move custom obj build in into booster
This commit is contained in:
parent
10648a1ca7
commit
ac8958b284
@ -213,77 +213,6 @@ class DMatrix:
|
||||
self.handle, (ctypes.c_int*len(rindex))(*rindex), len(rindex)))
|
||||
return res
|
||||
|
||||
class CVPack:
|
||||
def __init__(self, dtrain, dtest, param):
|
||||
self.dtrain = dtrain
|
||||
self.dtest = dtest
|
||||
self.watchlist = watchlist = [ (dtrain,'train'), (dtest, 'test') ]
|
||||
self.bst = Booster(param, [dtrain,dtest])
|
||||
def update(self,r):
|
||||
self.bst.update(self.dtrain, r)
|
||||
def eval(self,r):
|
||||
return self.bst.eval_set(self.watchlist, r)
|
||||
|
||||
def mknfold(dall, nfold, param, seed, weightscale=None, evals=[], set_pos_weight=None):
|
||||
"""
|
||||
mk nfold list of cvpack from randidx
|
||||
"""
|
||||
randidx = range(dall.num_row())
|
||||
random.seed(seed)
|
||||
random.shuffle(randidx)
|
||||
|
||||
idxset = []
|
||||
kstep = len(randidx) / nfold
|
||||
for i in range(nfold):
|
||||
idxset.append(randidx[ (i*kstep) : min(len(randidx),(i+1)*kstep) ])
|
||||
|
||||
ret = []
|
||||
for k in range(nfold):
|
||||
trainlst = []
|
||||
for j in range(nfold):
|
||||
if j == k:
|
||||
testlst = idxset[j]
|
||||
else:
|
||||
trainlst += idxset[j]
|
||||
dtrain = dall.slice(trainlst)
|
||||
dtest = dall.slice(testlst)
|
||||
# rescale weight of dtrain and dtest
|
||||
if weightscale != None:
|
||||
dtrain.set_weight( dtrain.get_weight() * weightscale * dall.num_row() / dtrain.num_row() )
|
||||
dtest.set_weight( dtest.get_weight() * weightscale * dall.num_row() / dtest.num_row() )
|
||||
if set_pos_weight != None:
|
||||
label = dtrain.get_label()
|
||||
weight = dtrain.get_weight()
|
||||
sum_wpos = sum( weight[i] for i in range(len(label)) if label[i] == 1.0 )
|
||||
sum_wneg = sum( weight[i] for i in range(len(label)) if label[i] == 0.0 )
|
||||
param['scale_pos_weight'] = sum_wneg/sum_wpos
|
||||
plst = param.items() + [('eval_metric', itm) for itm in evals]
|
||||
ret.append(CVPack(dtrain, dtest, plst))
|
||||
return ret
|
||||
|
||||
def aggcv(rlist):
|
||||
"""
|
||||
aggregate cross validation results
|
||||
"""
|
||||
cvmap = {}
|
||||
arr = rlist[0].split()
|
||||
ret = arr[0]
|
||||
for it in arr[1:]:
|
||||
k, v = it.split(':')
|
||||
cvmap[k] = [float(v)]
|
||||
for line in rlist[1:]:
|
||||
arr = line.split()
|
||||
assert ret == arr[0]
|
||||
for it in arr[1:]:
|
||||
k, v = it.split(':')
|
||||
cvmap[k].append(float(v))
|
||||
|
||||
for k, v in sorted(cvmap.items(), key = lambda x:x[0]):
|
||||
v = np.array(v)
|
||||
ret += '\t%s:%f+%f' % (k, np.mean(v), np.std(v))
|
||||
return ret
|
||||
|
||||
|
||||
class Booster:
|
||||
"""learner class """
|
||||
def __init__(self, params={}, cache=[], model_file = None):
|
||||
@ -324,7 +253,7 @@ class Booster:
|
||||
self.handle, ctypes.c_char_p(k.encode('utf-8')),
|
||||
ctypes.c_char_p(str(v).encode('utf-8')))
|
||||
|
||||
def update(self, dtrain, it):
|
||||
def update(self, dtrain, it, fobj=None):
|
||||
"""
|
||||
update
|
||||
Args:
|
||||
@ -332,11 +261,19 @@ class Booster:
|
||||
the training DMatrix
|
||||
it: int
|
||||
current iteration number
|
||||
fobj: function
|
||||
cutomzied objective function
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
assert isinstance(dtrain, DMatrix)
|
||||
if fobj is None:
|
||||
