[R] improve docstrings for "xgb.Booster.R" (#9906)
This commit is contained in:
parent
252e018275
commit
b807f3e30c
@ -63,7 +63,8 @@ Imports:
|
||||
Matrix (>= 1.1-0),
|
||||
methods,
|
||||
data.table (>= 1.9.6),
|
||||
jsonlite (>= 1.0),
|
||||
jsonlite (>= 1.0)
|
||||
Roxygen: list(markdown = TRUE)
|
||||
RoxygenNote: 7.2.3
|
||||
Encoding: UTF-8
|
||||
SystemRequirements: GNU make, C++17
|
||||
|
||||
@ -79,36 +79,45 @@ xgb.get.handle <- function(object) {
|
||||
handle
|
||||
}
|
||||
|
||||
#' Restore missing parts of an incomplete xgb.Booster object.
|
||||
#' Restore missing parts of an incomplete xgb.Booster object
|
||||
#'
|
||||
#' It attempts to complete an \code{xgb.Booster} object by restoring either its missing
|
||||
#' raw model memory dump (when it has no \code{raw} data but its \code{xgb.Booster.handle} is valid)
|
||||
#' or its missing internal handle (when its \code{xgb.Booster.handle} is not valid
|
||||
#' It attempts to complete an `xgb.Booster` object by restoring either its missing
|
||||
#' raw model memory dump (when it has no `raw` data but its `xgb.Booster.handle` is valid)
|
||||
#' or its missing internal handle (when its `xgb.Booster.handle` is not valid
|
||||
#' but it has a raw Booster memory dump).
|
||||
#'
|
||||
#' @param object object of class \code{xgb.Booster}
|
||||
#' @param saveraw a flag indicating whether to append \code{raw} Booster memory dump data
|
||||
#' @param object Object of class `xgb.Booster`.
|
||||
#' @param saveraw A flag indicating whether to append `raw` Booster memory dump data
|
||||
#' when it doesn't already exist.
|
||||
#'
|
||||
#' @details
|
||||
#'
|
||||
#' While this method is primarily for internal use, it might be useful in some practical situations.
|
||||
#'
|
||||
#' E.g., when an \code{xgb.Booster} model is saved as an R object and then is loaded as an R object,
|
||||
#' E.g., when an `xgb.Booster` model is saved as an R object and then is loaded as an R object,
|
||||
#' its handle (pointer) to an internal xgboost model would be invalid. The majority of xgboost methods
|
||||
#' should still work for such a model object since those methods would be using
|
||||
#' \code{xgb.Booster.complete} internally. However, one might find it to be more efficient to call the
|
||||
#' \code{xgb.Booster.complete} function explicitly once after loading a model as an R-object.
|
||||
#' `xgb.Booster.complete()` internally. However, one might find it to be more efficient to call the
|
||||
#' `xgb.Booster.complete()` function explicitly once after loading a model as an R-object.
|
||||
#' That would prevent further repeated implicit reconstruction of an internal booster model.
|
||||
#'
|
||||
#' @return
|
||||
#' An object of \code{xgb.Booster} class.
|
||||
#' An object of `xgb.Booster` class.
|
||||
#'
|
||||
#' @examples
|
||||
#'
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#' data(agaricus.train, package = "xgboost")
|
||||
#'
|
||||
#' bst <- xgboost(
|
||||
#' data = agaricus.train$data,
|
||||
#' label = agaricus.train$label,
|
||||
#' max_depth = 2,
|
||||
#' eta = 1,
|
||||
#' nthread = 2,
|
||||
#' nrounds = 2,
|
||||
#' objective = "binary:logistic"
|
||||
#' )
|
||||
#'
|
||||
#' saveRDS(bst, "xgb.model.rds")
|
||||
#'
|
||||
#' # Warning: The resulting RDS file is only compatible with the current XGBoost version.
|
||||
@ -161,112 +170,100 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
return(object)
|
||||
}
|
||||
|
||||
#' Predict method for eXtreme Gradient Boosting model
|
||||
#' Predict method for XGBoost model
|
||||
#'
|
||||
#' Predicted values based on either xgboost model or model handle object.
|
||||
#'
|
||||
#' @param object Object of class \code{xgb.Booster} or \code{xgb.Booster.handle}
|
||||
#' @param newdata takes \code{matrix}, \code{dgCMatrix}, \code{dgRMatrix}, \code{dsparseVector},
|
||||
#' local data file or \code{xgb.DMatrix}.
|
||||
#'
|
||||
#' For single-row predictions on sparse data, it's recommended to use CSR format. If passing
|
||||
#' a sparse vector, it will take it as a row vector.
|
||||
#' @param missing Missing is only used when input is dense matrix. Pick a float value that represents
|
||||
#' missing values in data (e.g., sometimes 0 or some other extreme value is used).
|
||||
#' @param outputmargin whether the prediction should be returned in the for of original untransformed
|
||||
#' sum of predictions from boosting iterations' results. E.g., setting \code{outputmargin=TRUE} for
|
||||
#' logistic regression would result in predictions for log-odds instead of probabilities.
|
||||
#' @param ntreelimit Deprecated, use \code{iterationrange} instead.
|
||||
#' @param predleaf whether predict leaf index.
|
||||
#' @param predcontrib whether to return feature contributions to individual predictions (see Details).
|
||||
#' @param approxcontrib whether to use a fast approximation for feature contributions (see Details).
|
||||
#' @param predinteraction whether to return contributions of feature interactions to individual predictions (see Details).
|
||||
#' @param reshape whether to reshape the vector of predictions to a matrix form when there are several
|
||||
#' prediction outputs per case. This option has no effect when either of predleaf, predcontrib,
|
||||
#' or predinteraction flags is TRUE.
|
||||
#' @param training whether is the prediction result used for training. For dart booster,
|
||||
#' @param object Object of class `xgb.Booster` or `xgb.Booster.handle`.
|
||||
#' @param newdata Takes `matrix`, `dgCMatrix`, `dgRMatrix`, `dsparseVector`,
|
||||
#' local data file, or `xgb.DMatrix`.
|
||||
#' For single-row predictions on sparse data, it is recommended to use the CSR format.
|
||||
#' If passing a sparse vector, it will take it as a row vector.
|
||||
#' @param missing Only used when input is a dense matrix. Pick a float value that represents
|
||||
#' missing values in data (e.g., 0 or some other extreme value).
|
||||
#' @param outputmargin Whether the prediction should be returned in the form of original untransformed
|
||||
#' sum of predictions from boosting iterations' results. E.g., setting `outputmargin=TRUE` for
|
||||
#' logistic regression would return log-odds instead of probabilities.
|
||||
#' @param ntreelimit Deprecated, use `iterationrange` instead.
|
||||
#' @param predleaf Whether to predict pre-tree leaf indices.
|
||||
#' @param predcontrib Whether to return feature contributions to individual predictions (see Details).
|
||||
#' @param approxcontrib Whether to use a fast approximation for feature contributions (see Details).
|
||||
#' @param predinteraction Whether to return contributions of feature interactions to individual predictions (see Details).
|
||||
#' @param reshape Whether to reshape the vector of predictions to matrix form when there are several
|
||||
#' prediction outputs per case. No effect if `predleaf`, `predcontrib`,
|
||||
#' or `predinteraction` is `TRUE`.
|
||||
#' @param training Whether the predictions are used for training. For dart booster,
|
||||
#' training predicting will perform dropout.
|
||||
#' @param iterationrange Specifies which layer of trees are used in prediction. For
|
||||
#' example, if a random forest is trained with 100 rounds. Specifying
|
||||
#' `iterationrange=(1, 21)`, then only the forests built during [1, 21) (half open set)
|
||||
#' rounds are used in this prediction. It's 1-based index just like R vector. When set
|
||||
#' to \code{c(1, 1)} XGBoost will use all trees.
|
||||
#' @param strict_shape Default is \code{FALSE}. When it's set to \code{TRUE}, output
|
||||
#' type and shape of prediction are invariant to model type.
|
||||
#'
|
||||
#' @param iterationrange Specifies which trees are used in prediction. For
|
||||
#' example, take a random forest with 100 rounds.
|
||||
#' With `iterationrange=c(1, 21)`, only the trees built during `[1, 21)` (half open set)
|
||||
#' rounds are used in this prediction. The index is 1-based just like an R vector. When set
|
||||
#' to `c(1, 1)`, XGBoost will use all trees.
|
||||
#' @param strict_shape Default is `FALSE`. When set to `TRUE`, the output
|
||||
#' type and shape of predictions are invariant to the model type.
|
||||
#' @param ... Not used.
|
||||
#'
|
||||
#' @details
|
||||
#'
|
||||
#' Note that \code{iterationrange} would currently do nothing for predictions from gblinear,
|
||||
#' since gblinear doesn't keep its boosting history.
