Optimizations for RNG in InitData kernel (#5522)

* optimizations for subsampling in InitData

* optimizations for subsampling in InitData

Co-authored-by: SHVETS, KIRILL <kirill.shvets@intel.com>
This commit is contained in:
ShvetsKS 2020-04-16 18:24:32 +03:00 committed by GitHub
parent e268fb0093
commit a2d86b8e4b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 110 additions and 10 deletions

View File

@ -536,6 +536,63 @@ bool QuantileHistMaker::Builder::UpdatePredictionCache(
return true;
}
void QuantileHistMaker::Builder::InitSampling(const std::vector<GradientPair>& gpair,
const DMatrix& fmat,
std::vector<size_t>* row_indices) {
const auto& info = fmat.Info();
auto& rnd = common::GlobalRandom();
std::vector<size_t>& row_indices_local = *row_indices;
size_t* p_row_indices = row_indices_local.data();
#if XGBOOST_CUSTOMIZE_GLOBAL_PRNG
std::bernoulli_distribution coin_flip(param_.subsample);
size_t j = 0;
for (size_t i = 0; i < info.num_row_; ++i) {
if (gpair[i].GetHess() >= 0.0f && coin_flip(rnd)) {
p_row_indices[j++] = i;
}
}
/* resize row_indices to reduce memory */
row_indices_local.resize(j);
#else
const size_t nthread = this->nthread_;
std::vector<size_t> row_offsets(nthread, 0);
/* usage of mt19937_64 give 2x speed up for subsampling */
std::vector<std::mt19937> rnds(nthread);
/* create engine for each thread */
for (std::mt19937& r : rnds) {
r = rnd;
}
const size_t discard_size = info.num_row_ / nthread;
#pragma omp parallel num_threads(nthread)
{
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * discard_size;
const size_t iend = (tid == (nthread - 1)) ?
info.num_row_ : ibegin + discard_size;
std::bernoulli_distribution coin_flip(param_.subsample);
rnds[tid].discard(2*discard_size * tid);
for (size_t i = ibegin; i < iend; ++i) {
if (gpair[i].GetHess() >= 0.0f && coin_flip(rnds[tid])) {
p_row_indices[ibegin + row_offsets[tid]++] = i;
}
}
}
/* discard global engine */
rnd = rnds[nthread - 1];
size_t prefix_sum = row_offsets[0];
for (size_t i = 1; i < nthread; ++i) {
const size_t ibegin = i * discard_size;
for (size_t k = 0; k < row_offsets[i]; ++k) {
row_indices_local[prefix_sum + k] = row_indices_local[ibegin + k];
}
prefix_sum += row_offsets[i];
}
/* resize row_indices to reduce memory */
row_indices_local.resize(prefix_sum);
#endif // XGBOOST_CUSTOMIZE_GLOBAL_PRNG
}
void QuantileHistMaker::Builder::InitData(const GHistIndexMatrix& gmat,
const std::vector<GradientPair>& gpair,
const DMatrix& fmat,
@ -569,22 +626,14 @@ void QuantileHistMaker::Builder::InitData(const GHistIndexMatrix& gmat,
std::vector<size_t>& row_indices = *row_set_collection_.Data();
row_indices.resize(info.num_row_);
auto* p_row_indices = row_indices.data();
size_t* p_row_indices = row_indices.data();
// mark subsample and build list of member rows
if (param_.subsample < 1.0f) {
CHECK_EQ(param_.sampling_method, TrainParam::kUniform)
<< "Only uniform sampling is supported, "
<< "gradient-based sampling is only support by GPU Hist.";
std::bernoulli_distribution coin_flip(param_.subsample);
auto& rnd = common::GlobalRandom();
size_t j = 0;
for (size_t i = 0; i < info.num_row_; ++i) {
if (gpair[i].GetHess() >= 0.0f && coin_flip(rnd)) {
p_row_indices[j++] = i;
}
}
row_indices.resize(j);
InitSampling(gpair, fmat, &row_indices);
} else {
MemStackAllocator<bool, 128> buff(this->nthread_);
bool* p_buff = buff.Get();

View File

@ -202,6 +202,9 @@ class QuantileHistMaker: public TreeUpdater {
const DMatrix& fmat,
const RegTree& tree);
void InitSampling(const std::vector<GradientPair>& gpair,
const DMatrix& fmat, std::vector<size_t>* row_indices);
void EvaluateSplits(const std::vector<ExpandEntry>& nodes_set,
const GHistIndexMatrix& gmat,
const HistCollection& hist,

View File

@ -96,6 +96,31 @@ class QuantileHistMock : public QuantileHistMaker {
}
}
void TestInitDataSampling(const GHistIndexMatrix& gmat,
const std::vector<GradientPair>& gpair,
DMatrix* p_fmat,
const RegTree& tree) {
const size_t nthreads = omp_get_num_threads();
// save state of global rng engine
auto initial_rnd = common::GlobalRandom();
RealImpl::InitData(gmat, gpair, *p_fmat, tree);
std::vector<size_t> row_indices_initial = *row_set_collection_.Data();
for (size_t i_nthreads = 1; i_nthreads < 4; ++i_nthreads) {
omp_set_num_threads(i_nthreads);
// return initial state of global rng engine
common::GlobalRandom() = initial_rnd;
RealImpl::InitData(gmat, gpair, *p_fmat, tree);
std::vector<size_t>& row_indices = *row_set_collection_.Data();
ASSERT_EQ(row_indices_initial.size(), row_indices.size());
for (size_t i = 0; i < row_indices_initial.size(); ++i) {
ASSERT_EQ(row_indices_initial[i], row_indices[i]);
}
}
omp_set_num_threads(nthreads);
}
void TestBuildHist(int nid,
const GHistIndexMatrix& gmat,
const DMatrix& fmat,
@ -266,6 +291,20 @@ class QuantileHistMock : public QuantileHistMaker {
builder_->TestInitData(gmat, gpair, dmat_.get(), tree);
}
void TestInitDataSampling() {
size_t constexpr kMaxBins = 4;
common::GHistIndexMatrix gmat;
gmat.Init(dmat_.get(), kMaxBins);
RegTree tree = RegTree();
tree.param.UpdateAllowUnknown(cfg_);
std::vector<GradientPair> gpair =
{ {0.23f, 0.24f}, {0.23f, 0.24f}, {0.23f, 0.24f}, {0.23f, 0.24f},
{0.27f, 0.29f}, {0.27f, 0.29f}, {0.27f, 0.29f}, {0.27f, 0.29f} };
builder_->TestInitDataSampling(gmat, gpair, dmat_.get(), tree);
}
void TestBuildHist() {
RegTree tree = RegTree();
tree.param.UpdateAllowUnknown(cfg_);
@ -292,6 +331,15 @@ TEST(QuantileHist, InitData) {
maker.TestInitData();
}
TEST(QuantileHist, InitDataSampling) {
const float subsample = 0.5;
std::vector<std::pair<std::string, std::string>> cfg
{{"num_feature", std::to_string(QuantileHistMock::GetNumColumns())},
{"subsample", std::to_string(subsample)}};
QuantileHistMock maker(cfg);
maker.TestInitDataSampling();
}
TEST(QuantileHist, BuildHist) {
// Don't enable feature grouping
std::vector<std::pair<std::string, std::string>> cfg