change data format to include weight in binary file, add get weight to python
This commit is contained in:
parent
3cb42d3f87
commit
a59969cd52
@ -1 +0,0 @@
|
||||
This directory contains codes under development
|
||||
@ -1,329 +0,0 @@
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#define _CRT_SECURE_NO_DEPRECATE
|
||||
|
||||
#include <ctime>
|
||||
#include <string>
|
||||
#include <cstring>
|
||||
#include "xgboost_data_instance.h"
|
||||
#include "xgboost_learner.h"
|
||||
#include "../utils/xgboost_fmap.h"
|
||||
#include "../utils/xgboost_random.h"
|
||||
#include "../utils/xgboost_config.h"
|
||||
|
||||
namespace xgboost{
|
||||
namespace base{
|
||||
/*!
|
||||
* \brief wrapping the training process of the gradient boosting model,
|
||||
* given the configuation
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.chen@gmail.com
|
||||
*/
|
||||
class BoostTask{
|
||||
public:
|
||||
inline int Run(int argc, char *argv[]){
|
||||
|
||||
if (argc < 2){
|
||||
printf("Usage: <config>\n");
|
||||
return 0;
|
||||
}
|
||||
utils::ConfigIterator itr(argv[1]);
|
||||
while (itr.Next()){
|
||||
this->SetParam(itr.name(), itr.val());
|
||||
}
|
||||
for (int i = 2; i < argc; i++){
|
||||
char name[256], val[256];
|
||||
if (sscanf(argv[i], "%[^=]=%s", name, val) == 2){
|
||||
this->SetParam(name, val);
|
||||
}
|
||||
}
|
||||
|
||||
this->InitData();
|
||||
this->InitLearner();
|
||||
if (task == "dump"){
|
||||
this->TaskDump();
|
||||
return 0;
|
||||
}
|
||||
if (task == "interact"){
|
||||
this->TaskInteractive(); return 0;
|
||||
}
|
||||
if (task == "dumppath"){
|
||||
this->TaskDumpPath(); return 0;
|
||||
}
|
||||
if (task == "eval"){
|
||||
this->TaskEval(); return 0;
|
||||
}
|
||||
if (task == "pred"){
|
||||
this->TaskPred();
|
||||
}
|
||||
else{
|
||||
this->TaskTrain();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
enum learning_tasks{
|
||||
REGRESSION = 0,
|
||||
BINARY_CLASSIFICATION = 1,
|
||||
RANKING = 2
|
||||
};
|
||||
|
||||
/* \brief set learner
|
||||
* \param learner the passed in learner
|
||||
*/
|
||||
inline void SetLearner(BoostLearner* learner){
|
||||
learner_ = learner;
|
||||
}
|
||||
|
||||
inline void SetParam(const char *name, const char *val){
|
||||
if (!strcmp("learning_task", name)) learning_task = atoi(val);
|
||||
if (!strcmp("silent", name)) silent = atoi(val);
|
||||
if (!strcmp("use_buffer", name)) use_buffer = atoi(val);
|
||||
if (!strcmp("seed", name)) random::Seed(atoi(val));
|
||||
if (!strcmp("num_round", name)) num_round = atoi(val);
|
||||
if (!strcmp("save_period", name)) save_period = atoi(val);
|
||||
if (!strcmp("task", name)) task = val;
|
||||
if (!strcmp("data", name)) train_path = val;
|
||||
if (!strcmp("test:data", name)) test_path = val;
|
||||
if (!strcmp("model_in", name)) model_in = val;
|
||||
if (!strcmp("model_out", name)) model_out = val;
|
||||
if (!strcmp("model_dir", name)) model_dir_path = val;
|
||||
if (!strcmp("fmap", name)) name_fmap = val;
|
||||
if (!strcmp("name_dump", name)) name_dump = val;
|
||||
if (!strcmp("name_dumppath", name)) name_dumppath = val;
|
||||
if (!strcmp("name_pred", name)) name_pred = val;
|
||||
if (!strcmp("dump_stats", name)) dump_model_stats = atoi(val);
|
||||
if (!strcmp("interact:action", name)) interact_action = val;
|
||||
if (!strncmp("batch:", name, 6)){
|
||||
cfg_batch.PushBack(name + 6, val);
|
||||
}
|
||||
if (!strncmp("eval[", name, 5)) {
|
||||
char evname[256];
|
||||
utils::Assert(sscanf(name, "eval[%[^]]", evname) == 1, "must specify evaluation name for display");
|
||||
eval_data_names.push_back(std::string(evname));
|
||||
eval_data_paths.push_back(std::string(val));
|
||||
}
|
||||
cfg.PushBack(name, val);
|
||||
}
|
||||
public:
|
||||
BoostTask(void){
|
||||
// default parameters
|
||||
silent = 0;
|
||||
use_buffer = 1;
|
||||
num_round = 10;
|
||||
save_period = 0;
|
||||
dump_model_stats = 0;
|
||||
task = "train";
|
||||
model_in = "NULL";
|
||||
model_out = "NULL";
|
||||
name_fmap = "NULL";
|
||||
name_pred = "pred.txt";
|
||||
name_dump = "dump.txt";
|
||||
name_dumppath = "dump.path.txt";
|
||||
model_dir_path = "./";
|
||||
interact_action = "update";
|
||||
}
|
||||
~BoostTask(void){
|
||||
for (size_t i = 0; i < deval.size(); i++){
|
||||
delete deval[i];
|
||||
}
|
||||
}
|
||||
private:
|
||||
|
||||
|
||||
inline void InitData(void){
|
||||
|
||||
if (name_fmap != "NULL") fmap.LoadText(name_fmap.c_str());
|
||||
if (task == "dump") return;
|
||||
if (learning_task == RANKING){
|
||||
char instance_path[256], group_path[256];
|
||||
if (task == "pred" || task == "dumppath"){
|
||||
sscanf(test_path.c_str(), "%[^;];%s", instance_path, group_path);
|
||||
data.CacheLoad(instance_path, group_path, silent != 0, use_buffer != 0);
|
||||
}
|
||||
else{
|
||||
// training
|
||||
sscanf(train_path.c_str(), "%[^;];%s", instance_path, group_path);
|
||||
data.CacheLoad(instance_path, group_path, silent != 0, use_buffer != 0);
|
||||
|
||||
utils::Assert(eval_data_names.size() == eval_data_paths.size());
|
||||
for (size_t i = 0; i < eval_data_names.size(); ++i){
|
||||
deval.push_back(new DMatrix());
|
||||
sscanf(eval_data_paths[i].c_str(), "%[^;];%s", instance_path, group_path);
|
||||
deval.back()->CacheLoad(instance_path, group_path, silent != 0, use_buffer != 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
else{
|
||||
if (task == "pred" || task == "dumppath"){
|
||||
data.CacheLoad(test_path.c_str(), "", silent != 0, use_buffer != 0);
|
||||
}
|
||||
else{
|
||||
// training
|
||||
data.CacheLoad(train_path.c_str(), "", silent != 0, use_buffer != 0);
|
||||
utils::Assert(eval_data_names.size() == eval_data_paths.size());
|
||||
for (size_t i = 0; i < eval_data_names.size(); ++i){
|
||||
deval.push_back(new DMatrix());
|
||||
deval.back()->CacheLoad(eval_data_paths[i].c_str(), "", silent != 0, use_buffer != 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
learner_->SetData(&data, deval, eval_data_names);
|
||||
if(!silent) printf("BoostTask:Data Initiation Done!\n");
|
||||
}
|
||||
|
||||
inline void InitLearner(void){
|
||||
cfg.BeforeFirst();
|
||||
while (cfg.Next()){
|
||||
learner_->SetParam(cfg.name(), cfg.val());
|
||||
}
|
||||
if (model_in != "NULL"){