|
||||
#' Note that `iterationrange` would currently do nothing for predictions from "gblinear",
|
||||
#' since "gblinear" doesn't keep its boosting history.
|
||||
#'
|
||||
#' One possible practical applications of the \code{predleaf} option is to use the model
|
||||
#' One possible practical applications of the `predleaf` option is to use the model
|
||||
#' as a generator of new features which capture non-linearity and interactions,
|
||||
#' e.g., as implemented in \code{\link{xgb.create.features}}.
|
||||
#' e.g., as implemented in [xgb.create.features()].
|
||||
#'
|
||||
#' Setting \code{predcontrib = TRUE} allows to calculate contributions of each feature to
|
||||
#' Setting `predcontrib = TRUE` allows to calculate contributions of each feature to
|
||||
#' individual predictions. For "gblinear" booster, feature contributions are simply linear terms
|
||||
#' (feature_beta * feature_value). For "gbtree" booster, feature contributions are SHAP
|
||||
#' values (Lundberg 2017) that sum to the difference between the expected output
|
||||
#' of the model and the current prediction (where the hessian weights are used to compute the expectations).
|
||||
#' Setting \code{approxcontrib = TRUE} approximates these values following the idea explained
|
||||
#' Setting `approxcontrib = TRUE` approximates these values following the idea explained
|
||||
#' in \url{http://blog.datadive.net/interpreting-random-forests/}.
|
||||
#'
|
||||
#' With \code{predinteraction = TRUE}, SHAP values of contributions of interaction of each pair of features
|
||||
#' With `predinteraction = TRUE`, SHAP values of contributions of interaction of each pair of features
|
||||
#' are computed. Note that this operation might be rather expensive in terms of compute and memory.
|
||||
#' Since it quadratically depends on the number of features, it is recommended to perform selection
|
||||
#' of the most important features first. See below about the format of the returned results.
|
||||
#'
|
||||
#' The \code{predict()} method uses as many threads as defined in \code{xgb.Booster} object (all by default).
|
||||
#' If you want to change their number, then assign a new number to \code{nthread} using \code{\link{xgb.parameters<-}}.
|
||||
#' Note also that converting a matrix to \code{\link{xgb.DMatrix}} uses multiple threads too.
|
||||
#' The `predict()` method uses as many threads as defined in `xgb.Booster` object (all by default).
|
||||
#' If you want to change their number, assign a new number to `nthread` using [xgb.parameters<-()].
|
||||
#' Note that converting a matrix to [xgb.DMatrix()] uses multiple threads too.
|
||||
#'
|
||||
#' @return
|
||||
#' The return type is different depending whether \code{strict_shape} is set to \code{TRUE}. By default,
|
||||
#' for regression or binary classification, it returns a vector of length \code{nrows(newdata)}.
|
||||
#' For multiclass classification, either a \code{num_class * nrows(newdata)} vector or
|
||||
#' a \code{(nrows(newdata), num_class)} dimension matrix is returned, depending on
|
||||
#' the \code{reshape} value.
|
||||
#'
|
||||
#' When \code{predleaf = TRUE}, the output is a matrix object with the
|
||||
#' number of columns corresponding to the number of trees.
|
||||
#'
|
||||
#' When \code{predcontrib = TRUE} and it is not a multiclass setting, the output is a matrix object with
|
||||
#' \code{num_features + 1} columns. The last "+ 1" column in a matrix corresponds to bias.
|
||||
#' For a multiclass case, a list of \code{num_class} elements is returned, where each element is
|
||||
#' such a matrix. The contribution values are on the scale of untransformed margin
|
||||
#' (e.g., for binary classification would mean that the contributions are log-odds deviations from bias).
|
||||
#'
|
||||
#' When \code{predinteraction = TRUE} and it is not a multiclass setting, the output is a 3d array with
|
||||
#' dimensions \code{c(nrow, num_features + 1, num_features + 1)}. The off-diagonal (in the last two dimensions)
|
||||
#' elements represent different features interaction contributions. The array is symmetric WRT the last
|
||||
#' two dimensions. The "+ 1" columns corresponds to bias. Summing this array along the last dimension should
|
||||
#' produce practically the same result as predict with \code{predcontrib = TRUE}.
|
||||
#' For a multiclass case, a list of \code{num_class} elements is returned, where each element is
|
||||
#' such an array.
|
||||
#'
|
||||
#' When \code{strict_shape} is set to \code{TRUE}, the output is always an array. For
|
||||
#' normal prediction, the output is a 2-dimension array \code{(num_class, nrow(newdata))}.
|
||||
#'
|
||||
#' For \code{predcontrib = TRUE}, output is \code{(ncol(newdata) + 1, num_class, nrow(newdata))}
|
||||
#' For \code{predinteraction = TRUE}, output is \code{(ncol(newdata) + 1, ncol(newdata) + 1, num_class, nrow(newdata))}
|
||||
#' For \code{predleaf = TRUE}, output is \code{(n_trees_in_forest, num_class, n_iterations, nrow(newdata))}
|
||||
#'
|
||||
#' @seealso
|
||||
#' \code{\link{xgb.train}}.
|
||||
#' The return type depends on `strict_shape`. If `FALSE` (default):
|
||||
#' - For regression or binary classification: A vector of length `nrows(newdata)`.
|
||||
#' - For multiclass classification: A vector of length `num_class * nrows(newdata)` or
|
||||
#' a `(nrows(newdata), num_class)` matrix, depending on the `reshape` value.
|
||||
#' - When `predleaf = TRUE`: A matrix with one column per tree.
|
||||
#' - When `predcontrib = TRUE`: When not multiclass, a matrix with
|
||||
#' ` num_features + 1` columns. The last "+ 1" column corresponds to the baseline value.
|
||||
#' In the multiclass case, a list of `num_class` such matrices.
|
||||
#' The contribution values are on the scale of untransformed margin
|
||||
#' (e.g., for binary classification, the values are log-odds deviations from the baseline).
|
||||
#' - When `predinteraction = TRUE`: When not multiclass, the output is a 3d array of
|
||||
#' dimension `c(nrow, num_features + 1, num_features + 1)`. The off-diagonal (in the last two dimensions)
|
||||
#' elements represent different feature interaction contributions. The array is symmetric WRT the last
|
||||
#' two dimensions. The "+ 1" columns corresponds to the baselines. Summing this array along the last dimension should
|
||||
#' produce practically the same result as `predcontrib = TRUE`.
|
||||
#' In the multiclass case, a list of `num_class` such arrays.
|
||||
#'
|
||||
#' When `strict_shape = TRUE`, the output is always an array:
|
||||
#' - For normal predictions, the output has dimension `(num_class, nrow(newdata))`.
|
||||
#' - For `predcontrib = TRUE`, the dimension is `(ncol(newdata) + 1, num_class, nrow(newdata))`.
|
||||
#' - For `predinteraction = TRUE`, the dimension is `(ncol(newdata) + 1, ncol(newdata) + 1, num_class, nrow(newdata))`.
|
||||
#' - For `predleaf = TRUE`, the dimension is `(n_trees_in_forest, num_class, n_iterations, nrow(newdata))`.
