[jvm-packages] Scala/Java interface for Fast Histogram Algorithm (#1966)
* add back train method but mark as deprecated * fix scalastyle error * first commit in scala binding for fast histo * java test * add missed scala tests * spark training * add back train method but mark as deprecated * fix scalastyle error * local change * first commit in scala binding for fast histo * local change * fix df frame test
This commit is contained in:
parent
ac30a0aff5
commit
ab13fd72bd
1
.gitignore
vendored
1
.gitignore
vendored
@ -88,3 +88,4 @@ build_tests
|
||||
/tests/cpp/xgboost_test
|
||||
|
||||
.DS_Store
|
||||
lib/
|
||||
@ -199,7 +199,7 @@
|
||||
<artifactId>maven-surefire-plugin</artifactId>
|
||||
<version>2.19.1</version>
|
||||
<configuration>
|
||||
<skipTests>true</skipTests>
|
||||
<skipTests>false</skipTests>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
|
||||
@ -126,9 +126,22 @@ trait BoosterParams extends Params {
|
||||
* [default='auto']
|
||||
*/
|
||||
val treeMethod = new Param[String](this, "tree_method",
|
||||
"The tree construction algorithm used in XGBoost, options: {'auto', 'exact', 'approx'}",
|
||||
"The tree construction algorithm used in XGBoost, options: {'auto', 'exact', 'approx', 'hist'}",
|
||||
(value: String) => BoosterParams.supportedTreeMethods.contains(value))
|
||||
|
||||
/**
|
||||
* growth policy for fast histogram algorithm
|
||||
*/
|
||||
val growthPolicty = new Param[String](this, "grow_policy",
|
||||
"growth policy for fast histogram algorithm",
|
||||
(value: String) => BoosterParams.supportedGrowthPolicies.contains(value))
|
||||
|
||||
/**
|
||||
* maximum number of bins in histogram
|
||||
*/
|
||||
val maxBins = new IntParam(this, "max_bin", "maximum number of bins in histogram",
|
||||
(value: Int) => value > 0)
|
||||
|
||||
/**
|
||||
* This is only used for approximate greedy algorithm.
|
||||
* This roughly translated into O(1 / sketch_eps) number of bins. Compared to directly select
|
||||
@ -194,6 +207,7 @@ trait BoosterParams extends Params {
|
||||
|
||||
setDefault(boosterType -> "gbtree", eta -> 0.3, gamma -> 0, maxDepth -> 6,
|
||||
minChildWeight -> 1, maxDeltaStep -> 0,
|
||||
growthPolicty -> "depthwise", maxBins -> 16,
|
||||
subSample -> 1, colSampleByTree -> 1, colSampleByLevel -> 1,
|
||||
lambda -> 1, alpha -> 0, treeMethod -> "auto", sketchEps -> 0.03,
|
||||
scalePosWeight -> 1.0, sampleType -> "uniform", normalizeType -> "tree",
|
||||
@ -227,7 +241,9 @@ private[spark] object BoosterParams {
|
||||
|
||||
val supportedBoosters = HashSet("gbtree", "gblinear", "dart")
|
||||
|
||||
val supportedTreeMethods = HashSet("auto", "exact", "approx")
|
||||
val supportedTreeMethods = HashSet("auto", "exact", "approx", "hist")
|
||||
|
||||
val supportedGrowthPolicies = HashSet("depthwise", "lossguide")
|
||||
|
||||
val supportedSampleType = HashSet("uniform", "weighted")
|
||||
|
||||
|
||||
@ -190,6 +190,22 @@ class XGBoostDFSuite extends SharedSparkContext with Utils {
|
||||
assert(xgbEstimatorCopy1.fromParamsToXGBParamMap("eval_metric") === "logloss")
|
||||
}
|
||||
|
||||
test("fast histogram algorithm parameters are exposed correctly") {
|
||||
val paramMap = Map("eta" -> "1", "gamma" -> "0.5", "max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "depthwise", "max_depth" -> "2", "max_bin" -> "2",
|
||||
"eval_metric" -> "error")
|
||||
val testItr = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
