chg cv
This commit is contained in:
parent
831a102d48
commit
ab238ff831
@ -208,7 +208,7 @@ xgb.cv.mknfold <- function(dall, nfold, param) {
|
||||
return (ret)
|
||||
}
|
||||
xgb.cv.aggcv <- function(res, showsd = TRUE) {
|
||||
header = res[[1]]
|
||||
header <- res[[1]]
|
||||
ret <- header[1]
|
||||
for (i in 2:length(header)) {
|
||||
kv <- strsplit(header[i], ":")[[1]]
|
||||
|
||||
@ -18,6 +18,9 @@
|
||||
#' further details. See also inst/examples/demo.R for walkthrough example in R.
|
||||
#' @param data takes an \code{xgb.DMatrix} as the input.
|
||||
#' @param nrounds the max number of iterations
|
||||
#' @param nfold number of folds used
|
||||
#' @param label option field, when data is Matrix
|
||||
#' @param showd boolean, whether show standard deviation of cross validation
|
||||
#' @param metrics, list of evaluation metrics to be used in corss validation,
|
||||
#' when it is not specified, the evaluation metric is chosen according to objective function.
|
||||
#' Possible options are:
|
||||
@ -28,7 +31,6 @@
|
||||
#' \item \code{auc} Area under curve
|
||||
#' \item \code{merror} Exact matching error, used to evaluate multi-class classification
|
||||
#' }
|
||||
#'
|
||||
#' @param obj customized objective function. Returns gradient and second order
|
||||
#' gradient with given prediction and dtrain,
|
||||
#' @param feval custimized evaluation function. Returns
|
||||
@ -47,13 +49,20 @@
|
||||
#' @export
|
||||
#'
|
||||
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL,
|
||||
showsd = TRUE, obj = NULL, feval = NULL, ...) {
|
||||
showsd = TRUE, metrics=list(), obj = NULL, feval = NULL, ...) {
|
||||
if (typeof(params) != "list") {
|
||||
stop("xgb.cv: first argument params must be list")
|
||||
}
|
||||
if (nfold <= 1) {
|
||||
stop("nfold must be bigger than 1")
|
||||
}
|
||||
dtrain <- xgb.get.DMatrix(data, label)
|
||||
params <- append(params, list(...))
|
||||
params <- append(params, list(silent=1))
|
||||
for (mc in metrics) {
|
||||
params <- append(params, list("eval_metric"=mc))
|
||||
}
|
||||
|
||||
folds <- xgb.cv.mknfold(dtrain, nfold, params)
|
||||
history <- list()
|
||||
for (i in 1:nrounds) {
|
||||
|
||||
@ -3,7 +3,8 @@ require(methods)
|
||||
# Directly read in local file
|
||||
dtrain <- xgb.DMatrix("agaricus.txt.train")
|
||||
|
||||
history <- xgb.cv(list("max_depth"=3, "eta"=1,
|
||||
"objective"="binary:logistic"),
|
||||
dtrain, nround=3, nfold = 5, "eval_metric"="error")
|
||||
history <- xgb.cv( data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
|
||||
"max_depth"=3, "eta"=1,
|
||||
"objective"="binary:logistic")
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user