|
||||
#' @seealso [xgb.train()]
|
||||
#' @references
|
||||
#'
|
||||
#' Scott M. Lundberg, Su-In Lee, "A Unified Approach to Interpreting Model Predictions", NIPS Proceedings 2017, \url{https://arxiv.org/abs/1705.07874}
|
||||
#'
|
||||
#' Scott M. Lundberg, Su-In Lee, "Consistent feature attribution for tree ensembles", \url{https://arxiv.org/abs/1706.06060}
|
||||
#' 1. Scott M. Lundberg, Su-In Lee, "A Unified Approach to Interpreting Model Predictions",
|
||||
#' NIPS Proceedings 2017, \url{https://arxiv.org/abs/1705.07874}
|
||||
#' 2. Scott M. Lundberg, Su-In Lee, "Consistent feature attribution for tree ensembles",
|
||||
#' \url{https://arxiv.org/abs/1706.06060}
|
||||
#'
|
||||
#' @examples
|
||||
#' ## binary classification:
|
||||
#'
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
#' data(agaricus.train, package = "xgboost")
|
||||
#' data(agaricus.test, package = "xgboost")
|
||||
#'
|
||||
#' ## Keep the number of threads to 2 for examples
|
||||
#' nthread <- 2
|
||||
@ -275,8 +272,16 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#' train <- agaricus.train
|
||||
#' test <- agaricus.test
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 0.5, nthread = nthread, nrounds = 5, objective = "binary:logistic")
|
||||
#' bst <- xgboost(
|
||||
#' data = train$data,
|
||||
#' label = train$label,
|
||||
#' max_depth = 2,
|
||||
#' eta = 0.5,
|
||||
#' nthread = nthread,
|
||||
#' nrounds = 5,
|
||||
#' objective = "binary:logistic"
|
||||
#' )
|
||||
#'
|
||||
#' # use all trees by default
|
||||
#' pred <- predict(bst, test$data)
|
||||
#' # use only the 1st tree
|
||||
@ -308,10 +313,21 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#'
|
||||
#' lb <- as.numeric(iris$Species) - 1
|
||||
#' num_class <- 3
|
||||
#'
|
||||
#' set.seed(11)
|
||||
#' bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
|
||||
#' max_depth = 4, eta = 0.5, nthread = 2, nrounds = 10, subsample = 0.5,
|
||||
#' objective = "multi:softprob", num_class = num_class)
|
||||
#'
|
||||
#' bst <- xgboost(
|
||||
#' data = as.matrix(iris[, -5]),
|
||||
#' label = lb,
|
||||
#' max_depth = 4,
|
||||
#' eta = 0.5,
|
||||
#' nthread = 2,
|
||||
#' nrounds = 10,
|
||||
#' subsample = 0.5,
|
||||
#' objective = "multi:softprob",
|
||||
#' num_class = num_class
|
||||
#' )
|
||||
#'
|
||||
#' # predict for softmax returns num_class probability numbers per case:
|
||||
#' pred <- predict(bst, as.matrix(iris[, -5]))
|
||||
#' str(pred)
|
||||
@ -322,11 +338,21 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#' # the following should result in the same error as seen in the last iteration
|
||||
#' sum(pred_labels != lb) / length(lb)
|
||||
#'
|
||||
#' # compare that to the predictions from softmax:
|
||||
#' # compare with predictions from softmax:
|
||||
#' set.seed(11)
|
||||
#' bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
|
||||
#' max_depth = 4, eta = 0.5, nthread = 2, nrounds = 10, subsample = 0.5,
|
||||
#' objective = "multi:softmax", num_class = num_class)
|
||||
#'
|
||||
#' bst <- xgboost(
|
||||
#' data = as.matrix(iris[, -5]),
|
||||
#' label = lb,
|
||||
#' max_depth = 4,
|
||||
#' eta = 0.5,
|
||||
#' nthread = 2,
|
||||
#' nrounds = 10,
|
||||
#' subsample = 0.5,
|
||||
#' objective = "multi:softmax",
|
||||
#' num_class = num_class
|
||||
#' )
|
||||
#'
|
||||
#' pred <- predict(bst, as.matrix(iris[, -5]))
|
||||
#' str(pred)
|
||||
#' all.equal(pred, pred_labels)
|
||||
@ -497,63 +523,69 @@ predict.xgb.Booster.handle <- function(object, ...) {
|
||||
}
|
||||
|
||||
|
||||
#' Accessors for serializable attributes of a model.
|
||||
#' Accessors for serializable attributes of a model
|
||||
#'
|
||||
#' These methods allow to manipulate the key-value attribute strings of an xgboost model.
|
||||
#'
|
||||
#' @param object Object of class \code{xgb.Booster} or \code{xgb.Booster.handle}.
|
||||
#' @param name a non-empty character string specifying which attribute is to be accessed.
|
||||
#' @param value a value of an attribute for \code{xgb.attr<-}; for \code{xgb.attributes<-}
|
||||
#' it's a list (or an object coercible to a list) with the names of attributes to set
|
||||
#' @param object Object of class `xgb.Booster` or `xgb.Booster.handle`.
|
||||
#' @param name A non-empty character string specifying which attribute is to be accessed.
|
||||
#' @param value For `xgb.attr<-`, a value of an attribute; for `xgb.attributes<-`,
|
||||
#' it is a list (or an object coercible to a list) with the names of attributes to set
|
||||
#' and the elements corresponding to attribute values.
|
||||
#' Non-character values are converted to character.
|
||||
#' When attribute value is not a scalar, only the first index is used.
|
||||
#' Use \code{NULL} to remove an attribute.
|
||||
#' When an attribute value is not a scalar, only the first index is used.
|
||||
#' Use `NULL` to remove an attribute.
|
||||
#'
|
||||
#' @details
|
||||
#' The primary purpose of xgboost model attributes is to store some meta-data about the model.
|
||||
#' The primary purpose of xgboost model attributes is to store some meta data about the model.
|
||||
#' Note that they are a separate concept from the object attributes in R.
|
||||
#' Specifically, they refer to key-value strings that can be attached to an xgboost model,
|
||||
#' stored together with the model's binary representation, and accessed later
|
||||
#' (from R or any other interface).
|
||||
#' In contrast, any R-attribute assigned to an R-object of \code{xgb.Booster} class
|
||||
#' would not be saved by \code{xgb.save} because an xgboost model is an external memory object
|
||||
#' In contrast, any R attribute assigned to an R object of `xgb.Booster` class
|
||||
#' would not be saved by [xgb.save()] because an xgboost model is an external memory object
|
||||
#' and its serialization is handled externally.
|
||||
#' Also, setting an attribute that has the same name as one of xgboost's parameters wouldn't
|
||||
#' change the value of that parameter for a model.
|
||||
#' Use \code{\link{xgb.parameters<-}} to set or change model parameters.
|
||||
#' Use [xgb.parameters<-()] to set or change model parameters.
|
||||
#'
|
||||
#' The attribute setters would usually work more efficiently for \code{xgb.Booster.handle}
|
||||
#' than for \code{xgb.Booster}, since only just a handle (pointer) would need to be copied.
|
||||
#' The attribute setters would usually work more efficiently for `xgb.Booster.handle`
|
||||
#' than for `xgb.Booster`, since only just a handle (pointer) would need to be copied.
|
||||
#' That would only matter if attributes need to be set many times.
|
||||
#' Note, however, that when feeding a handle of an \code{xgb.Booster} object to the attribute setters,
|
||||
#' the raw model cache of an \code{xgb.Booster} object would not be automatically updated,
|
||||
#' and it would be user's responsibility to call \code{xgb.serialize} to update it.
|
||||
#' Note, however, that when feeding a handle of an `xgb.Booster` object to the attribute setters,
|
||||
#' the raw model cache of an `xgb.Booster` object would not be automatically updated,
|
||||
#' and it would be the user's responsibility to call [xgb.serialize()] to update it.
|
||||
#'
|
||||
#' The \code{xgb.attributes<-} setter either updates the existing or adds one or several attributes,
|
||||
#' The `xgb.attributes<-` setter either updates the existing or adds one or several attributes,
|
||||
#' but it doesn't delete the other existing attributes.
|
||||
#'
|
||||
#' @return
|
||||
#' \code{xgb.attr} returns either a string value of an attribute
|
||||
#' or \code{NULL} if an attribute wasn't stored in a model.
|
||||
#'
|
||||
#' \code{xgb.attributes} returns a list of all attribute stored in a model
|
||||
#' or \code{NULL} if a model has no stored attributes.
|
||||
#' - `xgb.attr()` returns either a string value of an attribute
|
||||
#' or `NULL` if an attribute wasn't stored in a model.
|
||||
#' - `xgb.attributes()` returns a list of all attributes stored in a model
|
||||
#' or `NULL` if a model has no stored attributes.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.train, package = "xgboost")
|
||||
#' train <- agaricus.train
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#' bst <- xgboost(
|
||||
#' data = train$data,
|
||||
#' label = train$label,
|
||||
#' max_depth = 2,
|
||||
#' eta = 1,
|
||||
#' nthread = 2,
|
||||
#' nrounds = 2,
|
||||
#' objective = "binary:logistic"
|
||||
#' )
|
||||
#'
|
||||
#' xgb.attr(bst, "my_attribute") <- "my attribute value"
|
||||
#' print(xgb.attr(bst, "my_attribute"))
|
||||
#' xgb.attributes(bst) <- list(a = 123, b = "abc")
|
||||
#'
|
||||
#' xgb.save(bst, 'xgb.model')
|
||||
#' bst1 <- xgb.load('xgb.model')
|
||||
#' if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
#' xgb.save(bst, "xgb.model")
|
||||
#' bst1 <- xgb.load("xgb.model")
|
||||
#' if (file.exists("xgb.model")) file.remove("xgb.model")
|
||||
#' print(xgb.attr(bst1, "my_attribute"))
|
||||
#' print(xgb.attributes(bst1))
|
||||
#'
|
||||
@ -632,22 +664,29 @@ xgb.attributes <- function(object) {
|
||||
object
|
||||
}
|
||||
|
||||
#' Accessors for model parameters as JSON string.
|
||||
#' Accessors for model parameters as JSON string
|
||||
#'
|
||||
#' @param object Object of class \code{xgb.Booster}
|
||||
#' @param object Object of class `xgb.Booster`.