val trainingDF = buildTrainingDataframe()
|
||||
val xgBoostModelWithDF = XGBoost.trainWithDataFrame(trainingDF, paramMap,
|
||||
round = 10, nWorkers = math.min(2, numWorkers))
|
||||
val error = new EvalError
|
||||
import DataUtils._
|
||||
val testSetDMatrix = new DMatrix(new JDMatrix(testItr, null))
|
||||
assert(error.eval(xgBoostModelWithDF.booster.predict(testSetDMatrix, outPutMargin = true),
|
||||
testSetDMatrix) < 0.1)
|
||||
}
|
||||
|
||||
private def convertCSVPointToLabelPoint(valueArray: Array[String]): LabeledPoint = {
|
||||
val intValueArray = new Array[Double](valueArray.length)
|
||||
intValueArray(valueArray.length - 2) = {
|
||||
|
||||
@ -111,11 +111,94 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
"objective" -> "binary:logistic",
|
||||
"tracker_conf" -> TrackerConf(1 minute, "scala")).toMap
|
||||
val xgBoostModel = XGBoost.trainWithRDD(trainingRDD, paramMap, round = 5,
|
||||
nWorkers = numWorkers, useExternalMemory = true)
|
||||
nWorkers = numWorkers)
|
||||
assert(eval.eval(xgBoostModel.booster.predict(testSetDMatrix, outPutMargin = true),
|
||||
testSetDMatrix) < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwise") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
import DataUtils._
|
||||
val testSetDMatrix = new DMatrix(new JDMatrix(testSet, null))
|
||||
val paramMap = Map("eta" -> "1", "gamma" -> "0.5", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "depthwise", "eval_metric" -> "error")
|
||||
// TODO: histogram algorithm seems to be very very sensitive to worker number
|
||||
val xgBoostModel = XGBoost.trainWithRDD(trainingRDD, paramMap, round = 5,
|
||||
nWorkers = math.min(numWorkers, 2))
|
||||
assert(eval.eval(xgBoostModel.booster.predict(testSetDMatrix, outPutMargin = true),
|
||||
testSetDMatrix) < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo lossguide") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
import DataUtils._
|
||||
val testSetDMatrix = new DMatrix(new JDMatrix(testSet, null))
|
||||
val paramMap = Map("eta" -> "1", "gamma" -> "0.5", "max_depth" -> "0", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "lossguide", "max_leaves" -> "8", "eval_metric" -> "error")
|
||||
val xgBoostModel = XGBoost.trainWithRDD(trainingRDD, paramMap, round = 5,
|
||||
nWorkers = math.min(numWorkers, 2))
|
||||
val x = eval.eval(xgBoostModel.booster.predict(testSetDMatrix, outPutMargin = true),
|
||||
testSetDMatrix)
|
||||
assert(x < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo lossguide with max bin") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
import DataUtils._
|
||||
val testSetDMatrix = new DMatrix(new JDMatrix(testSet, null))
|
||||
val paramMap = Map("eta" -> "1", "gamma" -> "0.5", "max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "lossguide", "max_leaves" -> "8", "max_bin" -> "16",
|
||||
"eval_metric" -> "error")
|
||||
val xgBoostModel = XGBoost.trainWithRDD(trainingRDD, paramMap, round = 5,
|
||||
nWorkers = math.min(numWorkers, 2))
|
||||
val x = eval.eval(xgBoostModel.booster.predict(testSetDMatrix, outPutMargin = true),
|
||||
testSetDMatrix)
|
||||
assert(x < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwidth with max depth") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
import DataUtils._
|
||||
val testSetDMatrix = new DMatrix(new JDMatrix(testSet, null))
|
||||
