remove stale examples (#2816)
This commit is contained in:
parent
c09ad421a8
commit
ac7a9edb06
@ -10,158 +10,13 @@
|
||||
XGBoost4J is the JVM package of xgboost. It brings all the optimizations
|
||||
and power xgboost into JVM ecosystem.
|
||||
|
||||
- Train XGBoost models on scala and java with easy customizations.
|
||||
- Run distributed xgboost natively on jvm frameworks such as Flink and Spark.
|
||||
- Train XGBoost models in scala and java with easy customizations.
|
||||
- Run distributed xgboost natively on jvm frameworks such as
|
||||
Apache Flink and Apache Spark.
|
||||
|
||||
You can find more about XGBoost on [Documentation](https://xgboost.readthedocs.org/en/latest/jvm/index.html) and [Resource Page](../demo/README.md).
|
||||
|
||||
## Hello World
|
||||
**NOTE on LIBSVM Format**:
|
||||
- Use *1-based* ascending indexes for the LIBSVM format in distributed training mode -
|
||||
- Spark does the internal conversion, and does not accept formats that are 0-based
|
||||
- Whereas, use *0-based* indexes format when predicting in normal mode - for instance, while using the saved model in the Python package
|
||||
|
||||
### XGBoost Scala
|
||||
```scala
|
||||
import ml.dmlc.xgboost4j.scala.DMatrix
|
||||
import ml.dmlc.xgboost4j.scala.XGBoost
|
||||
|
||||
object XGBoostScalaExample {
|
||||
def main(args: Array[String]) {
|
||||
// read trainining data, available at xgboost/demo/data
|
||||
val trainData =
|
||||
new DMatrix("/path/to/agaricus.txt.train")
|
||||
// define parameters
|
||||
val paramMap = List(
|
||||
"eta" -> 0.1,
|
||||
"max_depth" -> 2,
|
||||
"objective" -> "binary:logistic").toMap
|
||||
// number of iterations
|
||||
val round = 2
|
||||
// train the model
|
||||
val model = XGBoost.train(trainData, paramMap, round)
|
||||
// run prediction
|
||||
val predTrain = model.predict(trainData)
|
||||
// save model to the file.
|
||||
model.saveModel("/local/path/to/model")
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### XGBoost Spark
|
||||
|
||||
XGBoost4J-Spark supports training XGBoost model through RDD and Dataframe
|
||||
|
||||
RDD Version:
|
||||
|
||||
```scala
|
||||
import org.apache.spark.SparkContext
|
||||
import org.apache.spark.mllib.util.MLUtils
|
||||
import ml.dmlc.xgboost4j.scala.spark.XGBoost
|
||||
|
||||
object SparkWithRDD {
|
||||
def main(args: Array[String]): Unit = {
|
||||
if (args.length != 3) {
|
||||
println(
|
||||
"usage: program num_of_rounds training_path model_path")
|
||||
sys.exit(1)
|
||||
}
|
||||
// if you do not want to use KryoSerializer in Spark, you can ignore the related configuration
|
||||
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("XGBoost-spark-example")
|
||||
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
sparkConf.registerKryoClasses(Array(classOf[Booster]))
|
||||
val sc = new SparkContext(sparkConf)
|
||||
val inputTrainPath = args(1)
|
||||
val outputModelPath = args(2)
|
||||
// number of iterations
|
||||
val numRound = args(0).toInt
|
||||
val trainRDD = MLUtils.loadLibSVMFile(sc, inputTrainPath)
|
||||
// training parameters
|
||||
val paramMap = List(
|
||||
"eta" -> 0.1f,
|
||||
"max_depth" -> 2,
|
||||
"objective" -> "binary:logistic").toMap
|
||||
// use 5 distributed workers to train the model
|
||||
// useExternalMemory indicates whether
|
||||
val model = XGBoost.train(trainRDD, paramMap, numRound, nWorkers = 5, useExternalMemory = true)
|
||||
// save model to HDFS path
|
||||
model.saveModelToHadoop(outputModelPath)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Dataframe Version:
|
||||
|
||||
```scala
|
||||
object SparkWithDataFrame {
|
||||
def main(args: Array[String]): Unit = {
|
||||
if (args.length != 5) {
|
||||
println(
|
||||
"usage: program num_of_rounds num_workers training_path test_path model_path")
|
||||
sys.exit(1)
|
||||
}
|
||||
// create SparkSession
|
||||
val sparkConf = new SparkConf().setAppName("XGBoost-spark-example")
|
||||
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
sparkConf.registerKryoClasses(Array(classOf[Booster]))
|
||||
val sparkSession = SparkSession.builder().appName("XGBoost-spark-example").config(sparkConf).
