .cu file
#ifdef __CUDACC__
thrust::device_ptr<T> tbegin(int device);
thrust::device_ptr<T> tend(int device);
thrust::device_ptr<T> tbegin(int device); // NOLINT
thrust::device_ptr<T> tend(int device); // NOLINT
void ScatterFrom(thrust::device_ptr<T> begin, thrust::device_ptr<T> end);
void GatherTo(thrust::device_ptr<T> begin, thrust::device_ptr<T> end);
#endif
std::vector<T>& HostVector();
void Fill(T v);
void Copy(HostDeviceVector<T>* other);
void Copy(const std::vector<T>& other);
void Copy(std::initializer_list<T> other);
// passing in new_device == -1 keeps the device as is
void Resize(size_t new_size, T v = T(), int new_device = -1);
std::vector<T>& HostVector();
void Reshard(GPUSet devices);
void Resize(size_t new_size, T v = T());
private:
HostDeviceVectorImpl<T>* impl_;

View File

@ -195,7 +195,7 @@ class GBTree : public GradientBooster {
<< "must have exactly ngroup*nrow gpairs";
// TODO(canonizer): perform this on GPU if HostDeviceVector has device set.
HostDeviceVector<GradientPair> tmp(in_gpair->Size() / ngroup,
GradientPair(), in_gpair->DeviceIdx());
GradientPair(), in_gpair->Devices());
std::vector<GradientPair>& gpair_h = in_gpair->HostVector();
auto nsize = static_cast<bst_omp_uint>(tmp.Size());
for (int gid = 0; gid < ngroup; ++gid) {