xglib.XGBoosterUpdateOneIter(self.handle, it, dtrain.handle)
|
||||
else:
|
||||
pred = self.predict( dtrain )
|
||||
grad, hess = fobj( pred, dtrain )
|
||||
self.boost( dtrain, grad, hess )
|
||||
|
||||
def boost(self, dtrain, grad, hess):
|
||||
""" update
|
||||
Args:
|
||||
@ -353,15 +290,18 @@ class Booster:
|
||||
(ctypes.c_float*len(grad))(*grad),
|
||||
(ctypes.c_float*len(hess))(*hess),
|
||||
len(grad))
|
||||
def eval_set(self, evals, it = 0):
|
||||
def eval_set(self, evals, it = 0, feval = None):
|
||||
"""evaluates by metric
|
||||
Args:
|
||||
evals: list of tuple (DMatrix, string)
|
||||
lists of items to be evaluated
|
||||
it: int
|
||||
feval: function
|
||||
custom evaluation function
|
||||
Returns:
|
||||
evals result
|
||||
"""
|
||||
if feval is None:
|
||||
for d in evals:
|
||||
assert isinstance(d[0], DMatrix)
|
||||
assert isinstance(d[1], str)
|
||||
@ -369,6 +309,12 @@ class Booster:
|
||||
evnames = (ctypes.c_char_p * len(evals))(
|
||||
* [ctypes.c_char_p(d[1].encode('utf-8')) for d in evals])
|
||||
return xglib.XGBoosterEvalOneIter(self.handle, it, dmats, evnames, len(evals))
|
||||
else:
|
||||
res = '[%d]' % it
|
||||
for dm, evname in evals:
|
||||
name, val = feval(self.predict(dm), dm)
|
||||
res += '\t%s-%s:%f' % (evname, name, val)
|
||||
return res
|
||||
def eval(self, mat, name = 'eval', it = 0):
|
||||
return self.eval_set( [(mat,name)], it)
|
||||
def predict(self, data, output_margin=False, ntree_limit=0):
|
||||
@ -453,31 +399,7 @@ class Booster:
|
||||
fmap[fid]+= 1
|
||||
return fmap
|
||||
|
||||
def evaluate(bst, evals, it, feval = None):
|
||||
"""evaluation on eval set
|
||||
Args:
|
||||
bst: XGBoost object
|
||||
object of XGBoost model
|
||||
evals: list of tuple (DMatrix, string)
|
||||
obj need to be evaluated
|
||||
it: int
|
||||
feval: optional
|
||||
Returns:
|
||||
eval result
|
||||
"""
|
||||
if feval != None:
|
||||
res = '[%d]' % it
|
||||
for dm, evname in evals:
|
||||
name, val = feval(bst.predict(dm), dm)
|
||||
res += '\t%s-%s:%f' % (evname, name, val)
|
||||
else:
|
||||
res = bst.eval_set(evals, it)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
|
||||
def train(params, dtrain, num_boost_round = 10, evals = [], obj=None, feval=None):
|
||||
def train(params, dtrain, num_boost_round = 10, evals = [], fobj=None, feval=None):
|
||||
""" train a booster with given paramaters
|
||||
Args:
|
||||
params: dict
|
||||
@ -488,27 +410,84 @@ def train(params, dtrain, num_boost_round = 10, evals = [], obj=None, feval=None
|
||||
num of round to be boosted
|
||||
evals: list
|
||||
list of items to be evaluated
|
||||
obj:
|
||||
feval:
|
||||
fobj: function
|
||||
cutomized objective function
|
||||
feval: function
|
||||
cutomized evaluation function
|
||||
"""
|
||||
bst = Booster(params, [dtrain]+[ d[0] for d in evals ] )
|
||||
if obj is None:
|
||||
for i in range(num_boost_round):
|
||||
bst.update( dtrain, i )
|
||||
bst.update( dtrain, i, fobj )
|
||||
if len(evals) != 0:
|
||||
sys.stderr.write(evaluate(bst, evals, i, feval).decode()+'\n')
|
||||
else:
|
||||
# try customized objective function
|
||||
for i in range(num_boost_round):
|
||||
pred = bst.predict( dtrain )
|
||||
grad, hess = obj( pred, dtrain )
|
||||
bst.boost( dtrain, grad, hess )
|
||||
if len(evals) != 0:
|
||||