|
||||
#' @param value A JSON string.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.train, package = "xgboost")
|
||||
#'
|
||||
#' ## Keep the number of threads to 1 for examples
|
||||
#' nthread <- 1
|
||||
#' data.table::setDTthreads(nthread)
|
||||
#' train <- agaricus.train
|
||||
#'
|
||||
#' bst <- xgboost(
|
||||
#' data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = nthread, nrounds = 2, objective = "binary:logistic"
|
||||
#' data = train$data,
|
||||
#' label = train$label,
|
||||
#' max_depth = 2,
|
||||
#' eta = 1,
|
||||
#' nthread = nthread,
|
||||
#' nrounds = 2,
|
||||
#' objective = "binary:logistic"
|
||||
#' )
|
||||
#'
|
||||
#' config <- xgb.config(bst)
|
||||
#'
|
||||
#' @rdname xgb.config
|
||||
@ -667,24 +706,31 @@ xgb.config <- function(object) {
|
||||
object
|
||||
}
|
||||
|
||||
#' Accessors for model parameters.
|
||||
#' Accessors for model parameters
|
||||
#'
|
||||
#' Only the setter for xgboost parameters is currently implemented.
|
||||
#'
|
||||
#' @param object Object of class \code{xgb.Booster} or \code{xgb.Booster.handle}.
|
||||
#' @param value a list (or an object coercible to a list) with the names of parameters to set
|
||||
#' @param object Object of class `xgb.Booster` or `xgb.Booster.handle`.
|
||||
#' @param value A list (or an object coercible to a list) with the names of parameters to set
|
||||
#' and the elements corresponding to parameter values.
|
||||
#'
|
||||
#' @details
|
||||
#' Note that the setter would usually work more efficiently for \code{xgb.Booster.handle}
|
||||
#' than for \code{xgb.Booster}, since only just a handle would need to be copied.
|
||||
#' Note that the setter would usually work more efficiently for `xgb.Booster.handle`
|
||||
#' than for `xgb.Booster`, since only just a handle would need to be copied.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.train, package = "xgboost")
|
||||
#' train <- agaricus.train
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#' bst <- xgboost(
|
||||
#' data = train$data,
|
||||
#' label = train$label,
|
||||
#' max_depth = 2,
|
||||
#' eta = 1,
|
||||
#' nthread = 2,
|
||||
#' nrounds = 2,
|
||||
#' objective = "binary:logistic"
|
||||
#' )
|
||||
#'
|
||||
#' xgb.parameters(bst) <- list(eta = 0.1)
|
||||
#'
|
||||
@ -724,23 +770,31 @@ xgb.ntree <- function(bst) {
|
||||
|
||||
#' Print xgb.Booster
|
||||
#'
|
||||
#' Print information about xgb.Booster.
|
||||
#' Print information about `xgb.Booster`.
|
||||
#'
|
||||
#' @param x an xgb.Booster object
|
||||
#' @param verbose whether to print detailed data (e.g., attribute values)
|
||||
#' @param ... not currently used
|
||||
#' @param x An `xgb.Booster` object.
|
||||
#' @param verbose Whether to print detailed data (e.g., attribute values).
|
||||
#' @param ... Not currently used.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.train, package = "xgboost")
|
||||
#' train <- agaricus.train
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#' attr(bst, 'myattr') <- 'memo'
|
||||
#'
|
||||
#' bst <- xgboost(
|
||||
#' data = train$data,
|
||||
#' label = train$label,
|
||||
#' max_depth = 2,
|
||||
#' eta = 1,
|
||||
#' nthread = 2,
|
||||
#' nrounds = 2,
|
||||
#' objective = "binary:logistic"
|
||||
#' )
|
||||
#'
|
||||
#' attr(bst, "myattr") <- "memo"
|
||||
#'
|
||||
#' print(bst)
|
||||
#' print(bst, verbose = TRUE)
|
||||
#'
|
||||
#' @method print xgb.Booster
|
||||
#' @export
|
||||
print.xgb.Booster <- function(x, verbose = FALSE, ...) {
|
||||
cat('##### xgb.Booster\n')
|
||||
|
||||
@ -51,7 +51,7 @@
|
||||
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
|
||||
#' dtest <- with(agaricus.test, xgb.DMatrix(data, label = label, nthread = 2))
|
||||
#'
|
||||
#' param <- list(max_depth=2, eta=1, silent=1, objective='binary:logistic')
|
||||
#' param <- list(max_depth=2, eta=1, objective='binary:logistic')
|
||||
#' nrounds = 4
|
||||
#'
|
||||
#' bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2)
|
||||
|
||||
@ -7,7 +7,7 @@
|
||||
#' \code{data}. When it is NULL, it is computed internally using \code{model} and \code{data}.
|
||||
#' @param features a vector of either column indices or of feature names to plot. When it is NULL,
|
||||
#' feature importance is calculated, and \code{top_n} high ranked features are taken.
|
||||
#' @param top_n when \code{features} is NULL, top_n [1, 100] most important features in a model are taken.
|
||||
#' @param top_n when \code{features} is NULL, top_n `[1, 100]` most important features in a model are taken.
|
||||
#' @param model an \code{xgb.Booster} model. It has to be provided when either \code{shap_contrib}
|
||||
#' or \code{features} is missing.
|
||||
#' @param trees passed to \code{\link{xgb.importance}} when \code{features = NULL}.
|
||||
@ -197,7 +197,7 @@ xgb.plot.shap <- function(data, shap_contrib = NULL, features = NULL, top_n = 1,
|
||||
#' hence allows us to see which features have a negative / positive contribution
|
||||
#' on the model prediction, and whether the contribution is different for larger
|
||||
#' or smaller values of the feature. We effectively try to replicate the
|
||||
#' \code{summary_plot} function from https://github.com/shap/shap.
|
||||
#' \code{summary_plot} function from <https://github.com/shap/shap>.
|
||||
#'
|
||||
#' @inheritParams xgb.plot.shap
|
||||
#'
|
||||
|
||||
@ -40,10 +40,10 @@ xgboost <- function(data = NULL, label = NULL, missing = NA, weight = NULL,
|
||||
#' }
|
||||
#'
|
||||
#' @references
|
||||
#' https://archive.ics.uci.edu/ml/datasets/Mushroom
|
||||
#' <https://archive.ics.uci.edu/ml/datasets/Mushroom>
|
||||
#'
|
||||
#' Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
|
||||
#' [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
|
||||
#' <http://archive.ics.uci.edu/ml>. Irvine, CA: University of California,
|
||||
#' School of Information and Computer Science.
|
||||
#'
|
||||
#' @docType data
|
||||
@ -67,10 +67,10 @@ NULL
|
||||
#' }
|
||||
#'
|
||||
#' @references
|
||||
#' https://archive.ics.uci.edu/ml/datasets/Mushroom
|
||||
#' <https://archive.ics.uci.edu/ml/datasets/Mushroom>
|
||||
#'
|
||||
#' Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
|
||||
#' [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
|
||||
#' <http://archive.ics.uci.edu/ml>. Irvine, CA: University of California,
|
||||
#' School of Information and Computer Science.
|
||||
#'
|
||||
#' @docType data
|
||||
|
||||
@ -24,10 +24,10 @@ This data set includes the following fields:
|
||||
}
|
||||
}
|
||||
\references{
|
||||
https://archive.ics.uci.edu/ml/datasets/Mushroom
|
||||
\url{https://archive.ics.uci.edu/ml/datasets/Mushroom}
|
||||
|
||||
Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
|
||||
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
|
||||
\url{http://archive.ics.uci.edu/ml}. Irvine, CA: University of California,
|
||||
School of Information and Computer Science.
|
||||
}
|
||||
\keyword{datasets}
|
||||
|
||||
@ -24,10 +24,10 @@ This data set includes the following fields:
|
||||
}
|
||||
}
|
||||
\references{
|
||||
https://archive.ics.uci.edu/ml/datasets/Mushroom
|
||||
\url{https://archive.ics.uci.edu/ml/datasets/Mushroom}
|
||||
|
||||
Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
|
||||
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
|
||||
\url{http://archive.ics.uci.edu/ml}. Irvine, CA: University of California,
|
||||
School of Information and Computer Science.
|
||||
}
|
||||
\keyword{datasets}
|
||||
|
||||
@ -13,7 +13,7 @@ cb.save.model(save_period = 0, save_name = "xgboost.model")
|
||||
\item{save_name}{the name or path for the saved model file.
|
||||
It can contain a \code{\link[base]{sprintf}} formatting specifier
|
||||
to include the integer iteration number in the file name.
