[R] R raw serialization. (#5123)

* Add bindings for serialization.
* Change `xgb.save.raw' into full serialization instead of simple model.
* Add `xgb.load.raw' for unserialization.
* Run devtools.
This commit is contained in:
Jiaming Yuan 2020-04-11 17:16:54 +08:00 committed by GitHub
parent a3db79df22
commit b56c902841
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
21 changed files with 260 additions and 65 deletions

View File

@ -32,3 +32,7 @@ set_target_properties(
set(XGBOOST_DEFINITIONS "${XGBOOST_DEFINITIONS};${R_DEFINITIONS}" PARENT_SCOPE)
set(XGBOOST_OBJ_SOURCES $<TARGET_OBJECTS:xgboost-r> PARENT_SCOPE)
set(LINKED_LIBRARIES_PRIVATE ${LINKED_LIBRARIES_PRIVATE} ${LIBR_CORE_LIBRARY} PARENT_SCOPE)
if (USE_OPENMP)
target_link_libraries(xgboost-r PRIVATE OpenMP::OpenMP_CXX)
endif ()

View File

@ -63,5 +63,5 @@ Imports:
data.table (>= 1.9.6),
magrittr (>= 1.5),
stringi (>= 0.5.2)
RoxygenNote: 7.0.2
RoxygenNote: 7.1.0
SystemRequirements: GNU make, C++11

View File

@ -40,6 +40,7 @@ export(xgb.ggplot.deepness)
export(xgb.ggplot.importance)
export(xgb.importance)
export(xgb.load)
export(xgb.load.raw)
export(xgb.model.dt.tree)
export(xgb.plot.deepness)
export(xgb.plot.importance)
@ -48,7 +49,9 @@ export(xgb.plot.shap)
export(xgb.plot.tree)
export(xgb.save)
export(xgb.save.raw)
export(xgb.serialize)
export(xgb.train)
export(xgb.unserialize)
export(xgboost)
import(methods)
importClassesFrom(Matrix,dgCMatrix)

View File

@ -5,20 +5,34 @@ xgb.Booster.handle <- function(params = list(), cachelist = list(), modelfile =
!all(vapply(cachelist, inherits, logical(1), what = 'xgb.DMatrix'))) {
stop("cachelist must be a list of xgb.DMatrix objects")
}
handle <- .Call(XGBoosterCreate_R, cachelist)
## Load existing model, dispatch for on disk model file and in memory buffer
if (!is.null(modelfile)) {
if (typeof(modelfile) == "character") {
## A filename
handle <- .Call(XGBoosterCreate_R, cachelist)
.Call(XGBoosterLoadModel_R, handle, modelfile[1])
class(handle) <- "xgb.Booster.handle"
if (length(params) > 0) {
xgb.parameters(handle) <- params
}
return(handle)
} else if (typeof(modelfile) == "raw") {
.Call(XGBoosterLoadModelFromRaw_R, handle, modelfile)
## A memory buffer
bst <- xgb.unserialize(modelfile)
xgb.parameters(bst) <- params
return (bst)
} else if (inherits(modelfile, "xgb.Booster")) {
## A booster object
bst <- xgb.Booster.complete(modelfile, saveraw = TRUE)
.Call(XGBoosterLoadModelFromRaw_R, handle, bst$raw)
bst <- xgb.unserialize(bst$raw)
xgb.parameters(bst) <- params
return (bst)
} else {
stop("modelfile must be either character filename, or raw booster dump, or xgb.Booster object")
}
}
## Create new model
handle <- .Call(XGBoosterCreate_R, cachelist)
class(handle) <- "xgb.Booster.handle"
if (length(params) > 0) {
xgb.parameters(handle) <- params
@ -113,8 +127,9 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
if (is.null.handle(object$handle)) {
object$handle <- xgb.Booster.handle(modelfile = object$raw)
} else {
if (is.null(object$raw) && saveraw)
object$raw <- xgb.save.raw(object$handle)
if (is.null(object$raw) && saveraw) {
object$raw <- xgb.serialize(object$handle)
}
}
return(object)
}
@ -399,7 +414,7 @@ predict.xgb.Booster.handle <- function(object, ...) {
#' That would only matter if attributes need to be set many times.
#' Note, however, that when feeding a handle of an \code{xgb.Booster} object to the attribute setters,
#' the raw model cache of an \code{xgb.Booster} object would not be automatically updated,
#' and it would be user's responsibility to call \code{xgb.save.raw} to update it.
#' and it would be user's responsibility to call \code{xgb.serialize} to update it.
#'
#' The \code{xgb.attributes<-} setter either updates the existing or adds one or several attributes,
#' but it doesn't delete the other existing attributes.
@ -458,7 +473,7 @@ xgb.attr <- function(object, name) {
}
.Call(XGBoosterSetAttr_R, handle, as.character(name[1]), value)
if (is(object, 'xgb.Booster') && !is.null(object$raw)) {
object$raw <- xgb.save.raw(object$handle)
object$raw <- xgb.serialize(object$handle)
}
object
}
@ -498,7 +513,7 @@ xgb.attributes <- function(object) {
.Call(XGBoosterSetAttr_R, handle, names(a[i]), a[[i]])
}
if (is(object, 'xgb.Booster') && !is.null(object$raw)) {
object$raw <- xgb.save.raw(object$handle)
object$raw <- xgb.serialize(object$handle)
}
object
}
@ -528,7 +543,8 @@ xgb.config <- function(object) {
`xgb.config<-` <- function(object, value) {
handle <- xgb.get.handle(object)
.Call(XGBoosterLoadJsonConfig_R, handle, value)
object$raw <- xgb.Booster.complete(object)
object$raw <- NULL # force renew the raw buffer
object <- xgb.Booster.complete(object)
object
}
@ -568,7 +584,7 @@ xgb.config <- function(object) {
.Call(XGBoosterSetParam_R, handle, names(p[i]), p[[i]])
}
if (is(object, 'xgb.Booster') && !is.null(object$raw)) {
object$raw <- xgb.save.raw(object$handle)
object$raw <- xgb.serialize(object$handle)
}
object
}

