[pyspark] Fix xgboost spark estimator dataset repartition issues (#8231)

This commit is contained in:
WeichenXu 2022-09-22 21:31:41 +08:00 committed by GitHub
parent 3fd331f8f2
commit ab342af242
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -20,7 +20,7 @@ from pyspark.ml.param.shared import (
HasWeightCol, HasWeightCol,
) )
from pyspark.ml.util import MLReadable, MLWritable from pyspark.ml.util import MLReadable, MLWritable
from pyspark.sql.functions import col, countDistinct, pandas_udf, struct from pyspark.sql.functions import col, countDistinct, pandas_udf, rand, struct
from pyspark.sql.types import ( from pyspark.sql.types import (
ArrayType, ArrayType,
DoubleType, DoubleType,
@ -164,6 +164,12 @@ class _SparkXGBParams(
+ "Note: The auto repartitioning judgement is not fully accurate, so it is recommended" + "Note: The auto repartitioning judgement is not fully accurate, so it is recommended"
+ "to have force_repartition be True.", + "to have force_repartition be True.",
) )
repartition_random_shuffle = Param(
Params._dummy(),
"repartition_random_shuffle",
"A boolean variable. Set repartition_random_shuffle=true if you want to random shuffle "
"dataset when repartitioning is required. By default is True.",
)
feature_names = Param( feature_names = Param(
Params._dummy(), "feature_names", "A list of str to specify feature names." Params._dummy(), "feature_names", "A list of str to specify feature names."
) )
@ -270,15 +276,6 @@ class _SparkXGBParams(
f"It cannot be less than 1 [Default is 1]" f"It cannot be less than 1 [Default is 1]"
) )
if (
self.getOrDefault(self.force_repartition)
and self.getOrDefault(self.num_workers) == 1
):
get_logger(self.__class__.__name__).warning(
"You set force_repartition to true when there is no need for a repartition."
"Therefore, that parameter will be ignored."
)
if self.getOrDefault(self.features_cols): if self.getOrDefault(self.features_cols):
if not self.getOrDefault(self.use_gpu): if not self.getOrDefault(self.use_gpu):
raise ValueError("features_cols param requires enabling use_gpu.") raise ValueError("features_cols param requires enabling use_gpu.")
@ -470,6 +467,7 @@ class _SparkXGBEstimator(Estimator, _SparkXGBParams, MLReadable, MLWritable):
num_workers=1, num_workers=1,
use_gpu=False, use_gpu=False,
force_repartition=False, force_repartition=False,
repartition_random_shuffle=True,
feature_names=None, feature_names=None,
feature_types=None, feature_types=None,
arbitrary_params_dict={}, arbitrary_params_dict={},
@ -695,8 +693,21 @@ class _SparkXGBEstimator(Estimator, _SparkXGBParams, MLReadable, MLWritable):
num_workers, num_workers,
) )
if self._repartition_needed(dataset): if self._repartition_needed(dataset) or (
dataset = dataset.repartition(num_workers) self.isDefined(self.validationIndicatorCol)
and self.getOrDefault(self.validationIndicatorCol)
):
# If validationIndicatorCol defined, we always repartition dataset
# to balance data, because user might unionise train and validation dataset,
# without shuffling data then some partitions might contain only train or validation
# dataset.
if self.getOrDefault(self.repartition_random_shuffle):
# In some cases, spark round-robin repartition might cause data skew
# use random shuffle can address it.
dataset = dataset.repartition(num_workers, rand(1))
else:
dataset = dataset.repartition(num_workers)
train_params = self._get_distributed_train_params(dataset) train_params = self._get_distributed_train_params(dataset)
booster_params, train_call_kwargs_params = self._get_xgb_train_call_args( booster_params, train_call_kwargs_params = self._get_xgb_train_call_args(
train_params train_params