View File

@ -74,46 +74,35 @@ __global__ void pred_transform_k(float * __restrict__ preds, int n) {
template<typename Loss>
class GPURegLossObj : public ObjFunction {
protected:
// manages device data
struct DeviceData {
DVec<float> labels, weights;
DVec<unsigned int> label_correct;
// allocate everything on device
DeviceData(dh::BulkAllocator<dh::MemoryType::kDevice>* ba, int device_idx, size_t n) {
ba->Allocate(device_idx, false,
&labels, n,
&weights, n,
&label_correct, 1);
}
size_t Size() const { return labels.Size(); }
};
bool copied_;
std::unique_ptr<dh::BulkAllocator<dh::MemoryType::kDevice>> ba_;
std::unique_ptr<DeviceData> data_;
HostDeviceVector<bst_float> preds_d_;
HostDeviceVector<GradientPair> out_gpair_d_;
HostDeviceVector<bst_float> labels_, weights_;
HostDeviceVector<unsigned int> label_correct_;
// allocate device data for n elements, do nothing if enough memory is allocated already
void LazyResize(int n) {
if (data_.get() != nullptr && data_->Size() >= n)
// allocate device data for n elements, do nothing if memory is allocated already
void LazyResize(size_t n, size_t n_weights) {
if (labels_.Size() == n && weights_.Size() == n_weights)
return;
copied_ = false;
// free the old data and allocate the new data
ba_.reset(new dh::BulkAllocator<dh::MemoryType::kDevice>());
data_.reset(new DeviceData(ba_.get(), 0, n));
preds_d_.Resize(n, 0.0f, param_.gpu_id);
out_gpair_d_.Resize(n, GradientPair(), param_.gpu_id);
labels_.Reshard(devices_);
weights_.Reshard(devices_);
label_correct_.Reshard(devices_);
if (labels_.Size() != n) {
labels_.Resize(n);
label_correct_.Resize(devices_.Size());
}
if (weights_.Size() != n_weights)
weights_.Resize(n_weights);
}
public:
GPURegLossObj() : copied_(false), preds_d_(0, -1), out_gpair_d_({}, -1) {}
GPURegLossObj() : copied_(false) {}
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
CHECK(param_.n_gpus != 0) << "Must have at least one device";
devices_ = GPUSet::Range(param_.gpu_id, dh::NDevicesAll(param_.n_gpus));
}
void GetGradient(HostDeviceVector<float>* preds,
@ -125,46 +114,50 @@ class GPURegLossObj : public ObjFunction {
<< "labels are not correctly provided"
<< "preds.size=" << preds->Size() << ", label.size=" << info.labels_.size();
size_t ndata = preds->Size();
out_gpair->Resize(ndata, GradientPair(), param_.gpu_id);
LazyResize(ndata);
GetGradientDevice(preds->DevicePointer(param_.gpu_id), info, iter,
out_gpair->DevicePointer(param_.gpu_id), ndata);
preds->Reshard(devices_);
out_gpair->Reshard(devices_);
out_gpair->Resize(ndata);
LazyResize(ndata, info.weights_.size());
GetGradientDevice(preds, info, iter, out_gpair);
}
private:
void GetGradientDevice(float* preds,
void GetGradientDevice(HostDeviceVector<float>* preds,
const MetaInfo &info,
int iter,
GradientPair* out_gpair, size_t n) {
dh::safe_cuda(cudaSetDevice(param_.gpu_id));
DeviceData& d = *data_;
d.label_correct.Fill(1);
HostDeviceVector<GradientPair>* out_gpair) {
label_correct_.Fill(1);
// only copy the labels and weights once, similar to how the data is copied
if (!copied_) {
thrust::copy(info.labels_.begin(), info.labels_.begin() + n,
d.labels.tbegin());
if (info.weights_.size() > 0) {
thrust::copy(info.weights_.begin(), info.weights_.begin() + n,
d.weights.tbegin());
}
labels_.Copy(info.labels_);
if (info.weights_.size() > 0)
weights_.Copy(info.weights_);
copied_ = true;
}
// run the kernel
const int block = 256;
get_gradient_k<Loss><<<dh::DivRoundUp(n, block), block>>>
(out_gpair, d.label_correct.Data(), preds,
d.labels.Data(), info.weights_.size() > 0 ? d.weights.Data() : nullptr,
n, param_.scale_pos_weight);
dh::safe_cuda(cudaGetLastError());
#pragma omp parallel for schedule(static, 1)
for (int i = 0; i < devices_.Size(); ++i) {
int d = devices_[i];
dh::safe_cuda(cudaSetDevice(d));
const int block = 256;
size_t n = preds->DeviceSize(d);
if (n > 0) {
get_gradient_k<Loss><<<dh::DivRoundUp(n, block), block>>>
(out_gpair->DevicePointer(d), label_correct_.DevicePointer(d),
preds->DevicePointer(d), labels_.DevicePointer(d),
info.weights_.size() > 0 ? weights_.DevicePointer(d) : nullptr,
n, param_.scale_pos_weight);
dh::safe_cuda(cudaGetLastError());
}
dh::safe_cuda(cudaDeviceSynchronize());
}
// copy output data from the GPU
unsigned int label_correct_h;
thrust::copy_n(d.label_correct.tbegin(), 1, &label_correct_h);
bool label_correct = label_correct_h != 0;
if (!label_correct) {
LOG(FATAL) << Loss::LabelErrorMsg();
// copy "label correct" flags back to host
std::vector<unsigned int>& label_correct_h = label_correct_.HostVector();
for (int i = 0; i < devices_.Size(); ++i) {
if (label_correct_h[i] == 0)
LOG(FATAL) << Loss::LabelErrorMsg();
}
}
@ -174,24 +167,33 @@ class GPURegLossObj : public ObjFunction {
}
void PredTransform(HostDeviceVector<float> *io_preds) override {
PredTransformDevice(io_preds->DevicePointer(param_.gpu_id), io_preds->Size());
io_preds->Reshard(devices_);
size_t ndata = io_preds->Size();
PredTransformDevice(io_preds);
}
void PredTransformDevice(float* preds, size_t n) {
dh::safe_cuda(cudaSetDevice(param_.gpu_id));
const int block = 256;
pred_transform_k<Loss><<<dh::DivRoundUp(n, block), block>>>(preds, n);
dh::safe_cuda(cudaGetLastError());
dh::safe_cuda(cudaDeviceSynchronize());
void PredTransformDevice(HostDeviceVector<float>* preds) {
#pragma omp parallel for schedule(static, 1)
for (int i = 0; i < devices_.Size(); ++i) {
int d = devices_[i];
dh::safe_cuda(cudaSetDevice(d));
const int block = 256;
size_t n = preds->DeviceSize(d);
if (n > 0) {
pred_transform_k<Loss><<<dh::DivRoundUp(n, block), block>>>(preds->DevicePointer(d), n);
dh::safe_cuda(cudaGetLastError());
}
dh::safe_cuda(cudaDeviceSynchronize());
}
}
float ProbToMargin(float base_score) const override {
return Loss::ProbToMargin(base_score);
}
protected:
GPURegLossParam param_;
GPUSet devices_;
};
// register the objective functions