|
||||
getOrCreate()
|
||||
// create training and testing dataframes
|
||||
val inputTrainPath = args(2)
|
||||
val inputTestPath = args(3)
|
||||
val outputModelPath = args(4)
|
||||
// number of iterations
|
||||
val numRound = args(0).toInt
|
||||
import DataUtils._
|
||||
val trainRDDOfRows = MLUtils.loadLibSVMFile(sparkSession.sparkContext, inputTrainPath).
|
||||
map{ labeledPoint => Row(labeledPoint.features, labeledPoint.label)}
|
||||
val trainDF = sparkSession.createDataFrame(trainRDDOfRows, StructType(
|
||||
Array(StructField("features", ArrayType(FloatType)), StructField("label", IntegerType))))
|
||||
val testRDDOfRows = MLUtils.loadLibSVMFile(sparkSession.sparkContext, inputTestPath).
|
||||
zipWithIndex().map{ case (labeledPoint, id) =>
|
||||
Row(id, labeledPoint.features, labeledPoint.label)}
|
||||
val testDF = sparkSession.createDataFrame(testRDDOfRows, StructType(
|
||||
Array(StructField("id", LongType),
|
||||
StructField("features", ArrayType(FloatType)), StructField("label", IntegerType))))
|
||||
// training parameters
|
||||
val paramMap = List(
|
||||
"eta" -> 0.1f,
|
||||
"max_depth" -> 2,
|
||||
"objective" -> "binary:logistic").toMap
|
||||
val xgboostModel = XGBoost.trainWithDataset(
|
||||
trainDF, paramMap, numRound, nWorkers = args(1).toInt, useExternalMemory = true)
|
||||
// xgboost-spark appends the column containing prediction results
|
||||
xgboostModel.transform(testDF).show()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### XGBoost Flink
|
||||
```scala
|
||||
import ml.dmlc.xgboost4j.scala.flink.XGBoost
|
||||
import org.apache.flink.api.scala._
|
||||
import org.apache.flink.api.scala.ExecutionEnvironment
|
||||
import org.apache.flink.ml.MLUtils
|
||||
|
||||
object DistTrainWithFlink {
|
||||
def main(args: Array[String]) {
|
||||
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
|
||||
// read trainining data
|
||||
val trainData =
|
||||
MLUtils.readLibSVM(env, "/path/to/data/agaricus.txt.train")
|
||||
// define parameters
|
||||
val paramMap = List(
|
||||
"eta" -> 0.1,
|
||||
"max_depth" -> 2,
|
||||
"objective" -> "binary:logistic").toMap
|
||||
// number of iterations
|
||||
val round = 2
|
||||
// train the model
|
||||
val model = XGBoost.train(trainData, paramMap, round)
|
||||
val predTrain = model.predict(trainData.map{x => x.vector})
|
||||
model.saveModelToHadoop("file:///path/to/xgboost.model")
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
Full code examples for Scala, Java, Apache Spark, and Apache Flink can
|
||||
be found in the [examples package](https://github.com/dmlc/xgboost/tree/master/jvm-packages/xgboost4j-example).
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user