framework of xgboost-spark
iterator return java iterator and recover test
This commit is contained in:
parent
1540773340
commit
b2d705ffb0
@ -1 +1 @@
|
||||
Subproject commit 3f6ff43d3976d5b6d5001608b0e3e526ecde098f
|
||||
Subproject commit 71360023dba458bdc9f1bc6f4309c1a107cb83a0
|
||||
@ -20,7 +20,7 @@
|
||||
<modules>
|
||||
<module>xgboost4j</module>
|
||||
<module>xgboost4j-demo</module>
|
||||
<module>xgboost4jspark</module>
|
||||
<module>xgboost4j-spark</module>
|
||||
</modules>
|
||||
<build>
|
||||
<plugins>
|
||||
|
||||
@ -17,7 +17,7 @@
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.spark</groupId>
|
||||
<artifactId>spark-core_2.10</artifactId>
|
||||
<artifactId>spark-mllib_2.10</artifactId>
|
||||
<version>1.6.0</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
@ -0,0 +1,74 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import java.util.{Iterator => JIterator}
|
||||
|
||||
import scala.collection.mutable.ListBuffer
|
||||
import scala.collection.JavaConverters._
|
||||
|
||||
import ml.dmlc.xgboost4j.DataBatch
|
||||
import org.apache.spark.mllib.linalg.{SparseVector, DenseVector, Vector}
|
||||
import org.apache.spark.mllib.regression.LabeledPoint
|
||||
|
||||
private[spark] object DataUtils extends Serializable {
|
||||
|
||||
private def fetchUpdateFromSparseVector(sparseFeature: SparseVector): (List[Int], List[Float]) = {
|
||||
(sparseFeature.indices.toList, sparseFeature.values.map(_.toFloat).toList)
|
||||
}
|
||||
|
||||
private def fetchUpdateFromVector(feature: Vector) = feature match {
|
||||
case denseFeature: DenseVector =>
|
||||
fetchUpdateFromSparseVector(denseFeature.toSparse)
|
||||
case sparseFeature: SparseVector =>
|
||||
fetchUpdateFromSparseVector(sparseFeature)
|
||||
}
|
||||
|
||||
def fromLabeledPointsToSparseMatrix(points: Iterator[LabeledPoint]): JIterator[DataBatch] = {
|
||||
// TODO: support weight
|
||||
var samplePos = 0
|
||||
// TODO: change hard value
|
||||
val loadingBatchSize = 100
|
||||
val rowOffset = new ListBuffer[Long]
|
||||
val label = new ListBuffer[Float]
|
||||
val featureIndices = new ListBuffer[Int]
|
||||
val featureValues = new ListBuffer[Float]
|
||||
val dataBatches = new ListBuffer[DataBatch]
|
||||
for (point <- points) {
|
||||
val (nonZeroIndices, nonZeroValues) = fetchUpdateFromVector(point.features)
|
||||
rowOffset(samplePos) = rowOffset.size
|
||||
label(samplePos) = point.label.toFloat
|
||||
for (i <- nonZeroIndices.indices) {
|
||||
featureIndices += nonZeroIndices(i)
|
||||
featureValues += nonZeroValues(i)
|
||||
}
|
||||
samplePos += 1
|
||||
if (samplePos % loadingBatchSize == 0) {
|
||||
// create a data batch
|
||||
dataBatches += new DataBatch(
|
||||
rowOffset.toArray.clone(),
|
||||
null, label.toArray.clone(), featureIndices.toArray.clone(),
|
||||
featureValues.toArray.clone())
|
||||
rowOffset.clear()
|
||||
label.clear()
|
||||
featureIndices.clear()
|
||||
featureValues.clear()
|
||||
}
|
||||
}
|
||||
dataBatches.iterator.asJava
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,55 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import scala.collection.immutable.HashMap
|
||||
import scala.collection.JavaConverters._
|
||||
|
||||
import com.typesafe.config.Config
|
||||
import ml.dmlc.xgboost4j.{DMatrix => JDMatrix}
|
||||
import ml.dmlc.xgboost4j.scala.{XGBoost => SXGBoost, _}
|
||||
import org.apache.spark.SparkContext
|
||||
import org.apache.spark.mllib.regression.LabeledPoint
|
||||
import org.apache.spark.rdd.RDD
|
||||
|
||||
object XGBoost {
|
||||
|
||||
private var _sc: Option[SparkContext] = None
|
||||
|
||||
implicit def convertBoosterToXGBoostModel(booster: Booster): XGBoostModel = {
|
||||
new XGBoostModel(booster)
|
||||
}
|
||||
|
||||
def train(config: Config, trainingData: RDD[LabeledPoint], obj: ObjectiveTrait = null,
|
||||
eval: EvalTrait = null): XGBoostModel = {
|
||||
val sc = trainingData.sparkContext
|
||||
val dataUtilsBroadcast = sc.broadcast(DataUtils)
|
||||
val filePath = config.getString("inputPath") // configuration entry name to be fixed
|
||||
val numWorkers = config.getInt("numWorkers")
|