|
||||
E.g., with \code{save_name} = 'xgboost_%04d.model',
|
||||
E.g., with \code{save_name} = 'xgboost_\%04d.model',
|
||||
the file saved at iteration 50 would be named "xgboost_0050.model".}
|
||||
}
|
||||
\description{
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
\name{predict.xgb.Booster}
|
||||
\alias{predict.xgb.Booster}
|
||||
\alias{predict.xgb.Booster.handle}
|
||||
\title{Predict method for eXtreme Gradient Boosting model}
|
||||
\title{Predict method for XGBoost model}
|
||||
\usage{
|
||||
\method{predict}{xgb.Booster}(
|
||||
object,
|
||||
@ -25,90 +25,86 @@
|
||||
\method{predict}{xgb.Booster.handle}(object, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{object}{Object of class \code{xgb.Booster} or \code{xgb.Booster.handle}}
|
||||
\item{object}{Object of class \code{xgb.Booster} or \code{xgb.Booster.handle}.}
|
||||
|
||||
\item{newdata}{takes \code{matrix}, \code{dgCMatrix}, \code{dgRMatrix}, \code{dsparseVector},
|
||||
local data file or \code{xgb.DMatrix}.
|
||||
\item{newdata}{Takes \code{matrix}, \code{dgCMatrix}, \code{dgRMatrix}, \code{dsparseVector},
|
||||
local data file, or \code{xgb.DMatrix}.
|
||||
For single-row predictions on sparse data, it is recommended to use the CSR format.
|
||||
If passing a sparse vector, it will take it as a row vector.}
|
||||
|
||||
For single-row predictions on sparse data, it's recommended to use CSR format. If passing
|
||||
a sparse vector, it will take it as a row vector.}
|
||||
\item{missing}{Only used when input is a dense matrix. Pick a float value that represents
|
||||
missing values in data (e.g., 0 or some other extreme value).}
|
||||
|
||||
\item{missing}{Missing is only used when input is dense matrix. Pick a float value that represents
|
||||
missing values in data (e.g., sometimes 0 or some other extreme value is used).}
|
||||
|
||||
\item{outputmargin}{whether the prediction should be returned in the for of original untransformed
|
||||
\item{outputmargin}{Whether the prediction should be returned in the form of original untransformed
|
||||
sum of predictions from boosting iterations' results. E.g., setting \code{outputmargin=TRUE} for
|
||||
logistic regression would result in predictions for log-odds instead of probabilities.}
|
||||
logistic regression would return log-odds instead of probabilities.}
|
||||
|
||||
\item{ntreelimit}{Deprecated, use \code{iterationrange} instead.}
|
||||
|
||||
\item{predleaf}{whether predict leaf index.}
|
||||
\item{predleaf}{Whether to predict pre-tree leaf indices.}
|
||||
|
||||
\item{predcontrib}{whether to return feature contributions to individual predictions (see Details).}
|
||||
\item{predcontrib}{Whether to return feature contributions to individual predictions (see Details).}
|
||||
|
||||
\item{approxcontrib}{whether to use a fast approximation for feature contributions (see Details).}
|
||||
\item{approxcontrib}{Whether to use a fast approximation for feature contributions (see Details).}
|
||||
|
||||
\item{predinteraction}{whether to return contributions of feature interactions to individual predictions (see Details).}
|
||||
\item{predinteraction}{Whether to return contributions of feature interactions to individual predictions (see Details).}
|
||||
|
||||
\item{reshape}{whether to reshape the vector of predictions to a matrix form when there are several
|
||||
prediction outputs per case. This option has no effect when either of predleaf, predcontrib,
|
||||
or predinteraction flags is TRUE.}
|
||||
\item{reshape}{Whether to reshape the vector of predictions to matrix form when there are several
|
||||
prediction outputs per case. No effect if \code{predleaf}, \code{predcontrib},
|
||||
or \code{predinteraction} is \code{TRUE}.}
|
||||
|
||||
\item{training}{whether is the prediction result used for training. For dart booster,
|
||||
\item{training}{Whether the predictions are used for training. For dart booster,
|
||||
training predicting will perform dropout.}
|
||||
|
||||
\item{iterationrange}{Specifies which layer of trees are used in prediction. For
|
||||
example, if a random forest is trained with 100 rounds. Specifying
|
||||
`iterationrange=(1, 21)`, then only the forests built during [1, 21) (half open set)
|
||||
rounds are used in this prediction. It's 1-based index just like R vector. When set
|
||||
to \code{c(1, 1)} XGBoost will use all trees.}
|
||||
\item{iterationrange}{Specifies which trees are used in prediction. For
|
||||
example, take a random forest with 100 rounds.
|
||||
With \code{iterationrange=c(1, 21)}, only the trees built during \verb{[1, 21)} (half open set)
|
||||
rounds are used in this prediction. The index is 1-based just like an R vector. When set
|
||||
to \code{c(1, 1)}, XGBoost will use all trees.}
|
||||
|
||||
\item{strict_shape}{Default is \code{FALSE}. When it's set to \code{TRUE}, output
|
||||
type and shape of prediction are invariant to model type.}
|
||||
\item{strict_shape}{Default is \code{FALSE}. When set to \code{TRUE}, the output
|
||||
type and shape of predictions are invariant to the model type.}
|
||||
|
||||
\item{...}{Not used.}
|
||||
}
|
||||
\value{
|
||||
The return type is different depending whether \code{strict_shape} is set to \code{TRUE}. By default,
|
||||
for regression or binary classification, it returns a vector of length \code{nrows(newdata)}.
|
||||
For multiclass classification, either a \code{num_class * nrows(newdata)} vector or
|
||||
a \code{(nrows(newdata), num_class)} dimension matrix is returned, depending on
|
||||
the \code{reshape} value.
|
||||
The return type depends on \code{strict_shape}. If \code{FALSE} (default):
|
||||
\itemize{
|
||||
\item For regression or binary classification: A vector of length \code{nrows(newdata)}.
|
||||
\item For multiclass classification: A vector of length \code{num_class * nrows(newdata)} or
|
||||
a \verb{(nrows(newdata), num_class)} matrix, depending on the \code{reshape} value.
|
||||
\item When \code{predleaf = TRUE}: A matrix with one column per tree.
|
||||
\item When \code{predcontrib = TRUE}: When not multiclass, a matrix with
|
||||
\code{ num_features + 1} columns. The last "+ 1" column corresponds to the baseline value.
|
||||
In the multiclass case, a list of \code{num_class} such matrices.
|
||||
The contribution values are on the scale of untransformed margin
|
||||
(e.g., for binary classification, the values are log-odds deviations from the baseline).
|
||||
\item When \code{predinteraction = TRUE}: When not multiclass, the output is a 3d array of
|
||||
dimension \code{c(nrow, num_features + 1, num_features + 1)}. The off-diagonal (in the last two dimensions)
|
||||
elements represent different feature interaction contributions. The array is symmetric WRT the last
|
||||
two dimensions. The "+ 1" columns corresponds to the baselines. Summing this array along the last dimension should
|
||||
produce practically the same result as \code{predcontrib = TRUE}.
|
||||
In the multiclass case, a list of \code{num_class} such arrays.
|
||||
}
|
||||
|
||||
When \code{predleaf = TRUE}, the output is a matrix object with the
|
||||
number of columns corresponding to the number of trees.
|
||||
|
||||
When \code{predcontrib = TRUE} and it is not a multiclass setting, the output is a matrix object with
|
||||
\code{num_features + 1} columns. The last "+ 1" column in a matrix corresponds to bias.
|
||||
For a multiclass case, a list of \code{num_class} elements is returned, where each element is
|
||||
such a matrix. The contribution values are on the scale of untransformed margin
|
||||
(e.g., for binary classification would mean that the contributions are log-odds deviations from bias).
|
||||
|
||||
When \code{predinteraction = TRUE} and it is not a multiclass setting, the output is a 3d array with
|
||||
dimensions \code{c(nrow, num_features + 1, num_features + 1)}. The off-diagonal (in the last two dimensions)
|
||||
elements represent different features interaction contributions. The array is symmetric WRT the last
|
||||
two dimensions. The "+ 1" columns corresponds to bias. Summing this array along the last dimension should
|
||||
produce practically the same result as predict with \code{predcontrib = TRUE}.
|
||||
For a multiclass case, a list of \code{num_class} elements is returned, where each element is
|
||||
such an array.
|
||||
|
||||
When \code{strict_shape} is set to \code{TRUE}, the output is always an array. For
|
||||
normal prediction, the output is a 2-dimension array \code{(num_class, nrow(newdata))}.