sys.stderr.write(evaluate(bst, evals, i, feval)+'\n')
|
||||
sys.stderr.write(bst.eval_set(evals, i, feval).decode()+'\n')
|
||||
return bst
|
||||
|
||||
def cv(params, dtrain, num_boost_round = 10, nfold=3, evals = [], \
|
||||
weightscale=None, obj=None, feval=None, set_pos_weight=None):
|
||||
class CVPack:
|
||||
def __init__(self, dtrain, dtest, param):
|
||||
self.dtrain = dtrain
|
||||
self.dtest = dtest
|
||||
self.watchlist = watchlist = [ (dtrain,'train'), (dtest, 'test') ]
|
||||
self.bst = Booster(param, [dtrain,dtest])
|
||||
def update(self, r, fobj):
|
||||
self.bst.update(self.dtrain, r, fobj)
|
||||
def eval(self, r, fval):
|
||||
return self.bst.eval_set(self.watchlist, r, feval)
|
||||
|
||||
def mknfold(dall, nfold, param, seed, weightscale=None, evals=[]):
|
||||
"""
|
||||
mk nfold list of cvpack from randidx
|
||||
"""
|
||||
randidx = range(dall.num_row())
|
||||
random.seed(seed)
|
||||
random.shuffle(randidx)
|
||||
|
||||
idxset = []
|
||||
kstep = len(randidx) / nfold
|
||||
for i in range(nfold):
|
||||
idxset.append(randidx[ (i*kstep) : min(len(randidx),(i+1)*kstep) ])
|
||||
|
||||
ret = []
|
||||
for k in range(nfold):
|
||||
trainlst = []
|
||||
for j in range(nfold):
|
||||
if j == k:
|
||||
testlst = idxset[j]
|
||||
else:
|
||||
trainlst += idxset[j]
|
||||
dtrain = dall.slice(trainlst)
|
||||
dtest = dall.slice(testlst)
|
||||
# rescale weight of dtrain and dtest
|
||||
if weightscale != None:
|
||||
dtrain.set_weight( dtrain.get_weight() * weightscale * dall.num_row() / dtrain.num_row() )
|
||||
dtest.set_weight( dtest.get_weight() * weightscale * dall.num_row() / dtest.num_row() )
|
||||
plst = param.items() + [('eval_metric', itm) for itm in evals]
|
||||
ret.append(CVPack(dtrain, dtest, plst))
|
||||
return ret
|
||||
|
||||
def aggcv(rlist):
|
||||
"""
|
||||
aggregate cross validation results
|
||||
"""
|
||||
cvmap = {}
|
||||
arr = rlist[0].split()
|
||||
ret = arr[0]
|
||||
for it in arr[1:]:
|
||||
k, v = it.split(':')
|
||||
cvmap[k] = [float(v)]
|
||||
for line in rlist[1:]:
|
||||
arr = line.split()
|
||||
assert ret == arr[0]
|
||||
for it in arr[1:]:
|
||||
k, v = it.split(':')
|
||||
cvmap[k].append(float(v))
|
||||
|
||||
for k, v in sorted(cvmap.items(), key = lambda x:x[0]):
|
||||
v = np.array(v)
|
||||
ret += '\t%s:%f+%f' % (k, np.mean(v), np.std(v))
|
||||
return ret
|
||||
|
||||
def cv(params, dtrain, num_boost_round = 10, nfold=3, eval_metrics = [], \
|
||||
weightscale=None, fobj=None, feval=None):
|
||||
""" cross validation with given paramaters
|
||||
Args:
|
||||
params: dict
|
||||
@ -521,14 +500,12 @@ def cv(params, dtrain, num_boost_round = 10, nfold=3, evals = [], \
|
||||
folds to do cv
|
||||
evals: list
|
||||
list of items to be evaluated
|
||||
obj:
|
||||
fobj:
|
||||
feval:
|
||||
set_pos_weight: bool, optional
|
||||
Adjust pos weight by number
|
||||
"""
|
||||
cvfolds = mknfold(dtrain, nfold, params, 0, weightscale, evals)
|
||||
cvfolds = mknfold(dtrain, nfold, params, 0, weightscale, evals_metrics)
|
||||
for i in range(num_boost_round):
|
||||
for f in cvfolds:
|
||||
f.update(i)
|
||||
res = aggcv([f.eval(i) for f in cvfolds])
|
||||
f.update(i, fobj)
|
||||
res = aggcv([f.eval(i, fval) for f in cvfolds])
|
||||
sys.stderr.write(res+'\n')
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user