View File

@ -0,0 +1,14 @@
#' Load serialised xgboost model from R's raw vector
#'
#' User can generate raw memory buffer by calling xgb.save.raw
#'
#' @param buffer the buffer returned by xgb.save.raw
#'
#' @export
xgb.load.raw <- function(buffer) {
cachelist <- list()
handle <- .Call(XGBoosterCreate_R, cachelist)
.Call(XGBoosterLoadModelFromRaw_R, handle, buffer)
class(handle) <- "xgb.Booster.handle"
return (handle)
}

View File

@ -1,23 +1,23 @@
#' Save xgboost model to R's raw vector,
#' user can call xgb.load to load the model back from raw vector
#'
#' user can call xgb.load.raw to load the model back from raw vector
#'
#' Save xgboost model from xgboost or xgb.train
#'
#'
#' @param model the model object.
#'
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' raw <- xgb.save.raw(bst)
#' bst <- xgb.load(raw)
#' bst <- xgb.load.raw(raw)
#' pred <- predict(bst, test$data)
#'
#' @export
xgb.save.raw <- function(model) {
model <- xgb.get.handle(model)
.Call(XGBoosterModelToRaw_R, model)
handle <- xgb.get.handle(model)
.Call(XGBoosterModelToRaw_R, handle)
}

View File

@ -0,0 +1,21 @@
#' Serialize the booster instance into R's raw vector. The serialization method differs
#' from \code{\link{xgb.save.raw}} as the latter one saves only the model but not
#' parameters. This serialization format is not stable across different xgboost versions.
#'
#' @param booster the booster instance
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' raw <- xgb.serialize(bst)
#' bst <- xgb.unserialize(raw)
#'
#' @export
xgb.serialize <- function(booster) {
handle <- xgb.get.handle(booster)
.Call(XGBoosterSerializeToBuffer_R, handle)
}

View File

@ -0,0 +1,12 @@
#' Load the instance back from \code{\link{xgb.serialize}}
#'
#' @param buffer the buffer containing booster instance saved by \code{\link{xgb.serialize}}
#'
#' @export
xgb.unserialize <- function(buffer) {
cachelist <- list()
handle <- .Call(XGBoosterCreate_R, cachelist)
.Call(XGBoosterUnserializeFromBuffer_R, handle, buffer)
class(handle) <- "xgb.Booster.handle"
return (handle)
}