|
||||
utils::FileStream fi(utils::FopenCheck(model_in.c_str(), "rb"));
|
||||
learner_->LoadModel(fi);
|
||||
fi.Close();
|
||||
}
|
||||
else{
|
||||
utils::Assert(task == "train", "model_in not specified");
|
||||
learner_->InitModel();
|
||||
}
|
||||
learner_->InitTrainer();
|
||||
if(!silent) printf("BoostTask:InitLearner Done!\n");
|
||||
}
|
||||
|
||||
inline void TaskTrain(void){
|
||||
const time_t start = time(NULL);
|
||||
unsigned long elapsed = 0;
|
||||
for (int i = 0; i < num_round; ++i){
|
||||
elapsed = (unsigned long)(time(NULL) - start);
|
||||
if (!silent) printf("boosting round %d, %lu sec elapsed\n", i, elapsed);
|
||||
learner_->UpdateOneIter(i);
|
||||
learner_->EvalOneIter(i);
|
||||
if (save_period != 0 && (i + 1) % save_period == 0){
|
||||
this->SaveModel(i);
|
||||
}
|
||||
elapsed = (unsigned long)(time(NULL) - start);
|
||||
}
|
||||
// always save final round
|
||||
if (save_period == 0 || num_round % save_period != 0){
|
||||
if (model_out == "NULL"){
|
||||
this->SaveModel(num_round - 1);
|
||||
}
|
||||
else{
|
||||
this->SaveModel(model_out.c_str());
|
||||
}
|
||||
}
|
||||
if (!silent){
|
||||
printf("\nupdating end, %lu sec in all\n", elapsed);
|
||||
}
|
||||
}
|
||||
inline void TaskEval(void){
|
||||
learner_->EvalOneIter(0);
|
||||
}
|
||||
inline void TaskInteractive(void){
|
||||
const time_t start = time(NULL);
|
||||
unsigned long elapsed = 0;
|
||||
int batch_action = 0;
|
||||
|
||||
cfg_batch.BeforeFirst();
|
||||
while (cfg_batch.Next()){
|
||||
if (!strcmp(cfg_batch.name(), "run")){
|
||||
learner_->UpdateInteract(interact_action);
|
||||
batch_action += 1;
|
||||
}
|
||||
else{
|
||||
learner_->SetParam(cfg_batch.name(), cfg_batch.val());
|
||||
}
|
||||
}
|
||||
|
||||
if (batch_action == 0){
|
||||
learner_->UpdateInteract(interact_action);
|
||||
}
|
||||
utils::Assert(model_out != "NULL", "interactive mode must specify model_out");
|
||||
this->SaveModel(model_out.c_str());
|
||||
elapsed = (unsigned long)(time(NULL) - start);
|
||||
|
||||
if (!silent){
|
||||
printf("\ninteractive update, %d batch actions, %lu sec in all\n", batch_action, elapsed);
|
||||
}
|
||||
}
|
||||
|
||||
inline void TaskDump(void){
|
||||
FILE *fo = utils::FopenCheck(name_dump.c_str(), "w");
|
||||
learner_->DumpModel(fo, fmap, dump_model_stats != 0);
|
||||
fclose(fo);
|
||||
}
|
||||
inline void TaskDumpPath(void){
|
||||
FILE *fo = utils::FopenCheck(name_dumppath.c_str(), "w");
|
||||
learner_->DumpPath(fo, data);
|
||||
fclose(fo);
|
||||
}
|
||||
inline void SaveModel(const char *fname) const{
|
||||
utils::FileStream fo(utils::FopenCheck(fname, "wb"));
|
||||
learner_->SaveModel(fo);
|
||||
fo.Close();
|
||||
}
|
||||
inline void SaveModel(int i) const{
|
||||
char fname[256];
|
||||
sprintf(fname, "%s/%04d.model", model_dir_path.c_str(), i + 1);
|
||||
this->SaveModel(fname);
|
||||
}
|
||||
inline void TaskPred(void){
|
||||
std::vector<float> preds;
|
||||
if (!silent) printf("start prediction...\n");
|
||||
learner_->Predict(preds, data);
|
||||
if (!silent) printf("writing prediction to %s\n", name_pred.c_str());
|
||||
FILE *fo = utils::FopenCheck(name_pred.c_str(), "w");
|
||||
for (size_t i = 0; i < preds.size(); i++){
|
||||
fprintf(fo, "%f\n", preds[i]);
|
||||
}
|
||||
fclose(fo);
|
||||
}
|
||||
private:
|
||||
/* \brief specify the learning task*/
|
||||
int learning_task;
|
||||
/* \brief whether silent */
|
||||
int silent;
|
||||
/* \brief whether use auto binary buffer */
|
||||
int use_buffer;
|
||||
/* \brief number of boosting iterations */
|
||||
int num_round;
|
||||
/* \brief the period to save the model, 0 means only save the final round model */
|
||||
int save_period;
|
||||
/*! \brief interfact action */
|
||||
std::string interact_action;
|
||||
/* \brief the path of training/test data set */
|
||||
std::string train_path, test_path;
|
||||
/* \brief the path of test model file, or file to restart training */
|
||||
std::string model_in;
|
||||
/* \brief the path of final model file, to be saved */
|
||||
std::string model_out;
|
||||
/* \brief the path of directory containing the saved models */
|
||||
std::string model_dir_path;
|
||||
/* \brief task to perform, choosing training or testing */
|
||||
std::string task;
|
||||
/* \brief name of predict file */
|
||||
std::string name_pred;
|
||||
/* \brief whether dump statistics along with model */
|
||||
int dump_model_stats;
|
||||
/* \brief name of feature map */
|
||||
std::string name_fmap;
|
||||
/* \brief name of dump file */
|
||||
std::string name_dump;
|
||||
/* \brief name of dump path file */
|
||||
std::string name_dumppath;
|
||||
/* \brief the paths of validation data sets */
|
||||
std::vector<std::string> eval_data_paths;
|
||||
/* \brief the names of the evaluation data used in output log */
|
||||
std::vector<std::string> eval_data_names;
|
||||
/*! \brief saves configurations */
|
||||
utils::ConfigSaver cfg;
|
||||
/*! \brief batch configurations */
|
||||
utils::ConfigSaver cfg_batch;
|
||||
private:
|
||||
DMatrix data;
|
||||
std::vector<DMatrix*> deval;
|
||||
utils::FeatMap fmap;
|
||||
BoostLearner* learner_;
|
||||
|
||||
};
|
||||
};
|
||||
};
|
||||
@ -1,214 +0,0 @@
|
||||
#ifndef XGBOOST_DATA_INSTANCE_H
|
||||
#define XGBOOST_DATA_INSTANCE_H
|
||||
|
||||
#include <cstdio>
|
||||
#include <vector>
|
||||
#include "../booster/xgboost_data.h"
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_stream.h"
|
||||
|
||||
|
||||
namespace xgboost{
|
||||
namespace base{
|
||||
/*! \brief data matrix for regression, classification, rank content */
|
||||
struct DMatrix{
|
||||
public:
|
||||
/*! \brief maximum feature dimension */
|
||||
unsigned num_feature;
|
||||
/*! \brief feature data content */
|
||||
booster::FMatrixS data;
|
||||
/*! \brief label of each instance */
|
||||
std::vector<float> labels;
|
||||
/*! \brief the index of begin and end of a group,
|
||||
* needed when the learning task is ranking*/
|
||||
std::vector<int> group_index;
|
||||
public:
|
||||
/*! \brief default constructor */
|
||||
DMatrix(void){}
|
||||
|
||||
/*! \brief get the number of instances */
|
||||
inline size_t Size() const{
|
||||
return labels.size();
|
||||
}
|
||||
/*!