val paramMap = Map("eta" -> "1", "gamma" -> "0.5", "max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "depthwise", "max_leaves" -> "8", "max_depth" -> "2",
|
||||
"eval_metric" -> "error")
|
||||
val xgBoostModel = XGBoost.trainWithRDD(trainingRDD, paramMap, round = 10,
|
||||
nWorkers = math.min(numWorkers, 2))
|
||||
val x = eval.eval(xgBoostModel.booster.predict(testSetDMatrix, outPutMargin = true),
|
||||
testSetDMatrix)
|
||||
assert(x < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwidth with max depth and max bin") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
import DataUtils._
|
||||
val testSetDMatrix = new DMatrix(new JDMatrix(testSet, null))
|
||||
val paramMap = Map("eta" -> "1", "gamma" -> "0.5", "max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "depthwise", "max_depth" -> "2", "max_bin" -> "2",
|
||||
"eval_metric" -> "error")
|
||||
val xgBoostModel = XGBoost.trainWithRDD(trainingRDD, paramMap, round = 10,
|
||||
nWorkers = math.min(numWorkers, 2))
|
||||
val x = eval.eval(xgBoostModel.booster.predict(testSetDMatrix, outPutMargin = true),
|
||||
testSetDMatrix)
|
||||
assert(x < 0.1)
|
||||
}
|
||||
|
||||
test("test with dense vectors containing missing value") {
|
||||
def buildDenseRDD(): RDD[LabeledPoint] = {
|
||||
val nrow = 100
|
||||
@ -142,6 +225,7 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
}
|
||||
sc.parallelize(points)
|
||||
}
|
||||
|
||||
val trainingRDD = buildDenseRDD().repartition(4)
|
||||
val testRDD = buildDenseRDD().repartition(4)
|
||||
val paramMap = List("eta" -> "1", "max_depth" -> "2", "silent" -> "1",
|
||||
@ -189,6 +273,7 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
val sampleList = new ListBuffer[SparkVector]
|
||||
sparkContext.getOrElse(sc).parallelize(sampleList, numWorkers)
|
||||
}
|
||||
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testRDD = buildEmptyRDD()
|
||||
val tempDir = Files.createTempDirectory("xgboosttest-")
|
||||
|
||||
@ -180,6 +180,26 @@ public class Booster implements Serializable, KryoSerializable {
|
||||
return evalInfo[0];
|
||||
}
|
||||
|
||||
/**
|
||||
* evaluate with given dmatrixs.
|
||||
*
|
||||
* @param evalMatrixs dmatrixs for evaluation
|
||||
* @param evalNames name for eval dmatrixs, used for check results
|
||||
* @param iter current eval iteration
|
||||
* @param metricsOut output array containing the evaluation metrics for each evalMatrix
|
||||
* @return eval information
|
||||
* @throws XGBoostError native error
|
||||
*/
|
||||
public String evalSet(DMatrix[] evalMatrixs, String[] evalNames, int iter, float[] metricsOut)
|
||||
throws XGBoostError {
|
||||
String stringFormat = evalSet(evalMatrixs, evalNames, iter);
|
||||
String[] metricPairs = stringFormat.split("\t");
|
||||
for (int i = 1; i < metricPairs.length; i++) {
|
||||
metricsOut[i - 1] = Float.valueOf(metricPairs[i].split(":")[1]);
|
||||
}
|
||||
return stringFormat;
|
||||
}
|
||||
|
||||
/**
|
||||
* evaluate with given customized Evaluation class
|
||||
*
|
||||
|
||||
@ -57,19 +57,6 @@ public class XGBoost {
|
||||
return Booster.loadModel(in);
|
||||
}
|
||||
|
||||
/**
|
||||
* Train a booster with given parameters.
|
||||
*
|
||||
* @param dtrain Data to be trained.
|
||||
* @param params Booster params.
|
||||
* @param round Number of boosting iterations.
|
||||
* @param watches a group of items to be evaluated during training, this allows user to watch
|
||||
* performance on the validation set.
