Note for DaskDMatrix. (#5144)
* Brief introduction to `DaskDMatrix`. * Add xgboost.dask.train to API doc
This commit is contained in:
parent
c8bdb652c4
commit
a4b929385e
@ -82,6 +82,8 @@ Dask API
|
||||
|
||||
.. autofunction:: xgboost.dask.DaskDMatrix
|
||||
|
||||
.. autofunction:: xgboost.dask.train
|
||||
|
||||
.. autofunction:: xgboost.dask.predict
|
||||
|
||||
.. autofunction:: xgboost.dask.DaskXGBClassifier
|
||||
|
||||
@ -77,6 +77,27 @@ interface with ``DaskXGBClassifier`` and ``DaskXGBRegressor``. See ``xgboost/de
|
||||
for more examples.
|
||||
|
||||
|
||||
*****************************************************************************
|
||||
Why is the initialization of ``DaskDMatrix`` so slow and throws weird errors
|
||||
*****************************************************************************
|
||||
|
||||
The dask API in XGBoost requires construction of ``DaskDMatrix``. With ``Scikit-Learn``
|
||||
interface, ``DaskDMatrix`` is implicitly constructed for each input data during `fit` or
|
||||
`predict`. You might have observed its construction is taking incredible amount of time,
|
||||
and sometimes throws error that doesn't seem to be relevant to `DaskDMatrix`. Here is a
|
||||
brief explanation for why. By default most of dask's computation is `lazy
|
||||
<https://docs.dask.org/en/latest/user-interfaces.html#laziness-and-computing>`_, which
|
||||
means the computation is not carried out until you explicitly ask for result, either by
|
||||
calling `compute()` or `wait()`. See above link for details in dask, and `this wiki
|
||||
<https://en.wikipedia.org/wiki/Lazy_evaluation>`_ for general concept of lazy evaluation.
|
||||
The `DaskDMatrix` constructor forces all lazy computation to materialize, which means it's
|
||||
where all your earlier computation actually being carried out, including operations like
|
||||
`dd.read_csv()`. To isolate the computation in `DaskDMatrix` from other lazy
|
||||
computations, one can explicitly wait for results of input data before calling constructor
|
||||
of `DaskDMatrix`. Also dask's `web interface
|
||||
<https://distributed.dask.org/en/latest/web.html>`_ can be used to monitor what operations
|
||||
are currently being performed.
|
||||
|
||||
***********
|
||||
Limitations
|
||||
***********
|
||||
|
||||
@ -113,25 +113,28 @@ def _assert_client(client):
|
||||
|
||||
class DaskDMatrix:
|
||||
# pylint: disable=missing-docstring, too-many-instance-attributes
|
||||
'''DMatrix holding on references to Dask DataFrame or Dask Array.
|
||||
'''DMatrix holding on references to Dask DataFrame or Dask Array. Constructing
|
||||
a `DaskDMatrix` forces all lazy computation to be carried out. Wait for
|
||||
the input data explicitly if you want to see actual computation of
|
||||
constructing `DaskDMatrix`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client: dask.distributed.Client
|
||||
Parameters
|
||||
----------
|
||||
client: dask.distributed.Client
|
||||
Specify the dask client used for training. Use default client
|
||||
returned from dask if it's set to None.
|
||||
data : dask.array.Array/dask.dataframe.DataFrame
|
||||
data : dask.array.Array/dask.dataframe.DataFrame
|
||||
data source of DMatrix.
|
||||
label: dask.array.Array/dask.dataframe.DataFrame
|
||||
label: dask.array.Array/dask.dataframe.DataFrame
|
||||
label used for trainin.
|
||||
missing : float, optional
|
||||
Value in the input data (e.g. `numpy.ndarray`) which needs
|
||||
to be present as a missing value. If None, defaults to np.nan.
|
||||
weight : dask.array.Array/dask.dataframe.DataFrame
|
||||
missing : float, optional
|
||||
Value in the input data (e.g. `numpy.ndarray`) which needs
|
||||
to be present as a missing value. If None, defaults to np.nan.