View File

@ -4,8 +4,10 @@
\name{agaricus.test}
\alias{agaricus.test}
\title{Test part from Mushroom Data Set}
\format{A list containing a label vector, and a dgCMatrix object with 1611
rows and 126 variables}
\format{
A list containing a label vector, and a dgCMatrix object with 1611
rows and 126 variables
}
\usage{
data(agaricus.test)
}

View File

@ -4,8 +4,10 @@
\name{agaricus.train}
\alias{agaricus.train}
\title{Training part from Mushroom Data Set}
\format{A list containing a label vector, and a dgCMatrix object with 6513
rows and 127 variables}
\format{
A list containing a label vector, and a dgCMatrix object with 6513
rows and 127 variables
}
\usage{
data(agaricus.train)
}

View File

@ -55,7 +55,7 @@ than for \code{xgb.Booster}, since only just a handle (pointer) would need to be
That would only matter if attributes need to be set many times.
Note, however, that when feeding a handle of an \code{xgb.Booster} object to the attribute setters,
the raw model cache of an \code{xgb.Booster} object would not be automatically updated,
and it would be user's responsibility to call \code{xgb.save.raw} to update it.
and it would be user's responsibility to call \code{xgb.serialize} to update it.
The \code{xgb.attributes<-} setter either updates the existing or adds one or several attributes,
but it doesn't delete the other existing attributes.

View File

@ -135,7 +135,7 @@ An object of class \code{xgb.cv.synchronous} with the following elements:
(only available with early stopping).
\item \code{pred} CV prediction values available when \code{prediction} is set.
It is either vector or matrix (see \code{\link{cb.cv.predict}}).
\item \code{models} a liost of the CV folds' models. It is only available with the explicit
\item \code{models} a list of the CV folds' models. It is only available with the explicit
setting of the \code{cb.cv.predict(save_models = TRUE)} callback.
}
}

View File

@ -0,0 +1,14 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xgb.load.raw.R
\name{xgb.load.raw}
\alias{xgb.load.raw}
\title{Load serialised xgboost model from R's raw vector}
\usage{
xgb.load.raw(buffer)
}
\arguments{
\item{buffer}{the buffer returned by xgb.save.raw}
}
\description{
User can generate raw memory buffer by calling xgb.save.raw
}

View File

@ -3,7 +3,7 @@
\name{xgb.save.raw}
\alias{xgb.save.raw}
\title{Save xgboost model to R's raw vector,
user can call xgb.load to load the model back from raw vector}
user can call xgb.load.raw to load the model back from raw vector}
\usage{
xgb.save.raw(model)
}
@ -18,10 +18,10 @@ data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
raw <- xgb.save.raw(bst)
bst <- xgb.load(raw)
bst <- xgb.load.raw(raw)
pred <- predict(bst, test$data)
}

View File

@ -0,0 +1,29 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xgb.serialize.R
\name{xgb.serialize}
\alias{xgb.serialize}
\title{Serialize the booster instance into R's raw vector. The serialization method differs
from \code{\link{xgb.save.raw}} as the latter one saves only the model but not
parameters. This serialization format is not stable across different xgboost versions.}
\usage{
xgb.serialize(booster)
}
\arguments{
\item{booster}{the booster instance}
}
\description{
Serialize the booster instance into R's raw vector. The serialization method differs
from \code{\link{xgb.save.raw}} as the latter one saves only the model but not
parameters. This serialization format is not stable across different xgboost versions.
}
\examples{
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
raw <- xgb.serialize(bst)
bst <- xgb.unserialize(raw)
}

View File

@ -0,0 +1,14 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xgb.unserialize.R
\name{xgb.unserialize}
\alias{xgb.unserialize}
\title{Load the instance back from \code{\link{xgb.serialize}}}
\usage{
xgb.unserialize(buffer)
}
\arguments{
\item{buffer}{the buffer containing booster instance saved by \code{\link{xgb.serialize}}}
}
\description{
Load the instance back from \code{\link{xgb.serialize}}
}