||||
val round = config.getInt("round")
|
||||
// TODO: build configuration map from config
|
||||
val xgBoostConfigMap = new HashMap[String, AnyRef]()
|
||||
val boosters = trainingData.repartition(numWorkers).mapPartitions {
|
||||
trainingSamples =>
|
||||
val dataBatches = dataUtilsBroadcast.value.fromLabeledPointsToSparseMatrix(trainingSamples)
|
||||
val dMatrix = new DMatrix(new JDMatrix(dataBatches, null))
|
||||
Iterator(SXGBoost.train(xgBoostConfigMap, dMatrix, round, watches = null, obj, eval))
|
||||
}
|
||||
// TODO: how to choose best model
|
||||
boosters.first()
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,37 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import scala.collection.JavaConverters._
|
||||
|
||||
import ml.dmlc.xgboost4j.{DMatrix => JDMatrix}
|
||||
import ml.dmlc.xgboost4j.scala.{DMatrix, Booster}
|
||||
import org.apache.spark.mllib.regression.LabeledPoint
|
||||
import org.apache.spark.rdd.RDD
|
||||
|
||||
class XGBoostModel(booster: Booster) extends Serializable {
|
||||
|
||||
def predict(testSet: RDD[LabeledPoint]): RDD[Array[Array[Float]]] = {
|
||||
val broadcastBooster = testSet.sparkContext.broadcast(booster)
|
||||
val dataUtils = testSet.sparkContext.broadcast(DataUtils)
|
||||
testSet.mapPartitions { testSamples =>
|
||||
val dataBatches = dataUtils.value.fromLabeledPointsToSparseMatrix(testSamples)
|
||||
val dMatrix = new DMatrix(new JDMatrix(dataBatches, null))
|
||||
Iterator(broadcastBooster.value.predict(dMatrix))
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -28,7 +28,7 @@ import org.apache.commons.logging.LogFactory;
|
||||
*/
|
||||
public class DMatrix {
|
||||
private static final Log logger = LogFactory.getLog(DMatrix.class);
|
||||
private long handle = 0;
|
||||
protected long handle = 0;
|
||||
|
||||
//load native library
|
||||
static {
|
||||
|
||||
@ -4,8 +4,6 @@ package ml.dmlc.xgboost4j;
|
||||
* A mini-batch of data that can be converted to DMatrix.
|
||||
* The data is in sparse matrix CSR format.
|
||||
*
|
||||
* Usually this object is not needed.
|
||||
*
|
||||
* This class is used to support advanced creation of DMatrix from Iterator of DataBatch,
|
||||
*/
|
||||
public class DataBatch {
|
||||
@ -19,6 +17,19 @@ public class DataBatch {
|
||||
int[] featureIndex = null;
|
||||
/** value of each non-missing entry in the sparse matrix */
|
||||
float[] featureValue = null;
|
||||
|
||||
public DataBatch() {}
|
||||
|
||||
public DataBatch(long[] rowOffset, float[] weight, float[] label, int[] featureIndex,
|
||||
float[] featureValue) {
|
||||
this.rowOffset = rowOffset;
|
||||
this.weight = weight;
|
||||
this.label = label;
|
||||
this.featureIndex = featureIndex;
|
||||
this.featureValue = featureValue;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Get number of rows in the data batch.
|
||||
* @return Number of rows in the data batch.
|
||||
|
||||
@ -491,8 +491,7 @@ class JavaBoosterImpl implements Booster {
|
||||
}
|
||||
|
||||
// making Booster serializable
|
||||
private void writeObject(java.io.ObjectOutputStream out)
|
||||
throws IOException {
|
||||
private void writeObject(java.io.ObjectOutputStream out) throws IOException {
|
||||
try {
|
||||
out.writeObject(this.toByteArray());
|
||||
} catch (XGBoostError ex) {
|
||||
|
||||
@ -27,7 +27,8 @@ class XgboostJNI {
|
||||
|
||||
public final static native int XGDMatrixCreateFromFile(String fname, int silent, long[] out);
|
||||
|
||||
public final static native int XGDMatrixCreateFromDataIter(java.util.Iterator<DataBatch> iter, String cache_info, long[] out);
|
||||
final static native int XGDMatrixCreateFromDataIter(java.util.Iterator<DataBatch> iter,
|
||||
String cache_info, long[] out);
|
||||
|
||||
public final static native int XGDMatrixCreateFromCSR(long[] indptr, int[] indices, float[] data,
|
||||
long[] out);
|
||||
|
||||
@ -16,7 +16,9 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala
|
||||
|
||||
import ml.dmlc.xgboost4j.{DMatrix => JDMatrix, XGBoostError}
|
||||
import _root_.scala.collection.JavaConverters._
|
||||
|
||||
import ml.dmlc.xgboost4j.{DMatrix => JDMatrix, DataBatch, XGBoostError}
