diff --git a/R-package/vignettes/vignette.css b/R-package/vignettes/vignette.css index 10454b3cf..51908da28 100644 --- a/R-package/vignettes/vignette.css +++ b/R-package/vignettes/vignette.css @@ -1,4 +1,4 @@ -body{ +body { margin: 0 auto; background-color: white; @@ -23,7 +23,7 @@ body{ / color: #E3E3E3; /* very light gray */ / color: white; - line-height: 1; + line-height: 100%; max-width: 800px; padding: 10px; font-size: 17px; @@ -32,8 +32,8 @@ body{ } -p { - line-height: 140%; +p { + line-height: 150%; / max-width: 540px; max-width: 960px; margin-bottom: 5px; @@ -42,51 +42,43 @@ p { } -h1, h2, h3, h4 { -/ color: #111111; +h1, h2, h3, h4, h5, h6 { font-weight: 400; -} - -h2, h3, h4, h5 { - margin-bottom: 20px; - padding: 0; + margin-top: 35px; + margin-bottom: 15px; + padding-top: 10px; } h1 { - margin-bottom: 10px; + margin-top: 70px; + color: #606AAA; font-size:230%; - padding: 0px; font-variant:small-caps; + padding-bottom:20px; + width:100%; + border-bottom:1px solid #606AAA; } h2 { - font-size:130%; -/ margin: 24px 0 6px; + font-size:160%; } h3 { - font-size:110%; - text-decoration: underline; + font-size:130%; } h4 { - font-size:100%; - font-style: italic; + font-size:120%; font-variant:small-caps; } h5 { - font-size:100%; - font-weight: 100; - font-style: italic; + font-size:120%; } h6 { - font-size:100%; - font-weight: 100; - color:red; + font-size:120%; font-variant:small-caps; - font-style: italic; } a { diff --git a/R-package/vignettes/xgboostPresentation.Rmd b/R-package/vignettes/xgboostPresentation.Rmd index 09dcc4115..b6491f386 100644 --- a/R-package/vignettes/xgboostPresentation.Rmd +++ b/R-package/vignettes/xgboostPresentation.Rmd @@ -20,7 +20,7 @@ Introduction The purpose of this Vignette is to show you how to use **Xgboost** to build a model and make predictions. -It is an efficient and scalable implementation of gradient boosting framework by @friedman2001greedy. Two solvers are included: +It is an efficient and scalable implementation of gradient boosting framework by @friedman2000additive and @friedman2001greedy. Two solvers are included: - *linear* model ; - *tree learning* algorithm.