|
||||
|
||||
For \code{predcontrib = TRUE}, output is \code{(ncol(newdata) + 1, num_class, nrow(newdata))}
|
||||
For \code{predinteraction = TRUE}, output is \code{(ncol(newdata) + 1, ncol(newdata) + 1, num_class, nrow(newdata))}
|
||||
For \code{predleaf = TRUE}, output is \code{(n_trees_in_forest, num_class, n_iterations, nrow(newdata))}
|
||||
When \code{strict_shape = TRUE}, the output is always an array:
|
||||
\itemize{
|
||||
\item For normal predictions, the output has dimension \verb{(num_class, nrow(newdata))}.
|
||||
\item For \code{predcontrib = TRUE}, the dimension is \verb{(ncol(newdata) + 1, num_class, nrow(newdata))}.
|
||||
\item For \code{predinteraction = TRUE}, the dimension is \verb{(ncol(newdata) + 1, ncol(newdata) + 1, num_class, nrow(newdata))}.
|
||||
\item For \code{predleaf = TRUE}, the dimension is \verb{(n_trees_in_forest, num_class, n_iterations, nrow(newdata))}.
|
||||
}
|
||||
}
|
||||
\description{
|
||||
Predicted values based on either xgboost model or model handle object.
|
||||
}
|
||||
\details{
|
||||
Note that \code{iterationrange} would currently do nothing for predictions from gblinear,
|
||||
since gblinear doesn't keep its boosting history.
|
||||
Note that \code{iterationrange} would currently do nothing for predictions from "gblinear",
|
||||
since "gblinear" doesn't keep its boosting history.
|
||||
|
||||
One possible practical applications of the \code{predleaf} option is to use the model
|
||||
as a generator of new features which capture non-linearity and interactions,
|
||||
e.g., as implemented in \code{\link{xgb.create.features}}.
|
||||
e.g., as implemented in \code{\link[=xgb.create.features]{xgb.create.features()}}.
|
||||
|
||||
Setting \code{predcontrib = TRUE} allows to calculate contributions of each feature to
|
||||
individual predictions. For "gblinear" booster, feature contributions are simply linear terms
|
||||
@ -124,14 +120,14 @@ Since it quadratically depends on the number of features, it is recommended to p
|
||||
of the most important features first. See below about the format of the returned results.
|
||||
|
||||
The \code{predict()} method uses as many threads as defined in \code{xgb.Booster} object (all by default).
|
||||
If you want to change their number, then assign a new number to \code{nthread} using \code{\link{xgb.parameters<-}}.
|
||||
Note also that converting a matrix to \code{\link{xgb.DMatrix}} uses multiple threads too.
|
||||
If you want to change their number, assign a new number to \code{nthread} using \code{\link[=xgb.parameters<-]{xgb.parameters<-()}}.
|
||||
Note that converting a matrix to \code{\link[=xgb.DMatrix]{xgb.DMatrix()}} uses multiple threads too.
|
||||
}
|
||||
\examples{
|
||||
## binary classification:
|
||||
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.test, package='xgboost')
|
||||
data(agaricus.train, package = "xgboost")
|
||||
data(agaricus.test, package = "xgboost")
|
||||
|
||||
## Keep the number of threads to 2 for examples
|
||||
nthread <- 2
|
||||
@ -140,8 +136,16 @@ data.table::setDTthreads(nthread)
|
||||
train <- agaricus.train
|
||||
test <- agaricus.test
|
||||
|
||||
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
eta = 0.5, nthread = nthread, nrounds = 5, objective = "binary:logistic")
|
||||
bst <- xgboost(
|
||||
data = train$data,
|
||||
label = train$label,
|
||||
max_depth = 2,
|
||||
eta = 0.5,
|
||||
nthread = nthread,
|
||||
nrounds = 5,
|
||||
objective = "binary:logistic"
|
||||
)
|
||||
|
||||
# use all trees by default
|
||||
pred <- predict(bst, test$data)
|
||||
# use only the 1st tree
|
||||
@ -173,10 +177,21 @@ par(mar = old_mar)
|
||||
|
||||
lb <- as.numeric(iris$Species) - 1
|
||||
num_class <- 3
|
||||
|
||||
set.seed(11)
|
||||
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
|
||||
max_depth = 4, eta = 0.5, nthread = 2, nrounds = 10, subsample = 0.5,
|
||||
objective = "multi:softprob", num_class = num_class)
|
||||
|
||||
bst <- xgboost(
|
||||
data = as.matrix(iris[, -5]),
|
||||
label = lb,
|
||||
max_depth = 4,
|
||||
eta = 0.5,
|
||||
nthread = 2,
|
||||
nrounds = 10,
|
||||
subsample = 0.5,
|
||||
objective = "multi:softprob",
|
||||
num_class = num_class
|
||||
)
|
||||
|
||||
# predict for softmax returns num_class probability numbers per case:
|
||||
pred <- predict(bst, as.matrix(iris[, -5]))
|
||||
str(pred)
|
||||
@ -187,11 +202,21 @@ pred_labels <- max.col(pred) - 1
|
||||
# the following should result in the same error as seen in the last iteration
|
||||
sum(pred_labels != lb) / length(lb)
|
||||
|
||||
# compare that to the predictions from softmax:
|
||||
# compare with predictions from softmax:
|
||||
set.seed(11)
|
||||
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
|
||||
max_depth = 4, eta = 0.5, nthread = 2, nrounds = 10, subsample = 0.5,
|
||||
objective = "multi:softmax", num_class = num_class)
|
||||
|
||||
bst <- xgboost(
|
||||
data = as.matrix(iris[, -5]),
|
||||
label = lb,
|
||||
max_depth = 4,
|
||||
eta = 0.5,
|
||||
nthread = 2,
|
||||
nrounds = 10,
|
||||
subsample = 0.5,
|
||||
objective = "multi:softmax",
|
||||
num_class = num_class
|
||||
)
|
||||
|
||||
pred <- predict(bst, as.matrix(iris[, -5]))
|
||||
str(pred)
|
||||
all.equal(pred, pred_labels)
|
||||
@ -202,10 +227,13 @@ sum(pred5 != lb)/length(lb)
|
||||
|
||||
}
|
||||
\references{
|
||||
Scott M. Lundberg, Su-In Lee, "A Unified Approach to Interpreting Model Predictions", NIPS Proceedings 2017, \url{https://arxiv.org/abs/1705.07874}
|
||||
|
||||
Scott M. Lundberg, Su-In Lee, "Consistent feature attribution for tree ensembles", \url{https://arxiv.org/abs/1706.06060}
|
||||
\enumerate{
|
||||
\item Scott M. Lundberg, Su-In Lee, "A Unified Approach to Interpreting Model Predictions",
|
||||
NIPS Proceedings 2017, \url{https://arxiv.org/abs/1705.07874}
|
||||
\item Scott M. Lundberg, Su-In Lee, "Consistent feature attribution for tree ensembles",
|
||||
\url{https://arxiv.org/abs/1706.06060}
|
||||
}
|
||||
}
|
||||
\seealso{
|
||||
\code{\link{xgb.train}}.
|
||||
\code{\link[=xgb.train]{xgb.train()}}
|
||||
}
|
||||
|
||||
@ -7,21 +7,30 @@
|
||||
\method{print}{xgb.Booster}(x, verbose = FALSE, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{an xgb.Booster object}
|
||||
\item{x}{An \code{xgb.Booster} object.}
|
||||
|
||||
\item{verbose}{whether to print detailed data (e.g., attribute values)}
|
||||
\item{verbose}{Whether to print detailed data (e.g., attribute values).}
|
||||
|
||||
\item{...}{not currently used}
|
||||
\item{...}{Not currently used.}
|
||||
}
|
||||
\description{
|
||||
Print information about xgb.Booster.
|
||||
Print information about \code{xgb.Booster}.
|
||||
}
|
||||
\examples{
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.train, package = "xgboost")
|
||||
train <- agaricus.train
|
||||
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
attr(bst, 'myattr') <- 'memo'
|
||||
|
||||
bst <- xgboost(
|
||||
data = train$data,
|
||||
label = train$label,
|
||||
max_depth = 2,
|
||||
eta = 1,
|
||||
nthread = 2,
|
||||
nrounds = 2,
|
||||
objective = "binary:logistic"
|
||||
)
|
||||
|
||||
attr(bst, "myattr") <- "memo"
|
||||
|
||||
print(bst)
|
||||
print(bst, verbose = TRUE)
|
||||
|
||||
@ -2,14 +2,14 @@
|
||||
% Please edit documentation in R/xgb.Booster.R
|
||||
\name{xgb.Booster.complete}
|
||||
\alias{xgb.Booster.complete}
|
||||
\title{Restore missing parts of an incomplete xgb.Booster object.}
|
||||
\title{Restore missing parts of an incomplete xgb.Booster object}
|
||||
\usage{
|
||||
xgb.Booster.complete(object, saveraw = TRUE)
|
||||
}
|
||||
\arguments{
|
||||
\item{object}{object of class \code{xgb.Booster}}
|
||||
\item{object}{Object of class \code{xgb.Booster}.}
|
||||
|
||||
\item{saveraw}{a flag indicating whether to append \code{raw} Booster memory dump data
|
||||
\item{saveraw}{A flag indicating whether to append \code{raw} Booster memory dump data
|
||||
when it doesn't already exist.}
|
||||
}
|
||||
\value{
|
||||
@ -27,15 +27,24 @@ While this method is primarily for internal use, it might be useful in some prac
|
||||
E.g., when an \code{xgb.Booster} model is saved as an R object and then is loaded as an R object,
|
||||
its handle (pointer) to an internal xgboost model would be invalid. The majority of xgboost methods
|
||||
should still work for such a model object since those methods would be using
|
||||
\code{xgb.Booster.complete} internally. However, one might find it to be more efficient to call the
|
||||
\code{xgb.Booster.complete} function explicitly once after loading a model as an R-object.