|
||||
* @param obj customized objective (set to null if not used)
|
||||
* @param eval customized evaluation (set to null if not used)
|
||||
* @return trained booster
|
||||
* @throws XGBoostError native error
|
||||
*/
|
||||
public static Booster train(
|
||||
DMatrix dtrain,
|
||||
Map<String, Object> params,
|
||||
@ -77,6 +64,17 @@ public class XGBoost {
|
||||
Map<String, DMatrix> watches,
|
||||
IObjective obj,
|
||||
IEvaluation eval) throws XGBoostError {
|
||||
return train(dtrain, params, round, watches, null, obj, eval);
|
||||
}
|
||||
|
||||
public static Booster train(
|
||||
DMatrix dtrain,
|
||||
Map<String, Object> params,
|
||||
int round,
|
||||
Map<String, DMatrix> watches,
|
||||
float[][] metrics,
|
||||
IObjective obj,
|
||||
IEvaluation eval) throws XGBoostError {
|
||||
|
||||
//collect eval matrixs
|
||||
String[] evalNames;
|
||||
@ -94,7 +92,7 @@ public class XGBoost {
|
||||
|
||||
//collect all data matrixs
|
||||
DMatrix[] allMats;
|
||||
if (evalMats != null && evalMats.length > 0) {
|
||||
if (evalMats.length > 0) {
|
||||
allMats = new DMatrix[evalMats.length + 1];
|
||||
allMats[0] = dtrain;
|
||||
System.arraycopy(evalMats, 0, allMats, 1, evalMats.length);
|
||||
@ -121,12 +119,20 @@ public class XGBoost {
|
||||
}
|
||||
|
||||
//evaluation
|
||||
if (evalMats != null && evalMats.length > 0) {
|
||||
if (evalMats.length > 0) {
|
||||
String evalInfo;
|
||||
if (eval != null) {
|
||||
evalInfo = booster.evalSet(evalMats, evalNames, eval);
|
||||
} else {
|
||||
if (metrics == null) {
|
||||
evalInfo = booster.evalSet(evalMats, evalNames, iter);
|
||||
} else {
|
||||
float[] m = new float[evalMats.length];
|
||||
evalInfo = booster.evalSet(evalMats, evalNames, iter, m);
|
||||
for (int i = 0; i < m.length; i++) {
|
||||
metrics[i][iter] = m[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (Rabit.getRank() == 0) {
|
||||
Rabit.trackerPrint(evalInfo + '\n');
|
||||
|
||||
@ -25,6 +25,41 @@ import scala.collection.JavaConverters._
|
||||
* XGBoost Scala Training function.
|
||||
*/
|
||||
object XGBoost {
|
||||
|
||||
/**
|
||||
* Train a booster given parameters.
|
||||
*
|
||||
* @param dtrain Data to be trained.
|
||||
* @param params Parameters.
|
||||
* @param round Number of boosting iterations.
|
||||
* @param watches a group of items to be evaluated during training, this allows user to watch
|
||||
* performance on the validation set.
|
||||
* @param metrics array containing the evaluation metrics for each matrix in watches for each
|
||||
* iteration
|
||||
* @param obj customized objective
|
||||
* @param eval customized evaluation
|
||||
* @return The trained booster.
|
||||
*/
|
||||
@throws(classOf[XGBoostError])
|
||||
def train(
|
||||
dtrain: DMatrix,
|
||||
params: Map[String, Any],
|
||||
round: Int,
|
||||
watches: Map[String, DMatrix],
|
||||
metrics: Array[Array[Float]],
|
||||
obj: ObjectiveTrait,
|
||||
eval: EvalTrait): Booster = {
|
||||
val jWatches = watches.map{case (name, matrix) => (name, matrix.jDMatrix)}
|
||||
val xgboostInJava = JXGBoost.train(
|
||||
dtrain.jDMatrix,
|
||||
// we have to filter null value for customized obj and eval
|
||||
params.filter(_._2 != null).map{
|
||||
case (key: String, value) => (key, value.toString)
|
||||
}.toMap[String, AnyRef].asJava,
|
||||
round, jWatches.asJava, metrics, obj, eval)
|
||||
new Booster(xgboostInJava)
|
||||
}
|
||||
|
||||
/**
|
||||
* Train a booster given parameters.