|
||||
* \brief load from text file
|
||||
* \param fname file of instances data
|
||||
* \param fgroup file of the group data
|
||||
* \param silent whether print information or not
|
||||
*/
|
||||
inline void LoadText(const char* fname, const char* fgroup, bool silent = false){
|
||||
data.Clear();
|
||||
FILE* file = utils::FopenCheck(fname, "r");
|
||||
float label; bool init = true;
|
||||
char tmp[1024];
|
||||
std::vector<booster::bst_uint> findex;
|
||||
std::vector<booster::bst_float> fvalue;
|
||||
|
||||
while (fscanf(file, "%s", tmp) == 1){
|
||||
unsigned index; float value;
|
||||
if (sscanf(tmp, "%u:%f", &index, &value) == 2){
|
||||
findex.push_back(index); fvalue.push_back(value);
|
||||
}
|
||||
else{
|
||||
if (!init){
|
||||
labels.push_back(label);
|
||||
data.AddRow(findex, fvalue);
|
||||
}
|
||||
findex.clear(); fvalue.clear();
|
||||
utils::Assert(sscanf(tmp, "%f", &label) == 1, "invalid format");
|
||||
init = false;
|
||||
}
|
||||
}
|
||||
|
||||
labels.push_back(label);
|
||||
data.AddRow(findex, fvalue);
|
||||
// initialize column support as well
|
||||
data.InitData();
|
||||
|
||||
if (!silent){
|
||||
printf("%ux%u matrix with %lu entries is loaded from %s\n",
|
||||
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname);
|
||||
}
|
||||
fclose(file);
|
||||
LoadGroup(fgroup,silent);
|
||||
}
|
||||
|
||||
inline void LoadGroup(const char* fgroup, bool silent = false){
|
||||
//if exists group data load it in
|
||||
FILE *file_group = fopen64(fgroup, "r");
|
||||
|
||||
if (file_group != NULL){
|
||||
group_index.push_back(0);
|
||||
int tmp = 0, acc = 0,cnt = 0;
|
||||
while (fscanf(file_group, "%d", &tmp) == 1){
|
||||
acc += tmp;
|
||||
group_index.push_back(acc);
|
||||
cnt++;
|
||||
}
|
||||
if(!silent) printf("%d groups are loaded from %s\n",cnt,fgroup);
|
||||
fclose(file_group);
|
||||
}else{
|
||||
if(!silent) printf("There is no group file\n");
|
||||
}
|
||||
|
||||
}
|
||||
/*!
|
||||
* \brief load from binary file
|
||||
* \param fname name of binary data
|
||||
* \param silent whether print information or not
|
||||
* \return whether loading is success
|
||||
*/
|
||||
inline bool LoadBinary(const char* fname, const char* fgroup, bool silent = false){
|
||||
FILE *fp = fopen64(fname, "rb");
|
||||
if (fp == NULL) return false;
|
||||
utils::FileStream fs(fp);
|
||||
data.LoadBinary(fs);
|
||||
labels.resize(data.NumRow());
|
||||
utils::Assert(fs.Read(&labels[0], sizeof(float) * data.NumRow()) != 0, "DMatrix LoadBinary");
|
||||
fs.Close();
|
||||
// initialize column support as well
|
||||
data.InitData();
|
||||
|
||||
if (!silent){
|
||||
printf("%ux%u matrix with %lu entries is loaded from %s as binary\n",
|
||||
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname);
|
||||
}
|
||||
|
||||
LoadGroupBinary(fgroup,silent);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief save to binary file
|
||||
* \param fname name of binary data
|
||||
* \param silent whether print information or not
|
||||
*/
|
||||
inline void SaveBinary(const char* fname, const char* fgroup, bool silent = false){
|
||||
// initialize column support as well
|
||||
data.InitData();
|
||||
|
||||
utils::FileStream fs(utils::FopenCheck(fname, "wb"));
|
||||
data.SaveBinary(fs);
|
||||
fs.Write(&labels[0], sizeof(float)* data.NumRow());
|
||||
fs.Close();
|
||||
if (!silent){
|
||||
printf("%ux%u matrix with %lu entries is saved to %s as binary\n",
|
||||
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname);
|
||||
}
|
||||
|
||||
SaveGroupBinary(fgroup,silent);
|
||||
}
|
||||
|
||||
inline void SaveGroupBinary(const char* fgroup, bool silent = false){
|
||||
//save group data
|
||||
if (group_index.size() > 0){
|
||||
utils::FileStream file_group(utils::FopenCheck(fgroup, "wb"));
|
||||
int group_index_size = group_index.size();
|
||||
file_group.Write(&(group_index_size), sizeof(int));
|
||||
file_group.Write(&group_index[0], sizeof(int) * group_index_size);
|
||||
file_group.Close();
|
||||
if(!silent){printf("Index info of %d groups is saved to %s as binary\n",group_index_size-1,fgroup);}
|
||||
}
|
||||
}
|
||||
|
||||
inline void LoadGroupBinary(const char* fgroup, bool silent = false){
|
||||
//if group data exists load it in
|
||||
FILE *file_group = fopen64(fgroup, "r");
|
||||
if (file_group != NULL){
|
||||
int group_index_size = 0;
|
||||
utils::FileStream group_stream(file_group);
|
||||
utils::Assert(group_stream.Read(&group_index_size, sizeof(int)) != 0, "Load group indice size");
|
||||
group_index.resize(group_index_size);
|
||||
utils::Assert(group_stream.Read(&group_index[0], sizeof(int) * group_index_size) != 0, "Load group indice");
|
||||
|
||||
if (!silent){
|
||||
printf("Index info of %d groups is loaded from %s as binary\n",
|
||||
group_index.size() - 1, fgroup);
|
||||
}
|
||||
fclose(file_group);
|
||||
}else{
|
||||
if(!silent){printf("The binary file of group info not exists");}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief cache load data given a file name, if filename ends with .buffer, direct load binary
|
||||
* otherwise the function will first check if fname + '.buffer' exists,
|
||||
* if binary buffer exists, it will reads from binary buffer, otherwise, it will load from text file,
|
||||
* and try to create a buffer file
|
||||
* \param fname name of binary data
|
||||
* \param silent whether print information or not
|
||||
* \param savebuffer whether do save binary buffer if it is text
|
||||
*/
|
||||
inline void CacheLoad(const char *fname, const char *fgroup, bool silent = false, bool savebuffer = true){
|
||||
int len = strlen(fname);
|
||||
if (len > 8 && !strcmp(fname + len - 7, ".buffer")){
|
||||
this->LoadBinary(fname, fgroup, silent); return;
|
||||
}
|
||||
char bname[1024],bgroup[1024];
|
||||
sprintf(bname, "%s.buffer", fname);
|
||||
sprintf(bgroup, "%s.buffer", fgroup);
|
||||
if (!this->LoadBinary(bname, bgroup, silent))
|
||||
{
|
||||
this->LoadText(fname, fgroup, silent);
|
||||
if (savebuffer) this->SaveBinary(bname, bgroup, silent);
|
||||
}
|
||||
}
|
||||
private:
|
||||
/*! \brief update num_feature info */
|
||||
inline void UpdateInfo(void){
|
||||
this->num_feature = 0;
|
||||
for (size_t i = 0; i < data.NumRow(); i++){
|
||||
booster::FMatrixS::Line sp = data[i];
|
||||
for (unsigned j = 0; j < sp.len; j++){
|
||||
if (num_feature <= sp[j].findex){
|
||||
num_feature = sp[j].findex + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
@ -1,283 +0,0 @@
|
||||
#ifndef XGBOOST_LEARNER_H
|
||||
#define XGBOOST_LEARNER_H
|
||||
/*!
|
||||
* \file xgboost_learner.h
|
||||
* \brief class for gradient boosting learner
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
||||
*/
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include "xgboost_data_instance.h"
|
||||
#include "../utils/xgboost_omp.h"
|
||||
#include "../booster/xgboost_gbmbase.h"
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_stream.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace base {
|
||||
/*! \brief class for gradient boosting learner */
|
||||
class BoostLearner {
|
||||
public:
|
||||
/*! \brief constructor */
|
||||
BoostLearner(void) {
|
||||
silent = 0;
|
||||
}
|
||||
/*!