View File

@ -310,8 +310,11 @@ class GPUPredictor : public xgboost::Predictor {
tree_group.begin());
device_matrix->predictions.resize(out_preds->Size());
thrust::copy(out_preds->tbegin(param.gpu_id), out_preds->tend(param.gpu_id),
device_matrix->predictions.begin());
auto& predictions = device_matrix->predictions;
out_preds->GatherTo(predictions.data(),
predictions.data() + predictions.size());
dh::safe_cuda(cudaSetDevice(param.gpu_id));
const int BLOCK_THREADS = 128;
const int GRID_SIZE = static_cast<int>(
@ -335,9 +338,8 @@ class GPUPredictor : public xgboost::Predictor {
model.param.num_output_group);
dh::safe_cuda(cudaDeviceSynchronize());
thrust::copy(device_matrix->predictions.begin(),
device_matrix->predictions.end(),
out_preds->tbegin(param.gpu_id));
out_preds->ScatterFrom(predictions.data(),
predictions.data() + predictions.size());
}
public:
@ -366,14 +368,13 @@ class GPUPredictor : public xgboost::Predictor {
const gbm::GBTreeModel& model) const {
size_t n = model.param.num_output_group * info.num_row_;
const std::vector<bst_float>& base_margin = info.base_margin_;
out_preds->Resize(n, 0.0f, param.gpu_id);
out_preds->Reshard(devices);
out_preds->Resize(n);
if (base_margin.size() != 0) {
CHECK_EQ(out_preds->Size(), n);
thrust::copy(base_margin.begin(), base_margin.end(),
out_preds->tbegin(param.gpu_id));
out_preds->Copy(base_margin);
} else {
thrust::fill(out_preds->tbegin(param.gpu_id),
out_preds->tend(param.gpu_id), model.base_margin);
out_preds->Fill(model.base_margin);
}
}
@ -385,11 +386,9 @@ class GPUPredictor : public xgboost::Predictor {
if (it != cache_.end()) {
HostDeviceVector<bst_float>& y = it->second.predictions;
if (y.Size() != 0) {
dh::safe_cuda(cudaSetDevice(param.gpu_id));
out_preds->Resize(y.Size(), 0.0f, param.gpu_id);
dh::safe_cuda(cudaMemcpy(
out_preds->DevicePointer(param.gpu_id), y.DevicePointer(param.gpu_id),
out_preds->Size() * sizeof(bst_float), cudaMemcpyDefault));
out_preds->Reshard(devices);
out_preds->Resize(y.Size());
out_preds->Copy(&y);
return true;
}
}
@ -410,18 +409,15 @@ class GPUPredictor : public xgboost::Predictor {
HostDeviceVector<bst_float>& predictions = e.predictions;
if (predictions.Size() == 0) {
// ensure that the device in predictions is correct
predictions.Resize(0, 0.0f, param.gpu_id);
cpu_predictor->PredictBatch(dmat, &predictions, model, 0,
static_cast<bst_uint>(model.trees.size()));
} else if (model.param.num_output_group == 1 && updaters->size() > 0 &&
num_new_trees == 1 &&
updaters->back()->UpdatePredictionCache(e.data.get(),
&predictions)) {
this->InitOutPredictions(dmat->Info(), &predictions, model);
}
if (model.param.num_output_group == 1 && updaters->size() > 0 &&
num_new_trees == 1 &&
updaters->back()->UpdatePredictionCache(e.data.get(), &predictions)) {
// do nothing
} else {
DevicePredictInternal(dmat, &predictions, model, old_ntree,
model.trees.size());
DevicePredictInternal(dmat, &predictions, model, old_ntree, model.trees.size());
}
}
}
@ -462,6 +458,7 @@ class GPUPredictor : public xgboost::Predictor {
Predictor::Init(cfg, cache);
cpu_predictor->Init(cfg, cache);
param.InitAllowUnknown(cfg);
devices = GPUSet::Range(param.gpu_id, dh::NDevicesAll(param.n_gpus));
max_shared_memory_bytes = dh::MaxSharedMemory(param.gpu_id);
}
@ -473,6 +470,8 @@ class GPUPredictor : public xgboost::Predictor {
thrust::device_vector<DevicePredictionNode> nodes;
thrust::device_vector<size_t> tree_segments;
thrust::device_vector<int> tree_group;
thrust::device_vector<bst_float> preds;
GPUSet devices;
size_t max_shared_memory_bytes;
};
XGBOOST_REGISTER_PREDICTOR(GPUPredictor, "gpu_predictor")