View File

@ -25,6 +25,8 @@ extern SEXP XGBoosterLoadModelFromRaw_R(SEXP, SEXP);
extern SEXP XGBoosterLoadModel_R(SEXP, SEXP);
extern SEXP XGBoosterSaveJsonConfig_R(SEXP handle);
extern SEXP XGBoosterLoadJsonConfig_R(SEXP handle, SEXP value);
extern SEXP XGBoosterSerializeToBuffer_R(SEXP handle);
extern SEXP XGBoosterUnserializeFromBuffer_R(SEXP handle, SEXP raw);
extern SEXP XGBoosterModelToRaw_R(SEXP);
extern SEXP XGBoosterPredict_R(SEXP, SEXP, SEXP, SEXP, SEXP);
extern SEXP XGBoosterSaveModel_R(SEXP, SEXP);
@ -53,6 +55,8 @@ static const R_CallMethodDef CallEntries[] = {
{"XGBoosterLoadModel_R", (DL_FUNC) &XGBoosterLoadModel_R, 2},
{"XGBoosterSaveJsonConfig_R", (DL_FUNC) &XGBoosterSaveJsonConfig_R, 1},
{"XGBoosterLoadJsonConfig_R", (DL_FUNC) &XGBoosterLoadJsonConfig_R, 2},
{"XGBoosterSerializeToBuffer_R", (DL_FUNC) &XGBoosterSerializeToBuffer_R, 1},
{"XGBoosterUnserializeFromBuffer_R", (DL_FUNC) &XGBoosterUnserializeFromBuffer_R, 2},
{"XGBoosterModelToRaw_R", (DL_FUNC) &XGBoosterModelToRaw_R, 1},
{"XGBoosterPredict_R", (DL_FUNC) &XGBoosterPredict_R, 5},
{"XGBoosterSaveModel_R", (DL_FUNC) &XGBoosterSaveModel_R, 2},

View File

@ -338,15 +338,6 @@ SEXP XGBoosterSaveModel_R(SEXP handle, SEXP fname) {
return R_NilValue;
}
SEXP XGBoosterLoadModelFromRaw_R(SEXP handle, SEXP raw) {
R_API_BEGIN();
CHECK_CALL(XGBoosterLoadModelFromBuffer(R_ExternalPtrAddr(handle),
RAW(raw),
length(raw)));
R_API_END();
return R_NilValue;
}
SEXP XGBoosterModelToRaw_R(SEXP handle) {
SEXP ret;
R_API_BEGIN();
@ -362,6 +353,15 @@ SEXP XGBoosterModelToRaw_R(SEXP handle) {
return ret;
}
SEXP XGBoosterLoadModelFromRaw_R(SEXP handle, SEXP raw) {
R_API_BEGIN();
CHECK_CALL(XGBoosterLoadModelFromBuffer(R_ExternalPtrAddr(handle),
RAW(raw),
length(raw)));
R_API_END();
return R_NilValue;
}
SEXP XGBoosterSaveJsonConfig_R(SEXP handle) {
const char* ret;
R_API_BEGIN();
@ -380,6 +380,30 @@ SEXP XGBoosterLoadJsonConfig_R(SEXP handle, SEXP value) {
return R_NilValue;
}
SEXP XGBoosterSerializeToBuffer_R(SEXP handle) {
SEXP ret;
R_API_BEGIN();
bst_ulong out_len;
const char *raw;
CHECK_CALL(XGBoosterSerializeToBuffer(R_ExternalPtrAddr(handle), &out_len, &raw));
ret = PROTECT(allocVector(RAWSXP, out_len));
if (out_len != 0) {
memcpy(RAW(ret), raw, out_len);
}
R_API_END();
UNPROTECT(1);
return ret;
}
SEXP XGBoosterUnserializeFromBuffer_R(SEXP handle, SEXP raw) {
R_API_BEGIN();
XGBoosterUnserializeFromBuffer(R_ExternalPtrAddr(handle),
RAW(raw),
length(raw));
R_API_END();
return R_NilValue;
}
SEXP XGBoosterDumpModel_R(SEXP handle, SEXP fmap, SEXP with_stats, SEXP dump_format) {
SEXP out;
R_API_BEGIN();

