[jvm-packages] Disable fast histo for spark (#2296)
* add back train method but mark as deprecated * fix scalastyle error * disable fast histogram in xgboost4j-spark temporarily
This commit is contained in:
parent
c66ca79221
commit
a607f697e3
@ -266,6 +266,10 @@ object XGBoost extends Serializable {
|
||||
trainingData: RDD[MLLabeledPoint], params: Map[String, Any], round: Int,
|
||||
nWorkers: Int, obj: ObjectiveTrait = null, eval: EvalTrait = null,
|
||||
useExternalMemory: Boolean = false, missing: Float = Float.NaN): XGBoostModel = {
|
||||
if (params.contains("tree_method")) {
|
||||
require(params("tree_method") != "hist", "xgboost4j-spark does not support fast histogram" +
|
||||
" for now")
|
||||
}
|
||||
require(nWorkers > 0, "you must specify more than 0 workers")
|
||||
if (obj != null) {
|
||||
require(params.get("obj_type").isDefined, "parameter \"obj_type\" is not defined," +
|
||||
|
||||
@ -194,7 +194,7 @@ class XGBoostDFSuite extends SharedSparkContext with Utils {
|
||||
assert(xgbEstimatorCopy1.fromParamsToXGBParamMap("eval_metric") === "logloss")
|
||||
}
|
||||
|
||||
test("fast histogram algorithm parameters are exposed correctly") {
|
||||
ignore("fast histogram algorithm parameters are exposed correctly") {
|
||||
val paramMap = Map("eta" -> "1", "gamma" -> "0.5", "max_depth" -> "0", "silent" -> "0",
|
||||
"objective" -> "binary:logistic", "tree_method" -> "hist",
|
||||
"grow_policy" -> "depthwise", "max_depth" -> "2", "max_bin" -> "2",
|
||||
|
||||
@ -23,9 +23,12 @@ import scala.collection.mutable.ListBuffer
|
||||
import scala.io.Source
|
||||
import scala.util.Random
|
||||
import scala.concurrent.duration._
|
||||
|
||||
import ml.dmlc.xgboost4j.java.{Rabit, DMatrix => JDMatrix, RabitTracker => PyRabitTracker}
|
||||
import ml.dmlc.xgboost4j.scala.DMatrix
|
||||
import ml.dmlc.xgboost4j.scala.rabit.RabitTracker
|
||||
import org.scalatest.Ignore
|
||||
|
||||
import org.apache.spark.SparkContext
|
||||
import org.apache.spark.ml.feature.LabeledPoint
|
||||
import org.apache.spark.ml.linalg.{Vectors, Vector => SparkVector}
|
||||
@ -117,7 +120,7 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
testSetDMatrix) < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwise") {
|
||||
ignore("test with fast histo depthwise") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
@ -133,7 +136,7 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
testSetDMatrix) < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo lossguide") {
|
||||
ignore("test with fast histo lossguide") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
@ -149,7 +152,7 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
assert(x < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo lossguide with max bin") {
|
||||
ignore("test with fast histo lossguide with max bin") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
@ -166,7 +169,7 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
assert(x < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwidth with max depth") {
|
||||
ignore("test with fast histo depthwidth with max depth") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
@ -183,7 +186,7 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
assert(x < 0.1)
|
||||
}
|
||||
|
||||
test("test with fast histo depthwidth with max depth and max bin") {
|
||||
ignore("test with fast histo depthwidth with max depth and max bin") {
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(sc)
|
||||
val testSet = loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user