|
||||
*
|
||||
@ -45,16 +80,7 @@ object XGBoost {
|
||||
watches: Map[String, DMatrix] = Map[String, DMatrix](),
|
||||
obj: ObjectiveTrait = null,
|
||||
eval: EvalTrait = null): Booster = {
|
||||
val jWatches = watches.map{case (name, matrix) => (name, matrix.jDMatrix)}
|
||||
val xgboostInJava = JXGBoost.train(
|
||||
dtrain.jDMatrix,
|
||||
// we have to filter null value for customized obj and eval
|
||||
params.filter(_._2 != null).map{
|
||||
case (key: String, value) => (key, value.toString)
|
||||
}.toMap[String, AnyRef].asJava,
|
||||
round, jWatches.asJava,
|
||||
obj, eval)
|
||||
new Booster(xgboostInJava)
|
||||
train(dtrain, params, round, watches, null, obj, eval)
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@ -26,7 +26,6 @@ import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
import junit.framework.TestCase;
|
||||
import ml.dmlc.xgboost4j.java.*;
|
||||
import org.apache.commons.logging.Log;
|
||||
import org.apache.commons.logging.LogFactory;
|
||||
import org.junit.Test;
|
||||
@ -151,6 +150,130 @@ public class BoosterImplTest {
|
||||
TestCase.assertTrue("loadedPredictErr:" + loadedPredictError, loadedPredictError < 0.1f);
|
||||
}
|
||||
|
||||
private void testWithFastHisto(DMatrix trainingSet, Map<String, DMatrix> watches, int round,
|
||||
Map<String, Object> paramMap, float threshold) throws XGBoostError {
|
||||
float[][] metrics = new float[watches.size()][round];
|
||||
Booster booster = XGBoost.train(trainingSet, paramMap, round, watches,
|
||||
metrics, null, null);
|
||||
for (int i = 0; i < metrics.length; i++)
|
||||
for (int j = 1; j < metrics[i].length; j++) {
|
||||
TestCase.assertTrue(metrics[i][j] >= metrics[i][j - 1]);
|
||||
}
|
||||
for (int i = 0; i < metrics.length; i++)
|
||||
for (int j = 0; j < metrics[i].length; j++) {
|
||||
TestCase.assertTrue(metrics[i][j] >= threshold);
|
||||
}
|
||||
booster.dispose();
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFastHistoDepthWise() throws XGBoostError {
|
||||
DMatrix trainMat = new DMatrix("../../demo/data/agaricus.txt.train");
|
||||
DMatrix testMat = new DMatrix("../../demo/data/agaricus.txt.test");
|
||||
// testBoosterWithFastHistogram(trainMat, testMat);
|
||||
Map<String, Object> paramMap = new HashMap<String, Object>() {
|
||||
{
|
||||
put("max_depth", 3);
|
||||
put("silent", 1);
|
||||
put("objective", "binary:logistic");
|
||||
put("tree_method", "hist");
|
||||
put("grow_policy", "depthwise");
|
||||
put("eval_metric", "auc");
|
||||
}
|
||||
};
|
||||
Map<String, DMatrix> watches = new HashMap<>();
|
||||
watches.put("training", trainMat);
|
||||
watches.put("test", testMat);
|
||||
testWithFastHisto(trainMat, watches, 10, paramMap, 0.0f);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFastHistoLossGuide() throws XGBoostError {
|
||||
DMatrix trainMat = new DMatrix("../../demo/data/agaricus.txt.train");
|
||||
DMatrix testMat = new DMatrix("../../demo/data/agaricus.txt.test");
|
||||
// testBoosterWithFastHistogram(trainMat, testMat);
|
||||
Map<String, Object> paramMap = new HashMap<String, Object>() {
|
||||
{
|
||||
put("max_depth", 0);
|
||||
put("silent", 1);
|
||||
put("objective", "binary:logistic");
|
||||
put("tree_method", "hist");
|
||||
put("grow_policy", "lossguide");