View File

@ -187,6 +187,7 @@ XGB_DLL SEXP XGBoosterModelToRaw_R(SEXP handle);
* \param handle handle
* \return JSON string
*/
XGB_DLL SEXP XGBoosterSaveJsonConfig_R(SEXP handle);
/*!
* \brief Load the JSON string returnd by XGBoosterSaveJsonConfig_R
@ -195,6 +196,22 @@ XGB_DLL SEXP XGBoosterSaveJsonConfig_R(SEXP handle);
* \return R_NilValue
*/
XGB_DLL SEXP XGBoosterLoadJsonConfig_R(SEXP handle, SEXP value);
/*!
* \brief Memory snapshot based serialization method. Saves everything states
* into buffer.
* \param handle handle to booster
*/
XGB_DLL SEXP XGBoosterSerializeToBuffer_R(SEXP handle);
/*!
* \brief Memory snapshot based serialization method. Loads the buffer returned
* from `XGBoosterSerializeToBuffer'.
* \param handle handle to booster
* \return raw byte array
*/
XGB_DLL SEXP XGBoosterUnserializeFromBuffer_R(SEXP handle, SEXP raw);
/*!
* \brief dump model into a string
* \param handle handle

View File

@ -219,6 +219,21 @@ test_that("training continuation works", {
expect_equal(dim(bst2$evaluation_log), c(2, 2))
})
test_that("model serialization works", {
out_path <- "model_serialization"
dtrain <- xgb.DMatrix(train$data, label = train$label)
watchlist = list(train=dtrain)
param <- list(objective = "binary:logistic")
booster <- xgb.train(param, dtrain, nrounds = 4, watchlist)
raw <- xgb.serialize(booster)
saveRDS(raw, out_path)
raw <- readRDS(out_path)
loaded <- xgb.unserialize(raw)
raw_from_loaded <- xgb.serialize(loaded)
expect_equal(raw, raw_from_loaded)
file.remove(out_path)
})
test_that("xgb.cv works", {
set.seed(11)