|
||||
weight : dask.array.Array/dask.dataframe.DataFrame
|
||||
Weight for each instance.
|
||||
feature_names : list, optional
|
||||
feature_names : list, optional
|
||||
Set names for features.
|
||||
feature_types : list, optional
|
||||
feature_types : list, optional
|
||||
Set types for features
|
||||
|
||||
'''
|
||||
@ -349,23 +352,23 @@ def train(client, params, dtrain, *args, evals=(), **kwargs):
|
||||
Parameters
|
||||
----------
|
||||
client: dask.distributed.Client
|
||||
Specify the dask client used for training. Use default client
|
||||
returned from dask if it's set to None.
|
||||
|
||||
Other parameters are the same as `xgboost.train` except for `evals_result`,
|
||||
which is returned as part of function return value instead of argument.
|
||||
Specify the dask client used for training. Use default client
|
||||
returned from dask if it's set to None.
|
||||
\\*\\*kwargs:
|
||||
Other parameters are the same as `xgboost.train` except for `evals_result`,
|
||||
which is returned as part of function return value instead of argument.
|
||||
|
||||
Returns
|
||||
-------
|
||||
results: dict
|
||||
A dictionary containing trained booster and evaluation history.
|
||||
`history` field is the same as `eval_result` from `xgboost.train`.
|
||||
A dictionary containing trained booster and evaluation history.
|
||||
`history` field is the same as `eval_result` from `xgboost.train`.
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
{'booster': xgboost.Booster,
|
||||
'history': {'train': {'logloss': ['0.48253', '0.35953']},
|
||||
'eval': {'logloss': ['0.480385', '0.357756']}}}
|
||||
{'booster': xgboost.Booster,
|
||||
'history': {'train': {'logloss': ['0.48253', '0.35953']},
|
||||
'eval': {'logloss': ['0.480385', '0.357756']}}}
|
||||
|
||||
'''
|
||||
_assert_dask_support()
|
||||
@ -420,15 +423,15 @@ def train(client, params, dtrain, *args, evals=(), **kwargs):
|
||||
def predict(client, model, data, *args):
|
||||
'''Run prediction with a trained booster.
|
||||
|
||||
.. note::
|
||||
.. note::
|
||||
|
||||
Only default prediction mode is supported right now.
|
||||
Only default prediction mode is supported right now.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client: dask.distributed.Client
|
||||
Specify the dask client used for training. Use default client
|
||||
returned from dask if it's set to None.
|
||||
Specify the dask client used for training. Use default client
|
||||
returned from dask if it's set to None.
|
||||
model: A Booster or a dictionary returned by `xgboost.dask.train`.
|
||||
The trained model.
|
||||
data: DaskDMatrix
|
||||
|
||||
@ -136,26 +136,26 @@ def to_graphviz(booster, fmap='', num_trees=0, rankdir=None,
|
||||
Edge color when meets the node condition.
|
||||
no_color : str, default '#FF0000'
|
||||
Edge color when doesn't meet the node condition.
|
||||
condition_node_params : dict (optional)
|
||||
condition_node_params : dict, optional
|
||||
Condition node configuration for for graphviz. Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{'shape': 'box',
|
||||
'style': 'filled,rounded',
|
||||
'fillcolor': '#78bceb'}
|
||||
{'shape': 'box',
|
||||
'style': 'filled,rounded',
|
||||
'fillcolor': '#78bceb'}
|
||||
|
||||
leaf_node_params : dict (optional)
|
||||
leaf_node_params : dict, optional
|
||||
Leaf node configuration for graphviz. Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{'shape': 'box',
|
||||
'style': 'filled',
|
||||
'fillcolor': '#e48038'}
|
||||
{'shape': 'box',
|
||||
'style': 'filled',
|
||||
'fillcolor': '#e48038'}
|
||||
|
||||
kwargs : Other keywords passed to graphviz graph_attr, E.g.:
|
||||
``graph [ {key} = {value} ]``
|
||||
\\*\\*kwargs: dict, optional
|
||||
Other keywords passed to graphviz graph_attr, e.g. ``graph [ {key} = {value} ]``
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user