Support configuring constraints by feature names (#6783)
Co-authored-by: fis <jm.yuan@outlook.com>
This commit is contained in:
parent
7e06c81894
commit
aa0d8f20c1
@ -1193,6 +1193,7 @@ class Booster(object):
|
||||
|
||||
params = params or {}
|
||||
params = self._configure_metrics(params.copy())
|
||||
params = self._configure_constraints(params)
|
||||
if isinstance(params, list):
|
||||
params.append(('validate_parameters', True))
|
||||
else:
|
||||
@ -1233,6 +1234,68 @@ class Booster(object):
|
||||
params += [('eval_metric', eval_metric)]
|
||||
return params
|
||||
|
||||
def _transform_monotone_constrains(self, value: Union[dict, str]) -> str:
|
||||
if isinstance(value, str):
|
||||
return value
|
||||
|
||||
constrained_features = set(value.keys())
|
||||
if not constrained_features.issubset(set(self.feature_names or [])):
|
||||
raise ValueError('Constrained features are not a subset of '
|
||||
'training data feature names')
|
||||
|
||||
return '(' + ','.join([str(value.get(feature_name, 0))
|
||||
for feature_name in self.feature_names]) + ')'
|
||||
|
||||
def _transform_interaction_constraints(self, value: Union[list, str]) -> str:
|
||||
if isinstance(value, str):
|
||||
return value
|
||||
|
||||
feature_idx_mapping = {k: str(v) for v, k in enumerate(self.feature_names or [])}
|
||||
|
||||
try:
|
||||
s = "["
|
||||
for constraint in value:
|
||||
s += (
|
||||
"["
|
||||
+ ",".join(
|
||||
[feature_idx_mapping[feature_name] for feature_name in constraint]
|
||||
)
|
||||
+ "]"
|
||||
)
|
||||
return s + "]"
|
||||
except KeyError as e:
|
||||
# pylint: disable=raise-missing-from
|
||||
raise ValueError(
|
||||
"Constrained features are not a subset of training data feature names"
|
||||
) from e
|
||||
|
||||
def _configure_constraints(self, params: Union[Dict, List]) -> Union[Dict, List]:
|
||||
if isinstance(params, dict):
|
||||
value = params.get("monotone_constraints")
|
||||
if value:
|
||||
params[
|
||||
"monotone_constraints"
|
||||
] = self._transform_monotone_constrains(value)
|
||||
|
||||
value = params.get("interaction_constraints")
|
||||
if value:
|
||||
params[
|
||||
"interaction_constraints"
|
||||
] = self._transform_interaction_constraints(value)
|
||||
|
||||
elif isinstance(params, list):
|
||||
for idx, param in enumerate(params):
|
||||
name, value = param
|
||||
if not value:
|
||||
continue
|
||||
|
||||
if name == "monotone_constraints":
|
||||
params[idx] = (name, self._transform_monotone_constrains(value))
|
||||
elif name == "interaction_constraints":
|
||||
params[idx] = (name, self._transform_interaction_constraints(value))
|
||||
|
||||
return params
|
||||
|
||||
def __del__(self):
|
||||
if hasattr(self, 'handle') and self.handle is not None:
|
||||
_check_call(_LIB.XGBoosterFree(self.handle))
|
||||
|
||||
@ -9,7 +9,7 @@ rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
class TestInteractionConstraints:
|
||||
def run_interaction_constraints(self, tree_method):
|
||||
def run_interaction_constraints(self, tree_method, feature_names=None, interaction_constraints='[[0, 1]]'):
|
||||
x1 = np.random.normal(loc=1.0, scale=1.0, size=1000)
|
||||
x2 = np.random.normal(loc=1.0, scale=1.0, size=1000)
|
||||
x3 = np.random.choice([1, 2, 3], size=1000, replace=True)
|
||||
@ -17,13 +17,13 @@ class TestInteractionConstraints:
|
||||
+ np.random.normal(
|
||||
loc=0.001, scale=1.0, size=1000) + 3 * np.sin(x1)
|
||||
X = np.column_stack((x1, x2, x3))
|
||||
dtrain = xgboost.DMatrix(X, label=y)
|
||||
dtrain = xgboost.DMatrix(X, label=y, feature_names=feature_names)
|
||||
|
||||
params = {
|
||||
'max_depth': 3,
|
||||
'eta': 0.1,
|
||||
'nthread': 2,
|
||||
'interaction_constraints': '[[0, 1]]',
|
||||
'interaction_constraints': interaction_constraints,
|
||||
'tree_method': tree_method
|
||||
}
|
||||
num_boost_round = 12
|
||||
@ -35,7 +35,7 @@ class TestInteractionConstraints:
|
||||
# by the same amount
|
||||
def f(x):
|
||||
tmat = xgboost.DMatrix(
|
||||
