update README for jvm-packages
This commit is contained in:
parent
400b1faecc
commit
a3b2e76230
@ -34,7 +34,7 @@ object XGBoostScalaExample {
|
|||||||
// number of iterations
|
// number of iterations
|
||||||
val round = 2
|
val round = 2
|
||||||
// train the model
|
// train the model
|
||||||
val model = XGBoost.train(paramMap, trainData, round)
|
val model = XGBoost.train(trainData, paramMap, round)
|
||||||
// run prediction
|
// run prediction
|
||||||
val predTrain = model.predict(trainData)
|
val predTrain = model.predict(trainData)
|
||||||
// save model to the file.
|
// save model to the file.
|
||||||
@ -43,34 +43,6 @@ object XGBoostScalaExample {
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
### XGBoost Flink
|
|
||||||
```scala
|
|
||||||
import ml.dmlc.xgboost4j.scala.flink.XGBoost
|
|
||||||
import org.apache.flink.api.scala._
|
|
||||||
import org.apache.flink.api.scala.ExecutionEnvironment
|
|
||||||
import org.apache.flink.ml.MLUtils
|
|
||||||
|
|
||||||
object DistTrainWithFlink {
|
|
||||||
def main(args: Array[String]) {
|
|
||||||
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
|
|
||||||
// read trainining data
|
|
||||||
val trainData =
|
|
||||||
MLUtils.readLibSVM(env, "/path/to/data/agaricus.txt.train")
|
|
||||||
// define parameters
|
|
||||||
val paramMap = List(
|
|
||||||
"eta" -> 0.1,
|
|
||||||
"max_depth" -> 2,
|
|
||||||
"objective" -> "binary:logistic").toMap
|
|
||||||
// number of iterations
|
|
||||||
val round = 2
|
|
||||||
// train the model
|
|
||||||
val model = XGBoost.train(paramMap, trainData, round)
|
|
||||||
val predTrain = model.predict(trainData.map{x => x.vector})
|
|
||||||
model.saveModelToHadoop("file:///path/to/xgboost.model")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
### XGBoost Spark
|
### XGBoost Spark
|
||||||
```scala
|
```scala
|
||||||
import org.apache.spark.SparkContext
|
import org.apache.spark.SparkContext
|
||||||
@ -101,3 +73,33 @@ object DistTrainWithSpark {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### XGBoost Flink
|
||||||
|
```scala
|
||||||
|
import ml.dmlc.xgboost4j.scala.flink.XGBoost
|
||||||
|
import org.apache.flink.api.scala._
|
||||||
|
import org.apache.flink.api.scala.ExecutionEnvironment
|
||||||
|
import org.apache.flink.ml.MLUtils
|
||||||
|
|
||||||
|
object DistTrainWithFlink {
|
||||||
|
def main(args: Array[String]) {
|
||||||
|
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
|
||||||
|
// read trainining data
|
||||||
|
val trainData =
|
||||||
|
MLUtils.readLibSVM(env, "/path/to/data/agaricus.txt.train")
|
||||||
|
// define parameters
|
||||||
|
val paramMap = List(
|
||||||
|
"eta" -> 0.1,
|
||||||
|
"max_depth" -> 2,
|
||||||
|
"objective" -> "binary:logistic").toMap
|
||||||
|
// number of iterations
|
||||||
|
val round = 2
|
||||||
|
// train the model
|
||||||
|
val model = XGBoost.train(trainData, paramMap, round)
|
||||||
|
val predTrain = model.predict(trainData.map{x => x.vector})
|
||||||
|
model.saveModelToHadoop("file:///path/to/xgboost.model")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user