|
||||
* \brief booster associated with training and evaluating data
|
||||
* \param train pointer to the training data
|
||||
* \param evals array of evaluating data
|
||||
* \param evname name of evaluation data, used print statistics
|
||||
*/
|
||||
BoostLearner(const DMatrix *train,
|
||||
const std::vector<DMatrix *> &evals,
|
||||
const std::vector<std::string> &evname) {
|
||||
silent = 0;
|
||||
this->SetData(train, evals, evname);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief associate booster with training and evaluating data
|
||||
* \param train pointer to the training data
|
||||
* \param evals array of evaluating data
|
||||
* \param evname name of evaluation data, used print statistics
|
||||
*/
|
||||
inline void SetData(const DMatrix *train,
|
||||
const std::vector<DMatrix *> &evals,
|
||||
const std::vector<std::string> &evname) {
|
||||
this->train_ = train;
|
||||
this->evals_ = evals;
|
||||
this->evname_ = evname;
|
||||
// estimate feature bound
|
||||
int num_feature = (int)(train->data.NumCol());
|
||||
// assign buffer index
|
||||
unsigned buffer_size = static_cast<unsigned>(train->Size());
|
||||
|
||||
for (size_t i = 0; i < evals.size(); ++i) {
|
||||
buffer_size += static_cast<unsigned>(evals[i]->Size());
|
||||
num_feature = std::max(num_feature, (int)(evals[i]->data.NumCol()));
|
||||
}
|
||||
|
||||
char str_temp[25];
|
||||
if (num_feature > mparam.num_feature) {
|
||||
mparam.num_feature = num_feature;
|
||||
sprintf(str_temp, "%d", num_feature);
|
||||
base_gbm.SetParam("bst:num_feature", str_temp);
|
||||
}
|
||||
|
||||
sprintf(str_temp, "%u", buffer_size);
|
||||
base_gbm.SetParam("num_pbuffer", str_temp);
|
||||
if (!silent) {
|
||||
printf("buffer_size=%u\n", buffer_size);
|
||||
}
|
||||
|
||||
// set eval_preds tmp sapce
|
||||
this->eval_preds_.resize(evals.size(), std::vector<float>());
|
||||
}
|
||||
/*!
|
||||
* \brief set parameters from outside
|
||||
* \param name name of the parameter
|
||||
* \param val value of the parameter
|
||||
*/
|
||||
virtual inline void SetParam(const char *name, const char *val) {
|
||||
if (!strcmp(name, "silent")) silent = atoi(val);
|
||||
mparam.SetParam(name, val);
|
||||
base_gbm.SetParam(name, val);
|
||||
}
|
||||
/*!
|
||||
* \brief initialize solver before training, called before training
|
||||
* this function is reserved for solver to allocate necessary space and do other preparation
|
||||
*/
|
||||
inline void InitTrainer(void) {
|
||||
base_gbm.InitTrainer();
|
||||
}
|
||||
/*!
|
||||
* \brief initialize the current data storage for model, if the model is used first time, call this function
|
||||
*/
|
||||
inline void InitModel(void) {
|
||||
base_gbm.InitModel();
|
||||
if(!silent) printf("BoostLearner:InitModel Done!\n");
|
||||
}
|
||||
/*!
|
||||
* \brief load model from stream
|
||||
* \param fi input stream
|
||||
*/
|
||||
inline void LoadModel(utils::IStream &fi) {
|
||||
base_gbm.LoadModel(fi);
|
||||
utils::Assert(fi.Read(&mparam, sizeof(ModelParam)) != 0);
|
||||
}
|
||||
/*!
|
||||
* \brief DumpModel
|
||||
* \param fo text file
|
||||
* \param fmap feature map that may help give interpretations of feature
|
||||
* \param with_stats whether print statistics as well
|
||||
*/
|
||||
inline void DumpModel(FILE *fo, const utils::FeatMap& fmap, bool with_stats) {
|
||||
base_gbm.DumpModel(fo, fmap, with_stats);
|
||||
}
|
||||
/*!
|
||||
* \brief Dump path of all trees
|
||||
* \param fo text file
|
||||
* \param data input data
|
||||
*/
|
||||
inline void DumpPath(FILE *fo, const DMatrix &data) {
|
||||
base_gbm.DumpPath(fo, data.data);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief save model to stream
|
||||
* \param fo output stream
|
||||
*/
|
||||
inline void SaveModel(utils::IStream &fo) const {
|
||||
base_gbm.SaveModel(fo);
|
||||
fo.Write(&mparam, sizeof(ModelParam));
|
||||
}
|
||||
|
||||
virtual void EvalOneIter(int iter, FILE *fo = stderr) {}
|
||||
|
||||
/*!
|
||||
* \brief update the model for one iteration
|
||||
* \param iteration iteration number
|
||||
*/
|
||||
inline void UpdateOneIter(int iter) {
|
||||
this->PredictBuffer(preds_, *train_, 0);
|
||||
this->GetGradient(preds_, train_->labels, train_->group_index, grad_, hess_);
|
||||
std::vector<unsigned> root_index;
|
||||
base_gbm.DoBoost(grad_, hess_, train_->data, root_index);
|
||||
|
||||
// printf("xgboost_learner.h:UpdateOneIter\n");
|
||||
// const unsigned ndata = static_cast<unsigned>(train_->Size());
|
||||
// #pragma omp parallel for schedule( static )
|
||||
// for (unsigned j = 0; j < ndata; ++j) {
|
||||
// printf("haha:%d %f\n",j,base_gbm.Predict(train_->data, j, j));
|
||||
// }
|
||||
}
|
||||
|
||||
/*! \brief get intransformed prediction, without buffering */
|
||||
inline void Predict(std::vector<float> &preds, const DMatrix &data) {
|
||||
preds.resize(data.Size());
|
||||
const unsigned ndata = static_cast<unsigned>(data.Size());
|
||||
#pragma omp parallel for schedule( static )
|
||||
for (unsigned j = 0; j < ndata; ++j) {
|
||||
preds[j] = base_gbm.Predict(data.data, j, -1);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief update the model for one iteration
|
||||
* \param iteration iteration number
|
||||
*/
|
||||
virtual inline void UpdateInteract(std::string action){
|
||||
this->InteractPredict(preds_, *train_, 0);
|
||||
|
||||
int buffer_offset = static_cast<int>(train_->Size());
|
||||
for (size_t i = 0; i < evals_.size(); ++i) {
|
||||
std::vector<float> &preds = this->eval_preds_[i];
|
||||
this->InteractPredict(preds, *evals_[i], buffer_offset);
|
||||
buffer_offset += static_cast<int>(evals_[i]->Size());
|
||||
}
|
||||
|
||||
if (action == "remove") {
|
||||
base_gbm.DelteBooster();
|
||||
return;
|
||||
}
|
||||
|
||||
this->GetGradient(preds_, train_->labels, train_->group_index, grad_, hess_);
|
||||
std::vector<unsigned> root_index;
|
||||
base_gbm.DoBoost(grad_, hess_, train_->data, root_index);
|
||||
|
||||
this->InteractRePredict(*train_, 0);
|
||||
buffer_offset = static_cast<int>(train_->Size());
|
||||
for (size_t i = 0; i < evals_.size(); ++i) {
|
||||
this->InteractRePredict(*evals_[i], buffer_offset);
|
||||
buffer_offset += static_cast<int>(evals_[i]->Size());
|
||||
}
|
||||
};
|
||||
|
||||
protected:
|
||||
/*! \brief get the intransformed predictions, given data */
|
||||
inline void InteractPredict(std::vector<float> &preds, const DMatrix &data, unsigned buffer_offset) {
|
||||
preds.resize(data.Size());
|
||||
const unsigned ndata = static_cast<unsigned>(data.Size());
|
||||
#pragma omp parallel for schedule( static )
|
||||
for (unsigned j = 0; j < ndata; ++j) {
|
||||
preds[j] = base_gbm.InteractPredict(data.data, j, buffer_offset + j);
|
||||
}
|
||||
}
|
||||
/*! \brief repredict trial */
|
||||
inline void InteractRePredict(const xgboost::base::DMatrix &data, unsigned buffer_offset) {
|
||||
const unsigned ndata = static_cast<unsigned>(data.Size());
|
||||
#pragma omp parallel for schedule( static )
|
||||
for (unsigned j = 0; j < ndata; ++j) {
|
||||
base_gbm.InteractRePredict(data.data, j, buffer_offset + j);
|
||||
}
|
||||
}
|
||||
|
||||
/*! \brief get intransformed predictions, given data */
|
||||
virtual inline void PredictBuffer(std::vector<float> &preds, const DMatrix &data, unsigned buffer_offset) {
|
||||
preds.resize(data.Size());
|
||||
const unsigned ndata = static_cast<unsigned>(data.Size());
|
||||
|
||||
#pragma omp parallel for schedule( static )
|
||||
for (unsigned j = 0; j < ndata; ++j) {
|
||||
preds[j] = base_gbm.Predict(data.data, j, buffer_offset + j);
|
||||
}
|
||||
}
|
||||
|
||||
/*! \brief get the first order and second order gradient, given the transformed predictions and labels */
|
||||
virtual inline void GetGradient(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index,
|
||||
std::vector<float> &grad,
|
||||
std::vector<float> &hess) {};
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
/*! \brief training parameter for regression */
|
||||
struct ModelParam {
|
||||
/* \brief type of loss function */
|
||||
int loss_type;
|
||||
/* \brief number of features */
|
||||
int num_feature;
|
||||
/*! \brief reserved field */
|
||||
int reserved[16];
|
||||
/*! \brief constructor */
|
||||
ModelParam(void) {
|
||||
loss_type = 0;
|
||||
num_feature = 0;
|
||||
memset(reserved, 0, sizeof(reserved));
|
||||
}
|
||||
/*!