|
||||
\code{xgb.Booster.complete()} internally. However, one might find it to be more efficient to call the
|
||||
\code{xgb.Booster.complete()} function explicitly once after loading a model as an R-object.
|
||||
That would prevent further repeated implicit reconstruction of an internal booster model.
|
||||
}
|
||||
\examples{
|
||||
|
||||
data(agaricus.train, package='xgboost')
|
||||
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
|
||||
eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
data(agaricus.train, package = "xgboost")
|
||||
|
||||
bst <- xgboost(
|
||||
data = agaricus.train$data,
|
||||
label = agaricus.train$label,
|
||||
max_depth = 2,
|
||||
eta = 1,
|
||||
nthread = 2,
|
||||
nrounds = 2,
|
||||
objective = "binary:logistic"
|
||||
)
|
||||
|
||||
saveRDS(bst, "xgb.model.rds")
|
||||
|
||||
# Warning: The resulting RDS file is only compatible with the current XGBoost version.
|
||||
|
||||
@ -38,7 +38,8 @@ so it doesn't make sense to assign weights to individual data points.}
|
||||
|
||||
\item{base_margin}{Base margin used for boosting from existing model.
|
||||
|
||||
In the case of multi-output models, one can also pass multi-dimensional base_margin.}
|
||||
\if{html}{\out{<div class="sourceCode">}}\preformatted{ In the case of multi-output models, one can also pass multi-dimensional base_margin.
|
||||
}\if{html}{\out{</div>}}}
|
||||
|
||||
\item{missing}{a float value to represents missing values in data (used only when input is a dense matrix).
|
||||
It is useful when a 0 or some other extreme value represents missing values in data.}
|
||||
@ -62,7 +63,7 @@ frame and matrix.}
|
||||
|
||||
\item{enable_categorical}{Experimental support of specializing for categorical features.
|
||||
|
||||
If passing 'TRUE' and 'data' is a data frame,
|
||||
\if{html}{\out{<div class="sourceCode">}}\preformatted{ If passing 'TRUE' and 'data' is a data frame,
|
||||
columns of categorical types will automatically
|
||||
be set to be of categorical type (feature_type='c') in the resulting DMatrix.
|
||||
|
||||
@ -71,7 +72,8 @@ frame and matrix.}
|
||||
|
||||
If 'data' is not a data frame, this argument is ignored.
|
||||
|
||||
JSON/UBJSON serialization format is required for this.}
|
||||
JSON/UBJSON serialization format is required for this.
|
||||
}\if{html}{\out{</div>}}}
|
||||
}
|
||||
\description{
|
||||
Construct xgb.DMatrix object from either a dense matrix, a sparse matrix, or a local file.
|
||||
|
||||
@ -5,7 +5,7 @@
|
||||
\alias{xgb.attr<-}
|
||||
\alias{xgb.attributes}
|
||||
\alias{xgb.attributes<-}
|
||||
\title{Accessors for serializable attributes of a model.}
|
||||
\title{Accessors for serializable attributes of a model}
|
||||
\usage{
|
||||
xgb.attr(object, name)
|
||||
|
||||
@ -18,62 +18,70 @@ xgb.attributes(object) <- value
|
||||
\arguments{
|
||||
\item{object}{Object of class \code{xgb.Booster} or \code{xgb.Booster.handle}.}
|
||||
|
||||
\item{name}{a non-empty character string specifying which attribute is to be accessed.}
|
||||
\item{name}{A non-empty character string specifying which attribute is to be accessed.}
|
||||
|
||||
\item{value}{a value of an attribute for \code{xgb.attr<-}; for \code{xgb.attributes<-}
|
||||
it's a list (or an object coercible to a list) with the names of attributes to set
|
||||
\item{value}{For \verb{xgb.attr<-}, a value of an attribute; for \verb{xgb.attributes<-},
|
||||
it is a list (or an object coercible to a list) with the names of attributes to set
|
||||
and the elements corresponding to attribute values.
|
||||
Non-character values are converted to character.
|
||||
When attribute value is not a scalar, only the first index is used.
|
||||
When an attribute value is not a scalar, only the first index is used.
|
||||
Use \code{NULL} to remove an attribute.}
|
||||
}
|
||||
\value{
|
||||
\code{xgb.attr} returns either a string value of an attribute
|
||||
\itemize{
|
||||
\item \code{xgb.attr()} returns either a string value of an attribute
|
||||
or \code{NULL} if an attribute wasn't stored in a model.
|
||||
|
||||
\code{xgb.attributes} returns a list of all attribute stored in a model
|
||||
\item \code{xgb.attributes()} returns a list of all attributes stored in a model
|
||||
or \code{NULL} if a model has no stored attributes.
|
||||
}
|
||||
}
|
||||
\description{
|
||||
These methods allow to manipulate the key-value attribute strings of an xgboost model.
|
||||
}
|
||||
\details{
|
||||
The primary purpose of xgboost model attributes is to store some meta-data about the model.
|
||||
The primary purpose of xgboost model attributes is to store some meta data about the model.
|
||||
Note that they are a separate concept from the object attributes in R.
|
||||
Specifically, they refer to key-value strings that can be attached to an xgboost model,
|
||||
stored together with the model's binary representation, and accessed later
|
||||
(from R or any other interface).
|
||||
In contrast, any R-attribute assigned to an R-object of \code{xgb.Booster} class
|
||||
would not be saved by \code{xgb.save} because an xgboost model is an external memory object
|
||||
In contrast, any R attribute assigned to an R object of \code{xgb.Booster} class
|
||||
would not be saved by \code{\link[=xgb.save]{xgb.save()}} because an xgboost model is an external memory object
|
||||
and its serialization is handled externally.
|
||||
Also, setting an attribute that has the same name as one of xgboost's parameters wouldn't
|
||||
change the value of that parameter for a model.
|
||||
Use \code{\link{xgb.parameters<-}} to set or change model parameters.
|
||||
Use \code{\link[=xgb.parameters<-]{xgb.parameters<-()}} to set or change model parameters.
|
||||
|
||||
The attribute setters would usually work more efficiently for \code{xgb.Booster.handle}
|
||||
than for \code{xgb.Booster}, since only just a handle (pointer) would need to be copied.
|
||||
That would only matter if attributes need to be set many times.
|
||||
Note, however, that when feeding a handle of an \code{xgb.Booster} object to the attribute setters,
|
||||
the raw model cache of an \code{xgb.Booster} object would not be automatically updated,
|
||||
and it would be user's responsibility to call \code{xgb.serialize} to update it.
|
||||
and it would be the user's responsibility to call \code{\link[=xgb.serialize]{xgb.serialize()}} to update it.
|
||||
|
||||
The \code{xgb.attributes<-} setter either updates the existing or adds one or several attributes,
|
||||
The \verb{xgb.attributes<-} setter either updates the existing or adds one or several attributes,
|
||||
but it doesn't delete the other existing attributes.
