[py] eta decay bugfix
This commit is contained in:
parent
9bc2ac4bd0
commit
ad3f49e881
@ -108,6 +108,7 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
|||||||
bst = Booster(params, [dtrain] + [d[0] for d in evals])
|
bst = Booster(params, [dtrain] + [d[0] for d in evals])
|
||||||
|
|
||||||
_params = dict(params) if isinstance(params, list) else params
|
_params = dict(params) if isinstance(params, list) else params
|
||||||
|
_eta_param_name = 'eta' if 'eta' in _params else 'learning_rate'
|
||||||
if 'num_parallel_tree' in _params:
|
if 'num_parallel_tree' in _params:
|
||||||
num_parallel_tree = _params['num_parallel_tree']
|
num_parallel_tree = _params['num_parallel_tree']
|
||||||
nboost //= num_parallel_tree
|
nboost //= num_parallel_tree
|
||||||
@ -168,9 +169,9 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
|||||||
for i in range(start_iteration, num_boost_round):
|
for i in range(start_iteration, num_boost_round):
|
||||||
if learning_rates is not None:
|
if learning_rates is not None:
|
||||||
if isinstance(learning_rates, list):
|
if isinstance(learning_rates, list):
|
||||||
bst.set_param({'eta': learning_rates[i]})
|
bst.set_param(_eta_param_name, learning_rates[i])
|
||||||
else:
|
else:
|
||||||
bst.set_param({'eta': learning_rates(i, num_boost_round)})
|
bst.set_param(_eta_param_name, learning_rates(i, num_boost_round))
|
||||||
|
|
||||||
# Distributed code: need to resume to this point.
|
# Distributed code: need to resume to this point.
|
||||||
# Skip the first update if it is a recovery step.
|
# Skip the first update if it is a recovery step.
|
||||||
|
|||||||
@ -10,7 +10,6 @@ rng = np.random.RandomState(1994)
|
|||||||
|
|
||||||
|
|
||||||
class TestModels(unittest.TestCase):
|
class TestModels(unittest.TestCase):
|
||||||
|
|
||||||
def test_glm(self):
|
def test_glm(self):
|
||||||
param = {'silent': 1, 'objective': 'binary:logistic',
|
param = {'silent': 1, 'objective': 'binary:logistic',
|
||||||
'booster': 'gblinear', 'alpha': 0.0001, 'lambda': 1}
|
'booster': 'gblinear', 'alpha': 0.0001, 'lambda': 1}
|
||||||
@ -25,12 +24,39 @@ class TestModels(unittest.TestCase):
|
|||||||
assert err < 0.1
|
assert err < 0.1
|
||||||
|
|
||||||
def test_eta_decay(self):
|
def test_eta_decay(self):
|
||||||
param = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
|
|
||||||
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
|
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
|
||||||
num_round = 2
|
num_round = 4
|
||||||
|
|
||||||
# learning_rates as a list
|
# learning_rates as a list
|
||||||
bst = xgb.train(param, dtrain, num_round, watchlist, learning_rates=[0.4, 0.3])
|
# init eta with 0 to check whether learning_rates work
|
||||||
|
param = {'max_depth': 2, 'eta': 0, 'silent': 1, 'objective': 'binary:logistic'}
|
||||||
|
evals_result = {}
|
||||||
|
bst = xgb.train(param, dtrain, num_round, watchlist, learning_rates=[0.8, 0.7, 0.6, 0.5],
|
||||||
|
evals_result=evals_result)
|
||||||
|
eval_errors = list(map(float, evals_result['eval']['error']))
|
||||||
assert isinstance(bst, xgb.core.Booster)
|
assert isinstance(bst, xgb.core.Booster)
|
||||||
|
# validation error should decrease, if eta > 0
|
||||||
|
assert eval_errors[0] > eval_errors[-1]
|
||||||
|
|
||||||
|
# init learning_rate with 0 to check whether learning_rates work
|
||||||
|
param = {'max_depth': 2, 'learning_rate': 0, 'silent': 1, 'objective': 'binary:logistic'}
|
||||||
|
evals_result = {}
|
||||||
|
bst = xgb.train(param, dtrain, num_round, watchlist, learning_rates=[0.8, 0.7, 0.6, 0.5],
|
||||||
|
evals_result=evals_result)
|
||||||
|
eval_errors = list(map(float, evals_result['eval']['error']))
|
||||||
|
assert isinstance(bst, xgb.core.Booster)
|
||||||
|
# validation error should decrease, if learning_rate > 0
|
||||||
|
assert eval_errors[0] > eval_errors[-1]
|
||||||
|
|
||||||
|
# check if learning_rates override default value of eta/learning_rate
|
||||||
|
param = {'max_depth': 2, 'silent': 1, 'objective': 'binary:logistic'}
|
||||||
|
evals_result = {}
|
||||||
|
bst = xgb.train(param, dtrain, num_round, watchlist, learning_rates=[0, 0, 0, 0],
|
||||||
|
evals_result=evals_result)
|
||||||
|
eval_errors = list(map(float, evals_result['eval']['error']))
|
||||||
|
assert isinstance(bst, xgb.core.Booster)
|
||||||
|
# validation error should not decrease, if eta/learning_rate = 0
|
||||||
|
assert eval_errors[0] == eval_errors[-1]
|
||||||
|
|
||||||
# learning_rates as a customized decay function
|
# learning_rates as a customized decay function
|
||||||
def eta_decay(ithround, num_boost_round):
|
def eta_decay(ithround, num_boost_round):
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user