View File

@ -495,6 +495,11 @@ class GPUMaker : public TreeUpdater {
int nCols;
int maxNodes;
int maxLeaves;
// devices are only used for resharding the HostDeviceVector passed as a parameter;
// the algorithm works with a single GPU only
GPUSet devices;
dh::CubMemory tmp_mem;
dh::DVec<GradientPair> tmpScanGradBuff;
dh::DVec<int> tmpScanKeyBuff;
@ -510,6 +515,8 @@ class GPUMaker : public TreeUpdater {
param.InitAllowUnknown(args);
maxNodes = (1 << (param.max_depth + 1)) - 1;
maxLeaves = 1 << param.max_depth;
devices = GPUSet::Range(param.gpu_id, dh::NDevicesAll(param.n_gpus));
}
void Update(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
@ -519,6 +526,8 @@ class GPUMaker : public TreeUpdater {
float lr = param.learning_rate;
param.learning_rate = lr / trees.size();
gpair->Reshard(devices);
try {
// build tree
for (size_t i = 0; i < trees.size(); ++i) {
@ -688,10 +697,7 @@ class GPUMaker : public TreeUpdater {
}
void transferGrads(HostDeviceVector<GradientPair>* gpair) {
// HACK
dh::safe_cuda(cudaMemcpy(gradsInst.Data(), gpair->DevicePointer(param.gpu_id),
sizeof(GradientPair) * nRows,
cudaMemcpyDefault));
gpair->GatherTo(gradsInst.tbegin(), gradsInst.tend());
// evaluate the full-grad reduction for the root node
dh::SumReduction<GradientPair>(tmp_mem, gradsInst, gradSums, nRows);
}