|
||||
put("max_leaves", 8);
|
||||
put("eval_metric", "auc");
|
||||
}
|
||||
};
|
||||
Map<String, DMatrix> watches = new HashMap<>();
|
||||
watches.put("training", trainMat);
|
||||
watches.put("test", testMat);
|
||||
testWithFastHisto(trainMat, watches, 10, paramMap, 0.0f);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFastHistoLossGuideMaxBin() throws XGBoostError {
|
||||
DMatrix trainMat = new DMatrix("../../demo/data/agaricus.txt.train");
|
||||
DMatrix testMat = new DMatrix("../../demo/data/agaricus.txt.test");
|
||||
// testBoosterWithFastHistogram(trainMat, testMat);
|
||||
Map<String, Object> paramMap = new HashMap<String, Object>() {
|
||||
{
|
||||
put("max_depth", 0);
|
||||
put("silent", 1);
|
||||
put("objective", "binary:logistic");
|
||||
put("tree_method", "hist");
|
||||
put("grow_policy", "lossguide");
|
||||
put("max_leaves", 8);
|
||||
put("max_bins", 16);
|
||||
put("eval_metric", "auc");
|
||||
}
|
||||
};
|
||||
Map<String, DMatrix> watches = new HashMap<>();
|
||||
watches.put("training", trainMat);
|
||||
testWithFastHisto(trainMat, watches, 10, paramMap, 0.0f);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFastHistoDepthwiseMaxDepth() throws XGBoostError {
|
||||
DMatrix trainMat = new DMatrix("../../demo/data/agaricus.txt.train");
|
||||
DMatrix testMat = new DMatrix("../../demo/data/agaricus.txt.test");
|
||||
// testBoosterWithFastHistogram(trainMat, testMat);
|
||||
Map<String, Object> paramMap = new HashMap<String, Object>() {
|
||||
{
|
||||
put("max_depth", 3);
|
||||
put("silent", 1);
|
||||
put("objective", "binary:logistic");
|
||||
put("tree_method", "hist");
|
||||
put("max_depth", 2);
|
||||
put("grow_policy", "depthwise");
|
||||
put("eval_metric", "auc");
|
||||
}
|
||||
};
|
||||
Map<String, DMatrix> watches = new HashMap<>();
|
||||
watches.put("training", trainMat);
|
||||
testWithFastHisto(trainMat, watches, 10, paramMap, 0.85f);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFastHistoDepthwiseMaxDepthMaxBin() throws XGBoostError {
|
||||
DMatrix trainMat = new DMatrix("../../demo/data/agaricus.txt.train");
|
||||
DMatrix testMat = new DMatrix("../../demo/data/agaricus.txt.test");
|
||||
// testBoosterWithFastHistogram(trainMat, testMat);
|
||||
Map<String, Object> paramMap = new HashMap<String, Object>() {
|
||||
{
|
||||
put("max_depth", 3);
|
||||
put("silent", 1);
|
||||
put("objective", "binary:logistic");
|
||||
put("tree_method", "hist");
|
||||
put("max_depth", 2);
|
||||
put("max_bin", 2);
|
||||
put("grow_policy", "depthwise");
|
||||
put("eval_metric", "auc");
|
||||
}
|
||||
};
|
||||
Map<String, DMatrix> watches = new HashMap<>();
|
||||
watches.put("training", trainMat);
|
||||
testWithFastHisto(trainMat, watches, 10, paramMap, 0.85f);
|
||||
}
|
||||
|
||||
/**
|
||||
* test cross valiation
|
||||
*
|
||||
|
||||
@ -77,6 +77,23 @@ class ScalaBoosterImplSuite extends FunSuite {
|
||||
XGBoost.train(trainMat, paramMap, round, watches, null, null)
|
||||
}
|
||||
|
||||
private def trainBoosterWithFastHisto(
|
||||
trainMat: DMatrix,
|
||||
watches: Map[String, DMatrix],
|
||||
round: Int,
|
||||
paramMap: Map[String, String],
|
||||
threshold: Float): Booster = {
|
||||
val metrics = Array.fill(watches.size, round)(0.0f)