View File

@ -30,16 +30,16 @@ param <- list(objective = "binary:logistic", max_depth = 2, nthread = 2)
test_that("cb.print.evaluation works as expected", {
bst_evaluation <- c('train-auc'=0.9, 'test-auc'=0.8)
bst_evaluation_err <- NULL
begin_iteration <- 1
end_iteration <- 7
f0 <- cb.print.evaluation(period=0)
f1 <- cb.print.evaluation(period=1)
f5 <- cb.print.evaluation(period=5)
expect_false(is.null(attr(f1, 'call')))
expect_equal(attr(f1, 'name'), 'cb.print.evaluation')
@ -48,15 +48,15 @@ test_that("cb.print.evaluation works as expected", {
expect_output(f1(), "\\[1\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
expect_output(f5(), "\\[1\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
expect_null(f1())
iteration <- 2
expect_output(f1(), "\\[2\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
expect_silent(f5())
iteration <- 7
expect_output(f1(), "\\[7\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
expect_output(f5(), "\\[7\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
bst_evaluation_err <- c('train-auc'=0.1, 'test-auc'=0.2)
expect_output(f1(), "\\[7\\]\ttrain-auc:0.900000\\+0.100000\ttest-auc:0.800000\\+0.200000")
})
@ -65,40 +65,40 @@ test_that("cb.evaluation.log works as expected", {
bst_evaluation <- c('train-auc'=0.9, 'test-auc'=0.8)
bst_evaluation_err <- NULL
evaluation_log <- list()
f <- cb.evaluation.log()
expect_false(is.null(attr(f, 'call')))
expect_equal(attr(f, 'name'), 'cb.evaluation.log')
iteration <- 1
expect_silent(f())
expect_equal(evaluation_log,
expect_equal(evaluation_log,
list(c(iter=1, bst_evaluation)))
iteration <- 2
expect_silent(f())
expect_equal(evaluation_log,
expect_equal(evaluation_log,
list(c(iter=1, bst_evaluation), c(iter=2, bst_evaluation)))
expect_silent(f(finalize = TRUE))
expect_equal(evaluation_log,
expect_equal(evaluation_log,
data.table(iter=1:2, train_auc=c(0.9,0.9), test_auc=c(0.8,0.8)))
bst_evaluation_err <- c('train-auc'=0.1, 'test-auc'=0.2)
evaluation_log <- list()
f <- cb.evaluation.log()
iteration <- 1
expect_silent(f())
expect_equal(evaluation_log,
expect_equal(evaluation_log,
list(c(iter=1, c(bst_evaluation, bst_evaluation_err))))
iteration <- 2
expect_silent(f())
expect_equal(evaluation_log,
expect_equal(evaluation_log,
list(c(iter=1, c(bst_evaluation, bst_evaluation_err)),
c(iter=2, c(bst_evaluation, bst_evaluation_err))))
expect_silent(f(finalize = TRUE))
expect_equal(evaluation_log,
expect_equal(evaluation_log,
data.table(iter=1:2,
train_auc_mean=c(0.9,0.9), train_auc_std=c(0.1,0.1),
test_auc_mean=c(0.8,0.8), test_auc_std=c(0.2,0.2)))
@ -130,18 +130,18 @@ test_that("cb.reset.parameters works as expected", {
bst1 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
callbacks = list(cb.reset.parameters(my_par)))
expect_false(is.null(bst1$evaluation_log$train_error))
expect_equal(bst0$evaluation_log$train_error,
expect_equal(bst0$evaluation_log$train_error,
bst1$evaluation_log$train_error)
# same eta but re-set via a function in the callback
set.seed(111)
my_par <- list(eta = function(itr, itr_end) 0.9)
bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0,
callbacks = list(cb.reset.parameters(my_par)))
expect_false(is.null(bst2$evaluation_log$train_error))
expect_equal(bst0$evaluation_log$train_error,
expect_equal(bst0$evaluation_log$train_error,
bst2$evaluation_log$train_error)
# different eta re-set as a vector parameter in the callback
set.seed(111)
my_par <- list(eta = c(0.6, 0.5))
@ -149,7 +149,7 @@ test_that("cb.reset.parameters works as expected", {
callbacks = list(cb.reset.parameters(my_par)))
expect_false(is.null(bst3$evaluation_log$train_error))
expect_false(all(bst0$evaluation_log$train_error == bst3$evaluation_log$train_error))
# resetting multiple parameters at the same time runs with no error
my_par <- list(eta = c(1., 0.5), gamma = c(1, 2), max_depth = c(4, 8))
expect_error(
@ -175,7 +175,7 @@ test_that("cb.reset.parameters works as expected", {
test_that("cb.save.model works as expected", {
files <- c('xgboost_01.model', 'xgboost_02.model', 'xgboost.model')
for (f in files) if (file.exists(f)) file.remove(f)
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, eta = 1, verbose = 0,
save_period = 1, save_name = "xgboost_%02d.model")
expect_true(file.exists('xgboost_01.model'))
@ -184,6 +184,9 @@ test_that("cb.save.model works as expected", {
expect_equal(xgb.ntree(b1), 1)
b2 <- xgb.load('xgboost_02.model')
expect_equal(xgb.ntree(b2), 2)
xgb.config(b2) <- xgb.config(bst)
expect_equal(xgb.config(bst), xgb.config(b2))
expect_equal(bst$raw, b2$raw)
# save_period = 0 saves the last iteration's model
@ -191,8 +194,9 @@ test_that("cb.save.model works as expected", {
save_period = 0)
expect_true(file.exists('xgboost.model'))
b2 <- xgb.load('xgboost.model')
xgb.config(b2) <- xgb.config(bst)
expect_equal(bst$raw, b2$raw)
for (f in files) if (file.exists(f)) file.remove(f)
})
@ -211,7 +215,7 @@ test_that("early stopping xgb.train works", {
err_pred <- err(ltest, pred)
err_log <- bst$evaluation_log[bst$best_iteration, test_error]
expect_equal(err_log, err_pred, tolerance = 5e-6)
set.seed(11)
expect_silent(
bst0 <- xgb.train(param, dtrain, nrounds = 20, watchlist, eta = 0.3,
@ -288,13 +292,13 @@ test_that("prediction in early-stopping xgb.cv works", {
early_stopping_rounds = 5, maximize = FALSE, stratified = FALSE,
prediction = TRUE)
, "Stopping. Best iteration")
expect_false(is.null(cv$best_iteration))
expect_lt(cv$best_iteration, 19)
expect_false(is.null(cv$evaluation_log))
expect_false(is.null(cv$pred))
expect_length(cv$pred, nrow(train$data))
err_pred <- mean( sapply(cv$folds, function(f) mean(err(ltrain[f], cv$pred[f]))) )
err_log <- cv$evaluation_log[cv$best_iteration, test_error_mean]
expect_equal(err_pred, err_log, tolerance = 1e-6)