|
||||
* \brief set parameters from outside
|
||||
* \param name name of the parameter
|
||||
* \param val value of the parameter
|
||||
*/
|
||||
inline void SetParam(const char *name, const char *val) {
|
||||
if (!strcmp("loss_type", name)) loss_type = atoi(val);
|
||||
if (!strcmp("bst:num_feature", name)) num_feature = atoi(val);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
int silent;
|
||||
booster::GBMBase base_gbm;
|
||||
ModelParam mparam;
|
||||
const DMatrix *train_;
|
||||
std::vector<DMatrix *> evals_;
|
||||
std::vector<std::string> evname_;
|
||||
std::vector<unsigned> buffer_index_;
|
||||
std::vector<float> grad_, hess_, preds_;
|
||||
std::vector< std::vector<float> > eval_preds_;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,295 +0,0 @@
|
||||
#ifndef XGBOOST_RANK_H
|
||||
#define XGBOOST_RANK_H
|
||||
/*!
|
||||
* \file xgboost_rank.h
|
||||
* \brief class for gradient boosting ranking
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
||||
*/
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
#include "xgboost_sample.h"
|
||||
#include "xgboost_rank_eval.h"
|
||||
#include "../base/xgboost_data_instance.h"
|
||||
#include "../utils/xgboost_omp.h"
|
||||
#include "../booster/xgboost_gbmbase.h"
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_stream.h"
|
||||
#include "../base/xgboost_learner.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace rank {
|
||||
/*! \brief class for gradient boosted regression */
|
||||
class RankBoostLearner :public base::BoostLearner{
|
||||
public:
|
||||
/*! \brief constructor */
|
||||
RankBoostLearner(void) {
|
||||
BoostLearner();
|
||||
}
|
||||
/*!
|
||||
* \brief a rank booster associated with training and evaluating data
|
||||
* \param train pointer to the training data
|
||||
* \param evals array of evaluating data
|
||||
* \param evname name of evaluation data, used print statistics
|
||||
*/
|
||||
RankBoostLearner(const base::DMatrix *train,
|
||||
const std::vector<base::DMatrix *> &evals,
|
||||
const std::vector<std::string> &evname) {
|
||||
|
||||
BoostLearner(train, evals, evname);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief initialize solver before training, called before training
|
||||
* this function is reserved for solver to allocate necessary space
|
||||
* and do other preparation
|
||||
*/
|
||||
inline void InitTrainer(void) {
|
||||
BoostLearner::InitTrainer();
|
||||
if (mparam.loss_type == PAIRWISE) {
|
||||
evaluator_.AddEval("PAIR");
|
||||
}
|
||||
else if (mparam.loss_type == MAP) {
|
||||
evaluator_.AddEval("MAP");
|
||||
}
|
||||
else {
|
||||
evaluator_.AddEval("NDCG");
|
||||
}
|
||||
evaluator_.Init();
|
||||
}
|
||||
|
||||
void EvalOneIter(int iter, FILE *fo = stderr) {
|
||||
fprintf(fo, "[%d]", iter);
|
||||
int buffer_offset = static_cast<int>(train_->Size());
|
||||
|
||||
for (size_t i = 0; i < evals_.size(); ++i) {
|
||||
std::vector<float> &preds = this->eval_preds_[i];
|
||||
this->PredictBuffer(preds, *evals_[i], buffer_offset);
|
||||
evaluator_.Eval(fo, evname_[i].c_str(), preds, (*evals_[i]).labels, (*evals_[i]).group_index);
|
||||
buffer_offset += static_cast<int>(evals_[i]->Size());
|
||||
}
|
||||
fprintf(fo, "\n");
|
||||
}
|
||||
|
||||
virtual inline void SetParam(const char *name, const char *val){
|
||||
BoostLearner::SetParam(name,val);
|
||||
if (!strcmp(name, "eval_metric")) evaluator_.AddEval(val);
|
||||
if (!strcmp(name, "rank:sampler")) sampler.AssignSampler(atoi(val));
|
||||
}
|
||||
|
||||
private:
|
||||
inline std::vector< Triple<float,float,int> > GetSortedTuple(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index,
|
||||
int group){
|
||||
std::vector< Triple<float,float,int> > sorted_triple;
|
||||
for(int j = group_index[group]; j < group_index[group+1]; j++){
|
||||
sorted_triple.push_back(Triple<float,float,int>(preds[j],labels[j],j));
|
||||
}
|
||||
std::sort(sorted_triple.begin(),sorted_triple.end(),Triplef1Comparer);
|
||||
return sorted_triple;
|
||||
}
|
||||
|
||||
inline std::vector<int> GetIndexMap(std::vector< Triple<float,float,int> > sorted_triple,int start){
|
||||
std::vector<int> index_remap;
|
||||
index_remap.resize(sorted_triple.size());
|
||||
for(int i = 0; i < sorted_triple.size(); i++){
|
||||
index_remap[sorted_triple[i].f3_-start] = i;
|
||||
}
|
||||
return index_remap;
|
||||
}
|
||||
|
||||
inline float GetLambdaMAP(const std::vector< Triple<float,float,int> > sorted_triple,
|
||||
int index1,int index2,
|
||||
std::vector< Quadruple<float,float,float,float> > map_acc){
|
||||
if(index1 > index2) std::swap(index1,index2);
|
||||
float original = map_acc[index2].f1_;
|
||||
if(index1 != 0) original -= map_acc[index1 - 1].f1_;
|
||||
float changed = 0;
|
||||
if(sorted_triple[index1].f2_ < sorted_triple[index2].f2_){
|
||||
changed += map_acc[index2 - 1].f3_ - map_acc[index1].f3_;
|
||||
changed += (map_acc[index1].f4_ + 1.0f)/(index1 + 1);
|
||||
}else{
|
||||
changed += map_acc[index2 - 1].f2_ - map_acc[index1].f2_;
|
||||
changed += map_acc[index2].f4_/(index2 + 1);
|
||||
}
|
||||
float ans = (changed - original)/(map_acc[map_acc.size() - 1].f4_);
|
||||
if(ans < 0) ans = -ans;
|
||||
return ans;
|
||||
}
|
||||
|
||||
inline float GetLambdaNDCG(const std::vector< Triple<float,float,int> > sorted_triple,
|
||||
int index1,
|
||||
int index2,float IDCG){
|
||||
float original = pow(2,sorted_triple[index1].f2_)/log(index1+2)
|
||||
+ pow(2,sorted_triple[index2].f2_)/log(index2+2);
|
||||
float changed = pow(2,sorted_triple[index2].f2_)/log(index1+2)
|
||||
+ pow(2,sorted_triple[index1].f2_)/log(index2+2);
|
||||
float ans = (original - changed)/IDCG;
|
||||
if(ans < 0) ans = -ans;
|
||||
return ans;
|
||||
}
|
||||
|
||||
|
||||
inline float GetIDCG(const std::vector< Triple<float,float,int> > sorted_triple){
|
||||
std::vector<float> labels;
|
||||
for(int i = 0; i < sorted_triple.size(); i++){
|
||||
labels.push_back(sorted_triple[i].f2_);
|
||||
}
|
||||
|
||||
std::sort(labels.begin(),labels.end(),std::greater<float>());
|
||||
return EvalNDCG::DCG(labels);
|
||||
}
|
||||
|
||||