|
||||
}
|
||||
\examples{
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.train, package = "xgboost")
|
||||
train <- agaricus.train
|
||||
|
||||
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
bst <- xgboost(
|
||||
data = train$data,
|
||||
label = train$label,
|
||||
max_depth = 2,
|
||||
eta = 1,
|
||||
nthread = 2,
|
||||
nrounds = 2,
|
||||
objective = "binary:logistic"
|
||||
)
|
||||
|
||||
xgb.attr(bst, "my_attribute") <- "my attribute value"
|
||||
print(xgb.attr(bst, "my_attribute"))
|
||||
xgb.attributes(bst) <- list(a = 123, b = "abc")
|
||||
|
||||
xgb.save(bst, 'xgb.model')
|
||||
bst1 <- xgb.load('xgb.model')
|
||||
if (file.exists('xgb.model')) file.remove('xgb.model')
|
||||
xgb.save(bst, "xgb.model")
|
||||
bst1 <- xgb.load("xgb.model")
|
||||
if (file.exists("xgb.model")) file.remove("xgb.model")
|
||||
print(xgb.attr(bst1, "my_attribute"))
|
||||
print(xgb.attributes(bst1))
|
||||
|
||||
|
||||
@ -3,31 +3,38 @@
|
||||
\name{xgb.config}
|
||||
\alias{xgb.config}
|
||||
\alias{xgb.config<-}
|
||||
\title{Accessors for model parameters as JSON string.}
|
||||
\title{Accessors for model parameters as JSON string}
|
||||
\usage{
|
||||
xgb.config(object)
|
||||
|
||||
xgb.config(object) <- value
|
||||
}
|
||||
\arguments{
|
||||
\item{object}{Object of class \code{xgb.Booster}}
|
||||
\item{object}{Object of class \code{xgb.Booster}.}
|
||||
|
||||
\item{value}{A JSON string.}
|
||||
}
|
||||
\description{
|
||||
Accessors for model parameters as JSON string.
|
||||
Accessors for model parameters as JSON string
|
||||
}
|
||||
\examples{
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.train, package = "xgboost")
|
||||
|
||||
## Keep the number of threads to 1 for examples
|
||||
nthread <- 1
|
||||
data.table::setDTthreads(nthread)
|
||||
train <- agaricus.train
|
||||
|
||||
bst <- xgboost(
|
||||
data = train$data, label = train$label, max_depth = 2,
|
||||
eta = 1, nthread = nthread, nrounds = 2, objective = "binary:logistic"
|
||||
data = train$data,
|
||||
label = train$label,
|
||||
max_depth = 2,
|
||||
eta = 1,
|
||||
nthread = nthread,
|
||||
nrounds = 2,
|
||||
objective = "binary:logistic"
|
||||
)
|
||||
|
||||
config <- xgb.config(bst)
|
||||
|
||||
}
|
||||
|
||||
@ -48,7 +48,7 @@ be the binary vector \code{[0, 1, 0, 1, 0]}, where the first 3 entries
|
||||
correspond to the leaves of the first subtree and last 2 to
|
||||
those of the second subtree.
|
||||
|
||||
[...]
|
||||
\link{...}
|
||||
|
||||
We can understand boosted decision tree
|
||||
based transformation as a supervised feature encoding that
|
||||
@ -62,7 +62,7 @@ data(agaricus.test, package='xgboost')
|
||||
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
|
||||
dtest <- with(agaricus.test, xgb.DMatrix(data, label = label, nthread = 2))
|
||||
|
||||
param <- list(max_depth=2, eta=1, silent=1, objective='binary:logistic')
|
||||
param <- list(max_depth=2, eta=1, objective='binary:logistic')
|
||||
nrounds = 4
|
||||
|
||||
bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2)
|
||||
|
||||
@ -2,14 +2,14 @@
|
||||
% Please edit documentation in R/xgb.Booster.R
|
||||
\name{xgb.parameters<-}
|
||||
\alias{xgb.parameters<-}
|
||||
\title{Accessors for model parameters.}
|
||||
\title{Accessors for model parameters}
|
||||
\usage{
|
||||
xgb.parameters(object) <- value
|
||||
}
|
||||
\arguments{
|
||||
\item{object}{Object of class \code{xgb.Booster} or \code{xgb.Booster.handle}.}
|
||||
|
||||
\item{value}{a list (or an object coercible to a list) with the names of parameters to set
|
||||
\item{value}{A list (or an object coercible to a list) with the names of parameters to set
|
||||
and the elements corresponding to parameter values.}
|
||||
}
|
||||
\description{
|
||||
@ -20,11 +20,18 @@ Note that the setter would usually work more efficiently for \code{xgb.Booster.h
|
||||
than for \code{xgb.Booster}, since only just a handle would need to be copied.
|
||||
}
|
||||
\examples{
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.train, package = "xgboost")
|
||||
train <- agaricus.train
|
||||
|
||||
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
bst <- xgboost(
|
||||
data = train$data,
|
||||
label = train$label,
|
||||
max_depth = 2,
|
||||
eta = 1,
|
||||
nthread = 2,
|
||||
nrounds = 2,
|
||||
objective = "binary:logistic"
|
||||
)
|
||||
|
||||
xgb.parameters(bst) <- list(eta = 0.1)
|
||||
|
||||
|
||||
@ -41,7 +41,7 @@ xgb.plot.shap(
|
||||
\item{features}{a vector of either column indices or of feature names to plot. When it is NULL,
|
||||
feature importance is calculated, and \code{top_n} high ranked features are taken.}
|
||||
|
||||
\item{top_n}{when \code{features} is NULL, top_n [1, 100] most important features in a model are taken.}
|
||||
\item{top_n}{when \code{features} is NULL, top_n \verb{[1, 100]} most important features in a model are taken.}
|
||||
|
||||
\item{model}{an \code{xgb.Booster} model. It has to be provided when either \code{shap_contrib}
|
||||
or \code{features} is missing.}
|
||||
|
||||
@ -38,7 +38,7 @@ xgb.plot.shap.summary(
|
||||
\item{features}{a vector of either column indices or of feature names to plot. When it is NULL,
|
||||
feature importance is calculated, and \code{top_n} high ranked features are taken.}
|
||||
|
||||
\item{top_n}{when \code{features} is NULL, top_n [1, 100] most important features in a model are taken.}
|
||||
\item{top_n}{when \code{features} is NULL, top_n \verb{[1, 100]} most important features in a model are taken.}
|
||||
|
||||
\item{model}{an \code{xgb.Booster} model. It has to be provided when either \code{shap_contrib}
|
||||
or \code{features} is missing.}
|
||||
@ -67,7 +67,7 @@ Each point (observation) is coloured based on its feature value. The plot
|
||||
hence allows us to see which features have a negative / positive contribution
|
||||
on the model prediction, and whether the contribution is different for larger
|
||||
or smaller values of the feature. We effectively try to replicate the
|
||||
\code{summary_plot} function from https://github.com/shap/shap.
|
||||
\code{summary_plot} function from \url{https://github.com/shap/shap}.
|
||||
}
|
||||
\examples{
|
||||
# See \code{\link{xgb.plot.shap}}.
|
||||
|
||||
@ -27,7 +27,7 @@ xgb.shap.data(
|
||||
\item{features}{a vector of either column indices or of feature names to plot. When it is NULL,
|
||||
feature importance is calculated, and \code{top_n} high ranked features are taken.}
|
||||
|
||||
\item{top_n}{when \code{features} is NULL, top_n [1, 100] most important features in a model are taken.}
|
||||
\item{top_n}{when \code{features} is NULL, top_n \verb{[1, 100]} most important features in a model are taken.}
|
||||
|
||||
\item{model}{an \code{xgb.Booster} model. It has to be provided when either \code{shap_contrib}
|
||||
or \code{features} is missing.}
|
||||
|
||||
@ -45,14 +45,16 @@ xgboost(
|
||||
\item{params}{the list of parameters. The complete list of parameters is
|
||||
available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
|
||||
is a shorter summary:
|
||||
|
||||
1. General Parameters
|
||||
\enumerate{
|
||||
\item General Parameters
|
||||
}
|
||||
|
||||
\itemize{
|
||||
\item \code{booster} which booster to use, can be \code{gbtree} or \code{gblinear}. Default: \code{gbtree}.
|
||||
}
|
||||
|
||||
2. Booster Parameters
|
||||
\enumerate{
|
||||
\item Booster Parameters
|
||||
}
|
||||
|
||||
2.1. Parameters for Tree Booster
|
||||
|
||||
@ -97,8 +99,9 @@ xgboost(
|
||||
\item \code{lambda_bias} L2 regularization term on bias. Default: 0
|
||||
\item \code{alpha} L1 regularization term on weights. (there is no L1 reg on bias because it is not important). Default: 0
|
||||
}
|
||||
|
||||
3. Task Parameters
|
||||
\enumerate{
|
||||
\item Task Parameters
|
||||
}
|
||||
|
||||
\itemize{
|
||||
\item{ \code{objective} specify the learning task and the corresponding learning objective, users can pass a self-defined function to it.
|
||||
|
||||
@ -11,7 +11,7 @@ xgb.unserialize(buffer, handle = NULL)
|
||||
|
||||
\item{handle}{An \code{xgb.Booster.handle} object which will be overwritten with
|
||||
the new deserialized object. Must be a null handle (e.g. when loading the model through
|
||||
`readRDS`). If not provided, a new handle will be created.}
|
||||
\code{readRDS}). If not provided, a new handle will be created.}
|
||||
}
|
||||
\value{
|
||||
An \code{xgb.Booster.handle} object.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user