np.column_stack((x1, x2, np.repeat(x, 1000))))
|
||||
np.column_stack((x1, x2, np.repeat(x, 1000))), feature_names=feature_names)
|
||||
return bst.predict(tmat)
|
||||
|
||||
preds = [f(x) for x in [1, 2, 3]]
|
||||
@ -57,6 +57,26 @@ class TestInteractionConstraints:
|
||||
def test_approx_interaction_constraints(self):
|
||||
self.run_interaction_constraints(tree_method='approx')
|
||||
|
||||
def test_interaction_constraints_feature_names(self):
|
||||
with pytest.raises(ValueError):
|
||||
constraints = [('feature_0', 'feature_1')]
|
||||
self.run_interaction_constraints(tree_method='exact',
|
||||
interaction_constraints=constraints)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
constraints = [('feature_0', 'feature_3')]
|
||||
feature_names = ['feature_0', 'feature_1', 'feature_2']
|
||||
self.run_interaction_constraints(tree_method='exact',
|
||||
feature_names=feature_names,
|
||||
interaction_constraints=constraints)
|
||||
|
||||
|
||||
constraints = [('feature_0', 'feature_1')]
|
||||
feature_names = ['feature_0', 'feature_1', 'feature_2']
|
||||
self.run_interaction_constraints(tree_method='exact',
|
||||
feature_names=feature_names,
|
||||
interaction_constraints=constraints)
|
||||
|
||||
@pytest.mark.skipif(**tm.no_sklearn())
|
||||
def training_accuracy(self, tree_method):
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
@ -14,7 +14,7 @@ def is_decreasing(y):
|
||||
return np.count_nonzero(np.diff(y) > 0.0) == 0
|
||||
|
||||
|
||||
def is_correctly_constrained(learner):
|
||||
def is_correctly_constrained(learner, feature_names=None):
|
||||
n = 100
|
||||
variable_x = np.linspace(0, 1, n).reshape((n, 1))
|
||||
fixed_xs_values = np.linspace(0, 1, n)
|
||||
@ -22,13 +22,15 @@ def is_correctly_constrained(learner):
|
||||
for i in range(n):
|
||||
fixed_x = fixed_xs_values[i] * np.ones((n, 1))
|
||||
monotonically_increasing_x = np.column_stack((variable_x, fixed_x))
|
||||
monotonically_increasing_dset = xgb.DMatrix(monotonically_increasing_x)
|
||||
monotonically_increasing_dset = xgb.DMatrix(monotonically_increasing_x,
|
||||
feature_names=feature_names)
|
||||
monotonically_increasing_y = learner.predict(
|
||||
monotonically_increasing_dset
|
||||
)
|
||||
|
||||
monotonically_decreasing_x = np.column_stack((fixed_x, variable_x))
|
||||
monotonically_decreasing_dset = xgb.DMatrix(monotonically_decreasing_x)
|
||||
monotonically_decreasing_dset = xgb.DMatrix(monotonically_decreasing_x,
|
||||
feature_names=feature_names)
|
||||
monotonically_decreasing_y = learner.predict(
|
||||
monotonically_decreasing_dset
|
||||
)
|
||||
@ -101,6 +103,38 @@ class TestMonotoneConstraints:
|
||||
|
||||
assert is_correctly_constrained(constrained_hist_method)
|
||||
|
||||
@pytest.mark.parametrize('format', [dict, list])
|
||||
def test_monotone_constraints_feature_names(self, format):
|
||||
|
||||
# next check monotonicity when initializing monotone_constraints by feature names
|
||||
params = {
|
||||
'tree_method': 'hist', 'verbosity': 1,
|
||||
'grow_policy': 'lossguide',
|
||||
'monotone_constraints': {'feature_0': 1, 'feature_1': -1}
|
||||
}
|
||||
|
||||
if format == list:
|
||||
params = list(params.items())
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
xgb.train(params, training_dset)
|
||||
|
||||
feature_names =[ 'feature_0', 'feature_2']
|
||||
training_dset_w_feature_names = xgb.DMatrix(x, label=y, feature_names=feature_names)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
xgb.train(params, training_dset_w_feature_names)
|
||||
|
||||
feature_names =[ 'feature_0', 'feature_1']
|
||||
training_dset_w_feature_names = xgb.DMatrix(x, label=y, feature_names=feature_names)
|
||||
|
||||
constrained_learner = xgb.train(
|
||||
params, training_dset_w_feature_names
|
||||
)
|
||||
|
||||
assert is_correctly_constrained(constrained_learner, feature_names)
|
||||
|
||||
|
||||
@pytest.mark.skipif(**tm.no_sklearn())
|
||||
def test_training_accuracy(self):
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user