|
||||
|
||||
class DMatrix private[scala](private[scala] val jDMatrix: JDMatrix) {
|
||||
|
||||
@ -43,6 +45,10 @@ class DMatrix private[scala](private[scala] val jDMatrix: JDMatrix) {
|
||||
this(new JDMatrix(headers, indices, data, st))
|
||||
}
|
||||
|
||||
private[xgboost4j] def this(dataBatch: DataBatch) {
|
||||
this(new JDMatrix(List(dataBatch).asJava.iterator, null))
|
||||
}
|
||||
|
||||
/**
|
||||
* create DMatrix from dense matrix
|
||||
*
|
||||
|
||||
@ -1,32 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package ml.dmlc.xgboost4j.scala
|
||||
|
||||
import java.io.DataInputStream
|
||||
|
||||
private[xgboost4j] object DMatrixBuilder extends Serializable {
|
||||
|
||||
def buildDMatrixfromBinaryData(inStream: DataInputStream): DMatrix = {
|
||||
// TODO: currently it is random statement for making compiler happy
|
||||
new DMatrix(new Array[Float](1), 1, 1)
|
||||
}
|
||||
|
||||
def buildDMatrixfromBinaryData(binaryArray: Array[Byte]): DMatrix = {
|
||||
// TODO: currently it is random statement for making compiler happy
|
||||
new DMatrix(new Array[Float](1), 1, 1)
|
||||
}
|
||||
}
|
||||
@ -1,47 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.scala.Booster
|
||||
import org.apache.spark.rdd.RDD
|
||||
|
||||
class Boosters(boosters: RDD[Booster]) {
|
||||
|
||||
def save(path: String): Unit = {
|
||||
|
||||
}
|
||||
|
||||
def chooseBestBooster(boosters: RDD[Booster]): Booster = {
|
||||
// TODO:
|
||||
null
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
object Boosters {
|
||||
|
||||
implicit def boosterRDDToBoosters(boosterRDD: RDD[Booster]): Boosters = {
|
||||
new Boosters(boosterRDD)
|
||||
}
|
||||
|
||||
// load booster from path
|
||||
def apply(path: String): RDD[Booster] = {
|
||||
// TODO
|
||||
null
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,66 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import scala.collection.immutable.HashMap
|
||||
import scala.collection.mutable.ListBuffer
|
||||
|
||||
import com.typesafe.config.Config
|
||||
import ml.dmlc.xgboost4j.scala.{XGBoost => SXGBoost, DMatrixBuilder, Booster, ObjectiveTrait, EvalTrait}
|
||||
import org.apache.spark.SparkContext
|
||||
import org.apache.spark.rdd.RDD
|
||||
|
||||
object XGBoost {
|
||||
|
||||
private var _sc: Option[SparkContext] = None
|
||||
|
||||
private def buildSparkContext(config: Config): SparkContext = {
|
||||
if (_sc.isEmpty) {
|
||||
// TODO:build SparkContext with the user configuration (cores per task, and cores per executor
|
||||
// (or total cores)
|
||||
// NOTE: currently Spark has limited support of configuration of core number in executors
|
||||
}
|
||||
_sc.get
|
||||
}
|
||||
|
||||
def train(config: Config, obj: ObjectiveTrait = null, eval: EvalTrait = null): RDD[Booster] = {
|
||||
val sc = buildSparkContext(config)
|
||||
val filePath = config.getString("inputPath") // configuration entry name to be fixed
|
||||
val numWorkers = config.getInt("numWorkers")
|
||||
val round = config.getInt("round")
|
||||
// TODO: build configuration map from config
|
||||
val xgBoostConfigMap = new HashMap[String, AnyRef]()
|
||||
sc.binaryFiles(filePath, numWorkers).mapPartitions {
|
||||
trainingFiles =>
|
||||
val boosters = new ListBuffer[Booster]
|
||||
// we assume one file per DMatrix
|
||||
for ((_, fileInStream) <- trainingFiles) {
|
||||
// TODO:
|
||||
// step1: build DMatrix from fileInStream.toArray (which returns a Array[Byte]) or
|
||||
// from a fileInStream.open() (which returns a DataInputStream)
|
||||
val dMatrix = DMatrixBuilder.buildDMatrixfromBinaryData(fileInStream.toArray())
|
||||
// step2: build a Booster
|
||||
// TODO: how to build watches list???
|
||||
boosters += SXGBoost.train(xgBoostConfigMap, dMatrix, round, watches = null, obj, eval)
|
||||
}
|
||||
// TODO
|
||||
boosters.iterator
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
2
rabit
2
rabit
@ -1 +1 @@
|
||||
Subproject commit be50e7b63224b9fb7ff94ce34df9f8752ef83043
|
||||
Subproject commit 1392e9f3da59bd5602ddebee944dd8fb5c6507b0
|
||||
Loading…
x
Reference in New Issue
Block a user