|
||||
val booster = XGBoost.train(trainMat, paramMap, round, watches, metrics, null, null)
|
||||
for (i <- 0 until watches.size; j <- 1 until metrics(i).length) {
|
||||
assert(metrics(i)(j) >= metrics(i)(j - 1))
|
||||
}
|
||||
for (metricsArray <- metrics; m <- metricsArray) {
|
||||
assert(m >= threshold)
|
||||
}
|
||||
booster
|
||||
}
|
||||
|
||||
test("basic operation of booster") {
|
||||
val trainMat = new DMatrix("../../demo/data/agaricus.txt.train")
|
||||
val testMat = new DMatrix("../../demo/data/agaricus.txt.test")
|
||||
@ -128,4 +145,57 @@ class ScalaBoosterImplSuite extends FunSuite {
|
||||
val nfold = 5
|
||||
XGBoost.crossValidation(trainMat, params, round, nfold, null, null, null)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwise") {
|
||||
val trainMat = new DMatrix("../../demo/data/agaricus.txt.train")
|
||||
val testMat = new DMatrix("../../demo/data/agaricus.txt.test")
|
||||
val paramMap = List("max_depth" -> "3", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "depthwise", "eval_metric" -> "auc").toMap
|
||||
trainBoosterWithFastHisto(trainMat, Map("training" -> trainMat, "test" -> testMat),
|
||||
round = 10, paramMap, 0.0f)
|
||||
}
|
||||
|
||||
test("test with fast histo lossguide") {
|
||||
val trainMat = new DMatrix("../../demo/data/agaricus.txt.train")
|
||||
val testMat = new DMatrix("../../demo/data/agaricus.txt.test")
|
||||
val paramMap = List("max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "lossguide", "max_leaves" -> "8", "eval_metric" -> "auc").toMap
|
||||
trainBoosterWithFastHisto(trainMat, Map("training" -> trainMat, "test" -> testMat),
|
||||
round = 10, paramMap, 0.0f)
|
||||
}
|
||||
|
||||
test("test with fast histo lossguide with max bin") {
|
||||
val trainMat = new DMatrix("../../demo/data/agaricus.txt.train")
|
||||
val testMat = new DMatrix("../../demo/data/agaricus.txt.test")
|
||||
val paramMap = List("max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "lossguide", "max_leaves" -> "8", "max_bin" -> "16",
|
||||
"eval_metric" -> "auc").toMap
|
||||
trainBoosterWithFastHisto(trainMat, Map("training" -> trainMat),
|
||||
round = 10, paramMap, 0.0f)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwidth with max depth") {
|
||||
val trainMat = new DMatrix("../../demo/data/agaricus.txt.train")
|
||||
val testMat = new DMatrix("../../demo/data/agaricus.txt.test")
|
||||
val paramMap = List("max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "depthwise", "max_leaves" -> "8", "max_depth" -> "2",
|
||||
"eval_metric" -> "auc").toMap
|
||||
trainBoosterWithFastHisto(trainMat, Map("training" -> trainMat),
|
||||
round = 10, paramMap, 0.85f)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwidth with max depth and max bin") {
|
||||
val trainMat = new DMatrix("../../demo/data/agaricus.txt.train")
|
||||
val testMat = new DMatrix("../../demo/data/agaricus.txt.test")
|
||||
val paramMap = List("max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "depthwise", "max_depth" -> "2", "max_bin" -> "2",
|
||||
"eval_metric" -> "auc").toMap
|
||||
trainBoosterWithFastHisto(trainMat, Map("training" -> trainMat),
|
||||
round = 10, paramMap, 0.85f)
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user