inline std::vector< Quadruple<float,float,float,float> > GetMAPAcc(const std::vector< Triple<float,float,int> > sorted_triple){
|
||||
std::vector< Quadruple<float,float,float,float> > map_acc;
|
||||
float hit = 0,acc1 = 0,acc2 = 0,acc3 = 0;
|
||||
for(int i = 0; i < sorted_triple.size(); i++){
|
||||
if(sorted_triple[i].f2_ == 1) {
|
||||
hit++;
|
||||
acc1 += hit /( i + 1 );
|
||||
acc2 += (hit - 1)/(i+1);
|
||||
acc3 += (hit + 1)/(i+1);
|
||||
}
|
||||
map_acc.push_back(Quadruple<float,float,float,float>(acc1,acc2,acc3,hit));
|
||||
}
|
||||
return map_acc;
|
||||
|
||||
}
|
||||
|
||||
inline void GetGroupGradient(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index,
|
||||
std::vector<float> &grad,
|
||||
std::vector<float> &hess,
|
||||
const std::vector< Triple<float,float,int> > sorted_triple,
|
||||
const std::vector<int> index_remap,
|
||||
const sample::Pairs& pairs,
|
||||
int group){
|
||||
bool j_better;
|
||||
float IDCG, pred_diff, pred_diff_exp, delta;
|
||||
float first_order_gradient, second_order_gradient;
|
||||
std::vector< Quadruple<float,float,float,float> > map_acc;
|
||||
|
||||
if(mparam.loss_type == NDCG){
|
||||
IDCG = GetIDCG(sorted_triple);
|
||||
}else if(mparam.loss_type == MAP){
|
||||
map_acc = GetMAPAcc(sorted_triple);
|
||||
}
|
||||
|
||||
for (int j = group_index[group]; j < group_index[group + 1]; j++){
|
||||
std::vector<int> pair_instance = pairs.GetPairs(j);
|
||||
for (int k = 0; k < pair_instance.size(); k++){
|
||||
j_better = labels[j] > labels[pair_instance[k]];
|
||||
if (j_better){
|
||||
switch(mparam.loss_type){
|
||||
case PAIRWISE: delta = 1.0;break;
|
||||
case MAP: delta = GetLambdaMAP(sorted_triple,index_remap[j - group_index[group]],index_remap[pair_instance[k]-group_index[group]],map_acc);break;
|
||||
case NDCG: delta = GetLambdaNDCG(sorted_triple,index_remap[j - group_index[group]],index_remap[pair_instance[k]-group_index[group]],IDCG);break;
|
||||
default: utils::Error("Cannot find the specified loss type");
|
||||
}
|
||||
|
||||
pred_diff = preds[preds[j] - pair_instance[k]];
|
||||
pred_diff_exp = j_better ? expf(-pred_diff) : expf(pred_diff);
|
||||
first_order_gradient = delta * FirstOrderGradient(pred_diff_exp);
|
||||
second_order_gradient = 2 * delta * SecondOrderGradient(pred_diff_exp);
|
||||
hess[j] += second_order_gradient;
|
||||
grad[j] += first_order_gradient;
|
||||
hess[pair_instance[k]] += second_order_gradient;
|
||||
grad[pair_instance[k]] += -first_order_gradient;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
public:
|
||||
/*! \brief get the first order and second order gradient, given the
|
||||
* intransformed predictions and labels */
|
||||
inline void GetGradient(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index,
|
||||
std::vector<float> &grad,
|
||||
std::vector<float> &hess) {
|
||||
grad.resize(preds.size());
|
||||
hess.resize(preds.size());
|
||||
for (int i = 0; i < group_index.size() - 1; i++){
|
||||
sample::Pairs pairs = sampler.GenPairs(preds, labels, group_index[i], group_index[i + 1]);
|
||||
//pairs.GetPairs()
|
||||
std::vector< Triple<float,float,int> > sorted_triple = GetSortedTuple(preds,labels,group_index,i);
|
||||
std::vector<int> index_remap = GetIndexMap(sorted_triple,group_index[i]);
|
||||
GetGroupGradient(preds,labels,group_index,
|
||||
grad,hess,sorted_triple,index_remap,pairs,i);
|
||||
}
|
||||
}
|
||||
|
||||
inline void UpdateInteract(std::string action) {
|
||||
this->InteractPredict(preds_, *train_, 0);
|
||||
|
||||
int buffer_offset = static_cast<int>(train_->Size());
|
||||
for (size_t i = 0; i < evals_.size(); ++i){
|
||||
std::vector<float> &preds = this->eval_preds_[i];
|
||||
this->InteractPredict(preds, *evals_[i], buffer_offset);
|
||||
buffer_offset += static_cast<int>(evals_[i]->Size());
|
||||
}
|
||||
|
||||
if (action == "remove"){
|
||||
base_gbm.DelteBooster(); return;
|
||||
}
|
||||
|
||||
this->GetGradient(preds_, train_->labels,train_->group_index, grad_, hess_);
|
||||
std::vector<unsigned> root_index;
|
||||
base_gbm.DoBoost(grad_, hess_, train_->data, root_index);
|
||||
|
||||
this->InteractRePredict(*train_, 0);
|
||||
buffer_offset = static_cast<int>(train_->Size());
|
||||
for (size_t i = 0; i < evals_.size(); ++i){
|
||||
this->InteractRePredict(*evals_[i], buffer_offset);
|
||||
buffer_offset += static_cast<int>(evals_[i]->Size());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
enum LossType {
|
||||
PAIRWISE = 0,
|
||||
MAP = 1,
|
||||
NDCG = 2
|
||||
};
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
* \brief calculate first order gradient of pairwise loss function(f(x) = ln(1+exp(-x)),
|
||||
* given the exponential of the difference of intransformed pair predictions
|
||||
* \param the intransformed prediction of positive instance
|
||||
* \param the intransformed prediction of negative instance
|
||||
* \return first order gradient
|
||||
*/
|
||||
inline float FirstOrderGradient(float pred_diff_exp) const {
|
||||
return -pred_diff_exp / (1 + pred_diff_exp);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief calculate second order gradient of pairwise loss function(f(x) = ln(1+exp(-x)),
|
||||
* given the exponential of the difference of intransformed pair predictions
|
||||
* \param the intransformed prediction of positive instance
|
||||
* \param the intransformed prediction of negative instance
|
||||
* \return second order gradient
|
||||
*/
|
||||
inline float SecondOrderGradient(float pred_diff_exp) const {
|
||||
return pred_diff_exp / pow(1 + pred_diff_exp, 2);
|
||||
}
|
||||
|
||||
private:
|
||||
RankEvalSet evaluator_;
|
||||
sample::PairSamplerWrapper sampler;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,237 +0,0 @@
|
||||
#ifndef XGBOOST_RANK_EVAL_H
|
||||
#define XGBOOST_RANK_EVAL_H
|
||||
/*!
|
||||
* \file xgboost_rank_eval.h
|
||||
* \brief evaluation metrics for ranking
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_omp.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace rank {
|
||||
/*! \brief evaluator that evaluates the loss metrics */
|
||||
class IRankEvaluator {
|
||||
public:
|
||||
/*!
