[R] Fix broken links. (#7670)
This commit is contained in:
parent
131858e7cb
commit
b2341eab0c
@ -26,6 +26,7 @@ Authors@R: c(
|
||||
person("Min", "Lin", role = c("aut")),
|
||||
person("Yifeng", "Geng", role = c("aut")),
|
||||
person("Yutian", "Li", role = c("aut")),
|
||||
person("Jiaming", "Yuan", role = c("aut")),
|
||||
person("XGBoost contributors", role = c("cph"),
|
||||
comment = "base XGBoost implementation")
|
||||
)
|
||||
|
||||
@ -18,7 +18,7 @@
|
||||
#'
|
||||
#' International Workshop on Data Mining for Online Advertising (ADKDD) - August 24, 2014
|
||||
#'
|
||||
#' \url{https://research.fb.com/publications/practical-lessons-from-predicting-clicks-on-ads-at-facebook/}.
|
||||
#' \url{https://research.facebook.com/publications/practical-lessons-from-predicting-clicks-on-ads-at-facebook/}.
|
||||
#'
|
||||
#' Extract explaining the method:
|
||||
#'
|
||||
|
||||
@ -6,8 +6,6 @@
|
||||
#' @param fname the name of the text file where to save the model text dump.
|
||||
#' If not provided or set to \code{NULL}, the model is returned as a \code{character} vector.
|
||||
#' @param fmap feature map file representing feature types.
|
||||
#' Detailed description could be found at
|
||||
#' \url{https://github.com/dmlc/xgboost/wiki/Binary-Classification#dump-model}.
|
||||
#' See demo/ for walkthrough example in R, and
|
||||
#' \url{https://github.com/dmlc/xgboost/blob/master/demo/data/featmap.txt}
|
||||
#' for example Format.
|
||||
|
||||
@ -29,7 +29,7 @@ Joaquin Quinonero Candela)}
|
||||
|
||||
International Workshop on Data Mining for Online Advertising (ADKDD) - August 24, 2014
|
||||
|
||||
\url{https://research.fb.com/publications/practical-lessons-from-predicting-clicks-on-ads-at-facebook/}.
|
||||
\url{https://research.facebook.com/publications/practical-lessons-from-predicting-clicks-on-ads-at-facebook/}.
|
||||
|
||||
Extract explaining the method:
|
||||
|
||||
|
||||
@ -20,8 +20,6 @@ xgb.dump(
|
||||
If not provided or set to \code{NULL}, the model is returned as a \code{character} vector.}
|
||||
|
||||
\item{fmap}{feature map file representing feature types.
|
||||
Detailed description could be found at
|
||||
\url{https://github.com/dmlc/xgboost/wiki/Binary-Classification#dump-model}.
|
||||
See demo/ for walkthrough example in R, and
|
||||
\url{https://github.com/dmlc/xgboost/blob/master/demo/data/featmap.txt}
|
||||
for example Format.}
|
||||
|
||||
@ -16,7 +16,7 @@ An object of \code{xgb.Booster} class.
|
||||
Load xgboost model from the binary model file.
|
||||
}
|
||||
\details{
|
||||
The input file is expected to contain a model saved in an xgboost-internal binary format
|
||||
The input file is expected to contain a model saved in an xgboost model format
|
||||
using either \code{\link{xgb.save}} or \code{\link{cb.save.model}} in R, or using some
|
||||
appropriate methods from other xgboost interfaces. E.g., a model trained in Python and
|
||||
saved from there in xgboost format, could be loaded from R.
|
||||
|
||||
@ -5,10 +5,19 @@
|
||||
\title{Save xgboost model to R's raw vector,
|
||||
user can call xgb.load.raw to load the model back from raw vector}
|
||||
\usage{
|
||||
xgb.save.raw(model)
|
||||
xgb.save.raw(model, raw_format = "deprecated")
|
||||
}
|
||||
\arguments{
|
||||
\item{model}{the model object.}
|
||||
|
||||
\item{raw_format}{The format for encoding the booster. Available options are
|
||||
\itemize{
|
||||
\item \code{json}: Encode the booster into JSON text document.
|
||||
\item \code{ubj}: Encode the booster into Universal Binary JSON.
|
||||
\item \code{deprecated}: Encode the booster into old customized binary format.
|
||||
}
|
||||
|
||||
Right now the default is \code{deprecated} but will be changed to \code{ubj} in upcoming release.}
|
||||
}
|
||||
\description{
|
||||
Save xgboost model from xgboost or xgb.train
|
||||
|
||||
@ -138,7 +138,7 @@ levels(df[,Treatment])
|
||||
|
||||
Next step, we will transform the categorical data to dummy variables.
|
||||
Several encoding methods exist, e.g., [one-hot encoding](https://en.wikipedia.org/wiki/One-hot) is a common approach.
|
||||
We will use the [dummy contrast coding](https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/) which is popular because it produces "full rank" encoding (also see [this blog post by Max Kuhn](http://appliedpredictivemodeling.com/blog/2013/10/23/the-basics-of-encoding-categorical-data-for-predictive-models)).
|
||||
We will use the [dummy contrast coding](https://stats.oarc.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/) which is popular because it produces "full rank" encoding (also see [this blog post by Max Kuhn](http://appliedpredictivemodeling.com/blog/2013/10/23/the-basics-of-encoding-categorical-data-for-predictive-models)).
|
||||
|
||||
The purpose is to transform each value of each *categorical* feature into a *binary* feature `{0, 1}`.
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user