View File

@ -369,8 +369,7 @@ struct DeviceShard {
}
// Reset values for each update iteration
void Reset(HostDeviceVector<GradientPair>* dh_gpair, int device) {
auto begin = dh_gpair->tbegin(device);
void Reset(HostDeviceVector<GradientPair>* dh_gpair) {
dh::safe_cuda(cudaSetDevice(device_idx));
position.CurrentDVec().Fill(0);
std::fill(node_sum_gradients.begin(), node_sum_gradients.end(),
@ -380,7 +379,7 @@ struct DeviceShard {
std::fill(ridx_segments.begin(), ridx_segments.end(), Segment(0, 0));
ridx_segments.front() = Segment(0, ridx.Size());
this->gpair.copy(begin + row_begin_idx, begin + row_end_idx);
this->gpair.copy(dh_gpair->tbegin(device_idx), dh_gpair->tend(device_idx));
SubsampleGradientPair(&gpair, param.subsample, row_begin_idx);
hist.Reset();
}
@ -505,7 +504,7 @@ struct DeviceShard {
dh::safe_cuda(cudaSetDevice(device_idx));
if (!prediction_cache_initialised) {
dh::safe_cuda(cudaMemcpy(
prediction_cache.Data(), &out_preds_d[row_begin_idx],
prediction_cache.Data(), out_preds_d,
prediction_cache.Size() * sizeof(bst_float), cudaMemcpyDefault));
}
prediction_cache_initialised = true;
@ -528,7 +527,7 @@ struct DeviceShard {
});
dh::safe_cuda(cudaMemcpy(
&out_preds_d[row_begin_idx], prediction_cache.Data(),
out_preds_d, prediction_cache.Data(),
prediction_cache.Size() * sizeof(bst_float), cudaMemcpyDefault));
}
};
@ -543,6 +542,7 @@ class GPUHistMaker : public TreeUpdater {
param_.InitAllowUnknown(args);
CHECK(param_.n_gpus != 0) << "Must have at least one device";
n_devices_ = param_.n_gpus;
devices_ = GPUSet::Range(param_.gpu_id, dh::NDevicesAll(param_.n_gpus));
dh::CheckComputeCapability();
@ -610,15 +610,11 @@ class GPUHistMaker : public TreeUpdater {
}
// Create device shards
omp_set_num_threads(shards_.size());
#pragma omp parallel
{
auto cpu_thread_id = omp_get_thread_num();
shards_[cpu_thread_id] = std::unique_ptr<DeviceShard>(
new DeviceShard(device_list_[cpu_thread_id], cpu_thread_id, gmat_,
row_segments[cpu_thread_id],
row_segments[cpu_thread_id + 1], n_bins_, param_));
}
dh::ExecuteIndexShards(&shards_, [&](int i, std::unique_ptr<DeviceShard>& shard) {
shard = std::unique_ptr<DeviceShard>(
new DeviceShard(device_list_[i], i, gmat_,
row_segments[i], row_segments[i + 1], n_bins_, param_));
});
p_last_fmat_ = dmat;
initialised_ = true;
@ -636,12 +632,9 @@ class GPUHistMaker : public TreeUpdater {
// Copy gpair & reset memory
monitor_.Start("InitDataReset", device_list_);
omp_set_num_threads(shards_.size());
// TODO(canonizer): make it parallel again once HostDeviceVector is
// thread-safe
for (int shard = 0; shard < shards_.size(); ++shard)
shards_[shard]->Reset(gpair, param_.gpu_id);
gpair->Reshard(devices_);
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {shard->Reset(gpair); });
monitor_.Stop("InitDataReset", device_list_);
}
@ -676,16 +669,16 @@ class GPUHistMaker : public TreeUpdater {
subtraction_trick_nidx = nidx_left;
}
for (auto& shard : shards_) {
shard->BuildHist(build_hist_nidx);
}
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->BuildHist(build_hist_nidx);
});
this->AllReduceHist(build_hist_nidx);
for (auto& shard : shards_) {
shard->SubtractionTrick(nidx_parent, build_hist_nidx,
subtraction_trick_nidx);
}
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->SubtractionTrick(nidx_parent, build_hist_nidx,
subtraction_trick_nidx);
});
}
// Returns best loss
@ -743,22 +736,20 @@ class GPUHistMaker : public TreeUpdater {
auto root_nidx = 0;
// Sum gradients
std::vector<GradientPair> tmp_sums(shards_.size());
omp_set_num_threads(shards_.size());
#pragma omp parallel
{
auto cpu_thread_id = omp_get_thread_num();
auto& shard = shards_[cpu_thread_id];
dh::safe_cuda(cudaSetDevice(shard->device_idx));
tmp_sums[cpu_thread_id] = dh::SumReduction(
shard->temp_memory, shard->gpair.Data(), shard->gpair.Size());
}
dh::ExecuteIndexShards(&shards_, [&](int i, std::unique_ptr<DeviceShard>& shard) {
dh::safe_cuda(cudaSetDevice(shard->device_idx));
tmp_sums[i] =
dh::SumReduction(shard->temp_memory, shard->gpair.Data(),
shard->gpair.Size());
});
auto sum_gradient =
std::accumulate(tmp_sums.begin(), tmp_sums.end(), GradientPair());
// Generate root histogram
for (auto& shard : shards_) {
shard->BuildHist(root_nidx);
}
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->BuildHist(root_nidx);
});
this->AllReduceHist(root_nidx);
@ -802,14 +793,11 @@ class GPUHistMaker : public TreeUpdater {
auto is_dense = info_->num_nonzero_ == info_->num_row_ * info_->num_col_;
omp_set_num_threads(shards_.size());
#pragma omp parallel
{
auto cpu_thread_id = omp_get_thread_num();
shards_[cpu_thread_id]->UpdatePosition(nidx, left_nidx, right_nidx, fidx,
split_gidx, default_dir_left,
is_dense, fidx_begin, fidx_end);
}
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->UpdatePosition(nidx, left_nidx, right_nidx, fidx,
split_gidx, default_dir_left,
is_dense, fidx_begin, fidx_end);
});
}
void ApplySplit(const ExpandEntry& candidate, RegTree* p_tree) {
@ -903,8 +891,6 @@ class GPUHistMaker : public TreeUpdater {
monitor_.Stop("EvaluateSplits", device_list_);
}
}
// Reset omp num threads
omp_set_num_threads(nthread);
}
bool UpdatePredictionCache(
@ -912,13 +898,10 @@ class GPUHistMaker : public TreeUpdater {
monitor_.Start("UpdatePredictionCache", device_list_);
if (shards_.empty() || p_last_fmat_ == nullptr || p_last_fmat_ != data)
return false;
bst_float* out_preds_d = p_out_preds->DevicePointer(param_.gpu_id);
#pragma omp parallel for schedule(static, 1)
for (int shard = 0; shard < shards_.size(); ++shard) {
shards_[shard]->UpdatePredictionCache(out_preds_d);
}
p_out_preds->Reshard(devices_);
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->UpdatePredictionCache(p_out_preds->DevicePointer(shard->device_idx));
});
monitor_.Stop("UpdatePredictionCache", device_list_);
return true;
}
@ -992,6 +975,7 @@ class GPUHistMaker : public TreeUpdater {
std::vector<int> device_list_;
DMatrix* p_last_fmat_;
GPUSet devices_;
};
XGBOOST_REGISTER_TREE_UPDATER(GPUHistMaker, "grow_gpu_hist")