|
||||
* \brief evaluate a specific metric
|
||||
* \param preds prediction
|
||||
* \param labels label
|
||||
*/
|
||||
virtual float Eval(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index) const = 0;
|
||||
/*! \return name of metric */
|
||||
virtual const char *Name(void) const = 0;
|
||||
};
|
||||
|
||||
class Pair{
|
||||
public:
|
||||
float key_;
|
||||
float value_;
|
||||
|
||||
Pair(float key, float value):key_(key),value_(value){
|
||||
}
|
||||
};
|
||||
|
||||
bool PairKeyComparer(const Pair &a, const Pair &b){
|
||||
return a.key_ < b.key_;
|
||||
}
|
||||
|
||||
bool PairValueComparer(const Pair &a, const Pair &b){
|
||||
return a.value_ < b.value_;
|
||||
}
|
||||
|
||||
template<typename T1,typename T2,typename T3>
|
||||
class Triple{
|
||||
public:
|
||||
T1 f1_;
|
||||
T2 f2_;
|
||||
T3 f3_;
|
||||
Triple(T1 f1,T2 f2,T3 f3):f1_(f1),f2_(f2),f3_(f3){
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T1,typename T2,typename T3,typename T4>
|
||||
class Quadruple{
|
||||
public:
|
||||
T1 f1_;
|
||||
T2 f2_;
|
||||
T3 f3_;
|
||||
T4 f4_;
|
||||
Quadruple(T1 f1,T2 f2,T3 f3,T4 f4):f1_(f1),f2_(f2),f3_(f3),f4_(f4){
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
bool Triplef1Comparer(const Triple<float,float,int> &a, const Triple<float,float,int> &b){
|
||||
return a.f1_< b.f1_;
|
||||
}
|
||||
|
||||
/*! \brief Mean Average Precision */
|
||||
class EvalMAP : public IRankEvaluator {
|
||||
public:
|
||||
float Eval(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index) const {
|
||||
if (group_index.size() <= 1) return 0;
|
||||
float acc = 0;
|
||||
std::vector<Pair> pairs_sort;
|
||||
for (int i = 0; i < group_index.size() - 1; i++){
|
||||
for (int j = group_index[i]; j < group_index[i + 1]; j++){
|
||||
Pair pair(preds[j], labels[j]);
|
||||
pairs_sort.push_back(pair);
|
||||
}
|
||||
acc += average_precision(pairs_sort);
|
||||
}
|
||||
return acc / (group_index.size() - 1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
virtual const char *Name(void) const {
|
||||
return "MAP";
|
||||
}
|
||||
private:
|
||||
float average_precision(std::vector<Pair> pairs_sort) const{
|
||||
|
||||
std::sort(pairs_sort.begin(), pairs_sort.end(), PairKeyComparer);
|
||||
float hits = 0;
|
||||
float average_precision = 0;
|
||||
for (int j = 0; j < pairs_sort.size(); j++){
|
||||
if (pairs_sort[j].value_ == 1){
|
||||
hits++;
|
||||
average_precision += hits / (j + 1);
|
||||
}
|
||||
}
|
||||
if (hits != 0) average_precision /= hits;
|
||||
return average_precision;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class EvalPair : public IRankEvaluator{
|
||||
public:
|
||||
float Eval(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index) const {
|
||||
if (group_index.size() <= 1) return 0;
|
||||
float acc = 0;
|
||||
for (int i = 0; i < group_index.size() - 1; i++){
|
||||
acc += Count_Inversion(preds,labels,
|
||||
group_index[i],group_index[i+1]);
|
||||
}
|
||||
return acc / (group_index.size() - 1);
|
||||
}
|
||||
|
||||
const char *Name(void) const {
|
||||
return "PAIR";
|
||||
}
|
||||
private:
|
||||
float Count_Inversion(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,int begin,int end
|
||||
) const{
|
||||
float ans = 0;
|
||||
for(int i = begin; i < end; i++){
|
||||
for(int j = i + 1; j < end; j++){
|
||||
if(preds[i] > preds[j] && labels[i] < labels[j])
|
||||
ans++;
|
||||
}
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief Normalized DCG */
|
||||
class EvalNDCG : public IRankEvaluator {
|
||||
public:
|
||||
float Eval(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index) const {
|
||||
if (group_index.size() <= 1) return 0;
|
||||
float acc = 0;
|
||||
std::vector<Pair> pairs_sort;
|
||||
for (int i = 0; i < group_index.size() - 1; i++){
|
||||
for (int j = group_index[i]; j < group_index[i + 1]; j++){
|
||||
Pair pair(preds[j], labels[j]);
|
||||
pairs_sort.push_back(pair);
|
||||
}
|
||||
acc += NDCG(pairs_sort);
|
||||
}
|
||||
return acc / (group_index.size() - 1);
|
||||
}
|
||||
|
||||
static float DCG(const std::vector<float> &labels){
|
||||
float ans = 0.0;
|
||||
for (int i = 0; i < labels.size(); i++){
|
||||
ans += (pow(2,labels[i]) - 1 ) / log(i + 2);
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
|
||||
virtual const char *Name(void) const {
|
||||
return "NDCG";
|
||||
}
|
||||
|
||||
private:
|
||||
float NDCG(std::vector<Pair> pairs_sort) const{
|
||||
std::sort(pairs_sort.begin(), pairs_sort.end(), PairKeyComparer);
|
||||
float dcg = DCG(pairs_sort);
|
||||
std::sort(pairs_sort.begin(), pairs_sort.end(), PairValueComparer);
|
||||
float IDCG = DCG(pairs_sort);
|
||||
if (IDCG == 0) return 0;
|
||||
return dcg / IDCG;
|
||||
}
|
||||
|
||||
float DCG(std::vector<Pair> pairs_sort) const{
|
||||
std::vector<float> labels;
|
||||
for (int i = 1; i < pairs_sort.size(); i++){
|
||||
labels.push_back(pairs_sort[i].value_);
|
||||
}
|
||||
return DCG(labels);
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
namespace rank {
|
||||
/*! \brief a set of evaluators */
|
||||
class RankEvalSet {
|
||||
public:
|
||||
inline void AddEval(const char *name) {
|
||||
if (!strcmp(name, "PAIR")) evals_.push_back(&pair_);
|
||||
if (!strcmp(name, "MAP")) evals_.push_back(&map_);
|
||||
if (!strcmp(name, "NDCG")) evals_.push_back(&ndcg_);
|
||||
}
|
||||
|
||||
inline void Init(void) {
|
||||
std::sort(evals_.begin(), evals_.end());
|
||||
evals_.resize(std::unique(evals_.begin(), evals_.end()) - evals_.begin());
|
||||
}
|
||||
|
||||
inline void Eval(FILE *fo, const char *evname,
|
||||
const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index) const {
|
||||
for (size_t i = 0; i < evals_.size(); ++i) {
|
||||
float res = evals_[i]->Eval(preds, labels, group_index);
|
||||
fprintf(fo, "\t%s-%s:%f", evname, evals_[i]->Name(), res);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
EvalPair pair_;
|
||||
EvalMAP map_;
|
||||
EvalNDCG ndcg_;
|
||||
std::vector<const IRankEvaluator*> evals_;
|
||||
};
|
||||
};
|
||||
};
|
||||
#endif
|
||||
@ -1,22 +0,0 @@
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#define _CRT_SECURE_NO_DEPRECATE
|
||||
#include <ctime>
|
||||
#include <string>
|
||||
#include <cstring>
|
||||
#include "../base/xgboost_learner.h"
|
||||
#include "../utils/xgboost_fmap.h"
|
||||
#include "../utils/xgboost_random.h"
|
||||
#include "../utils/xgboost_config.h"
|
||||
#include "../base/xgboost_learner.h"
|
||||
#include "../base/xgboost_boost_task.h"
|
||||
#include "xgboost_rank.h"
|
||||
#include "../regression/xgboost_reg.h"
|
||||
#include "../regression/xgboost_reg_main.cpp"
|
||||
#include "../base/xgboost_data_instance.h"
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
xgboost::random::Seed(0);
|
||||
xgboost::base::BoostTask rank_tsk;
|
||||
rank_tsk.SetLearner(new xgboost::rank::RankBoostLearner);
|
||||
return rank_tsk.Run(argc, argv);
|
||||
}
|
||||
@ -1,128 +0,0 @@
|
||||
#ifndef _XGBOOST_SAMPLE_H_
|
||||
#define _XGBOOST_SAMPLE_H_
|
||||
|
||||
#include <vector>
|
||||
#include"../utils/xgboost_utils.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace rank {
|
||||
namespace sample {
|
||||
|
||||
/*
|
||||
* \brief the data structure to maintain the sample pairs
|
||||
*/
|
||||
struct Pairs {
|
||||
|
||||
/*
|
||||
* \brief constructor given the start and end offset of the sampling group
|
||||
* in overall instances
|
||||
* \param start the begin index of the group
|
||||
* \param end the end index of the group
|
||||
*/
|
||||
Pairs(int start, int end) :start_(start), end_(end){
|
||||
for (int i = start; i < end; i++){
|
||||
std::vector<int> v;
|
||||
pairs_.push_back(v);
|
||||
}
|
||||
}
|
||||
/*
|
||||
* \brief retrieve the related pair information of an data instances
|
||||
* \param index, the index of retrieved instance
|
||||
* \return the index of instances paired
|
||||
*/
|
||||
std::vector<int> GetPairs(int index) const{
|
||||
utils::Assert(index >= start_ && index < end_, "The query index out of sampling bound");
|
||||
return pairs_[index - start_];
|
||||
}
|
||||
|
||||
/*
|
||||
* \brief add in a sampled pair
|
||||
* \param index the index of the instance to sample a friend
|
||||
* \param paired_index the index of the instance sampled as a friend
|
||||
*/
|
||||
void push(int index, int paired_index){
|
||||
pairs_[index - start_].push_back(paired_index);
|
||||
}
|
||||
|
||||
std::vector< std::vector<int> > pairs_;
|
||||
int start_;
|
||||
int end_;
|
||||
};
|
||||
|
||||
/*
|
||||
* \brief the interface of pair sampler
|
||||
*/
|
||||
struct IPairSampler {
|
||||
/*
|
||||
* \brief Generate sample pairs given the predcions, labels, the start and the end index
|
||||
* of a specified group
|
||||
* \param preds, the predictions of all data instances
|
||||
* \param labels, the labels of all data instances
|
||||
* \param start, the start index of a specified group
|
||||
* \param end, the end index of a specified group
|
||||
* \return the generated pairs
|
||||
*/
|
||||
virtual Pairs GenPairs(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
int start, int end) = 0;
|
||||
|
||||
};
|
||||
|
||||
enum{
|
||||
BINARY_LINEAR_SAMPLER
|
||||
};
|
||||
|
||||
/*! \brief A simple pair sampler when the rank relevence scale is binary
|
||||
* for each positive instance, we will pick a negative
|
||||
* instance and add in a pair. When using binary linear sampler,
|
||||
* we should guarantee the labels are 0 or 1
|
||||
*/
|
||||
struct BinaryLinearSampler :public IPairSampler{
|
||||
virtual Pairs GenPairs(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
int start, int end) {
|
||||
Pairs pairs(start, end);
|
||||
int pointer = 0, last_pointer = 0, index = start, interval = end - start;
|
||||
for (int i = start; i < end; i++){
|
||||
if (labels[i] == 1){
|
||||
while (true){
|
||||
index = (++pointer) % interval + start;
|
||||
if (labels[index] == 0) break;
|
||||
if (pointer - last_pointer > interval) return pairs;
|
||||
}
|
||||
pairs.push(i, index);
|
||||
pairs.push(index, i);
|
||||
last_pointer = pointer;
|
||||
}
|
||||
}
|
||||
return pairs;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/*! \brief Pair Sampler Wrapper*/
|
||||
struct PairSamplerWrapper{
|
||||
public:
|
||||
inline void AssignSampler(int sampler_index){
|
||||
|
||||
switch (sampler_index){
|
||||
case BINARY_LINEAR_SAMPLER:sampler_ = &binary_linear_sampler; break;
|
||||
|
||||
default:utils::Error("Cannot find the specified sampler");
|
||||
}
|
||||
}
|
||||
|
||||
Pairs GenPairs(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
int start, int end){
|
||||
utils::Assert(sampler_ != NULL,"Not config the sampler yet. Add rank:sampler in the config file\n");
|
||||
return sampler_->GenPairs(preds, labels, start, end);
|
||||
}
|
||||
private:
|
||||
BinaryLinearSampler binary_linear_sampler;
|
||||
IPairSampler *sampler_;
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@ -1,4 +1,3 @@
|
||||
python wrapper for xgboost using ctypes
|
||||
|
||||
see example for usage
|
||||
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
import sys
|
||||
import numpy as np
|
||||
import scipy.sparse
|
||||
# append the path to xgboost
|
||||
# append the path to xgboost, you may need to change the following line
|
||||
sys.path.append('../')
|
||||
import xgboost as xgb
|
||||
|
||||
@ -82,7 +82,7 @@ evallist = [(dtest,'eval'), (dtrain,'train')]
|
||||
bst = xgb.train( param, dtrain, num_round, evallist )
|
||||
|
||||
###
|
||||
# cutomsized loss function, set loss_type to 0, so that predict get untransformed score
|
||||
# advanced: cutomsized loss function, set loss_type to 0, so that predict get untransformed score
|
||||
#
|
||||
print 'start running example to used cutomized objective function'
|
||||
|
||||
|
||||
@ -19,6 +19,7 @@ xglib = ctypes.cdll.LoadLibrary(XGBOOST_PATH)
|
||||
xglib.XGDMatrixCreate.restype = ctypes.c_void_p
|
||||
xglib.XGDMatrixNumRow.restype = ctypes.c_ulong
|
||||
xglib.XGDMatrixGetLabel.restype = ctypes.POINTER( ctypes.c_float )
|
||||
xglib.XGDMatrixGetWeight.restype = ctypes.POINTER( ctypes.c_float )
|
||||
xglib.XGDMatrixGetRow.restype = ctypes.POINTER( REntry )
|
||||
xglib.XGBoosterPredict.restype = ctypes.POINTER( ctypes.c_float )
|
||||
|
||||
@ -81,6 +82,11 @@ class DMatrix:
|
||||
length = ctypes.c_ulong()
|
||||
labels = xglib.XGDMatrixGetLabel(self.handle, ctypes.byref(length))
|
||||
return ctypes2numpy( labels, length.value );
|
||||
# get weight from dmatrix
|
||||
def get_weight(self):
|
||||
length = ctypes.c_ulong()
|
||||
weights = xglib.XGDMatrixGetWeight(self.handle, ctypes.byref(length))
|
||||
return ctypes2numpy( weights, length.value );
|
||||
# clear everything
|
||||
def clear(self):
|
||||
xglib.XGDMatrixClear(self.handle)
|
||||
|
||||
@ -72,6 +72,10 @@ namespace xgboost{
|
||||
*len = this->info.labels.size();
|
||||
return &(this->info.labels[0]);
|
||||
}
|
||||
inline const float* GetWeight( size_t* len ) const{
|
||||
*len = this->info.weights.size();
|
||||
return &(this->info.weights[0]);
|
||||
}
|
||||
inline void CheckInit(void){
|
||||
if(!init_col_){
|
||||
this->data.InitData();
|
||||
@ -171,6 +175,9 @@ extern "C"{
|
||||
const float* XGDMatrixGetLabel( const void *handle, size_t* len ){
|
||||
return static_cast<const DMatrix*>(handle)->GetLabel(len);
|
||||
}
|
||||
const float* XGDMatrixGetWeight( const void *handle, size_t* len ){
|
||||
return static_cast<const DMatrix*>(handle)->GetWeight(len);
|
||||
}
|
||||
void XGDMatrixClear(void *handle){
|
||||
static_cast<DMatrix*>(handle)->Clear();
|
||||
}
|
||||
|
||||
@ -124,6 +124,14 @@ namespace xgboost{
|
||||
}
|
||||
}
|
||||
}
|
||||
{// load in weight
|
||||
unsigned nwt;
|
||||
if( fs.Read(&nwt, sizeof(unsigned) ) != 0 ){
|
||||
utils::Assert( nwt == 0 || nwt == data.NumRow(), "invalid weight" );
|
||||
info.weights.resize( nwt );
|
||||
utils::Assert( fs.Read(&info.weights[0], sizeof(unsigned) * nwt) != 0, "Load weight file");
|
||||
}
|
||||
}
|
||||
fs.Close();
|
||||
|
||||
if (!silent){
|
||||
@ -133,7 +141,6 @@ namespace xgboost{
|
||||
printf("data contains %u groups\n", (unsigned)info.group_ptr.size()-1 );
|
||||
}
|
||||
}
|
||||
this->TryLoadWeight(fname, silent);
|
||||
return true;
|
||||
}
|
||||
/*!
|
||||
@ -156,6 +163,13 @@ namespace xgboost{
|
||||
fs.Write(&info.group_ptr[0], sizeof(unsigned) * ngptr);
|
||||
}
|
||||
}
|
||||
{// write out weight
|
||||
unsigned nwt = static_cast<unsigned>( info.weights.size() );
|
||||
fs.Write( &nwt, sizeof(unsigned) );
|
||||
if( nwt != 0 ){
|
||||
fs.Write(&info.weights[0], sizeof(float) * nwt);
|
||||
}
|
||||
}
|
||||
fs.Close();
|
||||
if (!silent){
|
||||
printf("%ux%u matrix with %lu entries is saved to %s\n",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user