tab eliminated

This commit is contained in:
kalenhaha 2014-02-19 13:25:01 +08:00
parent a20b1d1866
commit a0dddaf224
6 changed files with 468 additions and 470 deletions

View File

@ -18,8 +18,6 @@ booster_type=1
do_reboost=0
bst:num_roots=0
bst:num_feature=3
learning_rate=0.01

View File

@ -12,267 +12,267 @@
#include "../utils/xgboost_stream.h"
namespace xgboost{
namespace regression{
/*! \brief class for gradient boosted regression */
class RegBoostLearner{
public:
namespace regression{
/*! \brief class for gradient boosted regression */
class RegBoostLearner{
public:
RegBoostLearner(bool silent = false){
this->silent = silent;
}
RegBoostLearner(bool silent = false){
this->silent = silent;
}
/*!
* \brief a regression booter associated with training and evaluating data
* \param train pointer to the training data
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
RegBoostLearner( const DMatrix *train,
std::vector<const DMatrix *> evals,
std::vector<std::string> evname, bool silent = false ){
this->silent = silent;
SetData(train,evals,evname);
}
/*!
* \brief a regression booter associated with training and evaluating data
* \param train pointer to the training data
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
RegBoostLearner( const DMatrix *train,
std::vector<const DMatrix *> evals,
std::vector<std::string> evname, bool silent = false ){
this->silent = silent;
SetData(train,evals,evname);
}
/*!
* \brief associate regression booster with training and evaluating data
* \param train pointer to the training data
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
inline void SetData(const DMatrix *train,
std::vector<const DMatrix *> evals,
std::vector<std::string> evname){
this->train_ = train;
this->evals_ = evals;
this->evname_ = evname;
//assign buffer index
int buffer_size = (*train).size();
for(int i = 0; i < evals.size(); i++){
buffer_size += (*evals[i]).size();
}
char str[25];
_itoa(buffer_size,str,10);
base_model.SetParam("num_pbuffer",str);
base_model.SetParam("num_pbuffer",str);
}
/*!
* \brief associate regression booster with training and evaluating data
* \param train pointer to the training data
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
inline void SetData(const DMatrix *train,
std::vector<const DMatrix *> evals,
std::vector<std::string> evname){
this->train_ = train;
this->evals_ = evals;
this->evname_ = evname;
//assign buffer index
int buffer_size = (*train).size();
for(int i = 0; i < evals.size(); i++){
buffer_size += (*evals[i]).size();
}
char str[25];
_itoa(buffer_size,str,10);
base_model.SetParam("num_pbuffer",str);
base_model.SetParam("num_pbuffer",str);
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam( const char *name, const char *val ){
mparam.SetParam( name, val );
base_model.SetParam( name, val );
}
/*!
* \brief initialize solver before training, called before training
* this function is reserved for solver to allocate necessary space and do other preparation
*/
inline void InitTrainer( void ){
base_model.InitTrainer();
InitModel();
mparam.AdjustBase();
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam( const char *name, const char *val ){
mparam.SetParam( name, val );
base_model.SetParam( name, val );
}
/*!
* \brief initialize solver before training, called before training
* this function is reserved for solver to allocate necessary space and do other preparation
*/
inline void InitTrainer( void ){
base_model.InitTrainer();
InitModel();
mparam.AdjustBase();
}
/*!
* \brief initialize the current data storage for model, if the model is used first time, call this function
*/
inline void InitModel( void ){
base_model.InitModel();
}
/*!
* \brief initialize the current data storage for model, if the model is used first time, call this function
*/
inline void InitModel( void ){
base_model.InitModel();
}
/*!
* \brief load model from stream
* \param fi input stream
*/
inline void LoadModel( utils::IStream &fi ){
utils::Assert( fi.Read( &mparam, sizeof(ModelParam) ) != 0 );
base_model.LoadModel( fi );
}
/*!
* \brief save model to stream
* \param fo output stream
*/
inline void SaveModel( utils::IStream &fo ) const{
fo.Write( &mparam, sizeof(ModelParam) );
base_model.SaveModel( fo );
}
/*!
* \brief update the model for one iteration
* \param iteration the number of updating iteration
*/
inline void UpdateOneIter( int iteration ){
std::vector<float> grad,hess,preds;
std::vector<unsigned> root_index;
booster::FMatrixS::Image train_image((*train_).data);
Predict(preds,*train_,0);
Gradient(preds,(*train_).labels,grad,hess);
base_model.DoBoost(grad,hess,train_image,root_index);
int buffer_index_offset = (*train_).size();
float loss = 0.0;
for(int i = 0; i < evals_.size();i++){
Predict(preds, *evals_[i], buffer_index_offset);
loss = mparam.Loss(preds,(*evals_[i]).labels);
if(!silent){
printf("The loss of %s data set in %d the \
iteration is %f",evname_[i].c_str(),&iteration,&loss);
}
buffer_index_offset += (*evals_[i]).size();
}
}
/*!
* \brief load model from stream
* \param fi input stream
*/
inline void LoadModel( utils::IStream &fi ){
utils::Assert( fi.Read( &mparam, sizeof(ModelParam) ) != 0 );
base_model.LoadModel( fi );
}
/*!
* \brief save model to stream
* \param fo output stream
*/
inline void SaveModel( utils::IStream &fo ) const{
fo.Write( &mparam, sizeof(ModelParam) );
base_model.SaveModel( fo );
}
/*! \brief get the transformed predictions, given data */
inline void Predict( std::vector<float> &preds, const DMatrix &data,int buffer_index_offset = 0 ){
int data_size = data.size();
preds.resize(data_size);
for(int j = 0; j < data_size; j++){
preds[j] = mparam.PredTransform(mparam.base_score +
base_model.Predict(data.data[j],buffer_index_offset + j));
}
}
/*!
* \brief update the model for one iteration
* \param iteration the number of updating iteration
*/
inline void UpdateOneIter( int iteration ){
std::vector<float> grad,hess,preds;
std::vector<unsigned> root_index;
booster::FMatrixS::Image train_image((*train_).data);
Predict(preds,*train_,0);
Gradient(preds,(*train_).labels,grad,hess);
base_model.DoBoost(grad,hess,train_image,root_index);
int buffer_index_offset = (*train_).size();
float loss = 0.0;
for(int i = 0; i < evals_.size();i++){
Predict(preds, *evals_[i], buffer_index_offset);
loss = mparam.Loss(preds,(*evals_[i]).labels);
if(!silent){
printf("The loss of %s data set in %d the \
iteration is %f",evname_[i].c_str(),&iteration,&loss);
}
buffer_index_offset += (*evals_[i]).size();
}
private:
/*! \brief get the first order and second order gradient, given the transformed predictions and labels*/
inline void Gradient(const std::vector<float> &preds, const std::vector<float> &labels, std::vector<float> &grad,
std::vector<float> &hess){
grad.clear();
hess.clear();
for(int j = 0; j < preds.size(); j++){
grad.push_back(mparam.FirstOrderGradient(preds[j],labels[j]));
hess.push_back(mparam.SecondOrderGradient(preds[j],labels[j]));
}
}
}
enum LOSS_TYPE_LIST{
LINEAR_SQUARE,
LOGISTIC_NEGLOGLIKELIHOOD,
};
/*! \brief get the transformed predictions, given data */
inline void Predict( std::vector<float> &preds, const DMatrix &data,int buffer_index_offset = 0 ){
int data_size = data.size();
preds.resize(data_size);
for(int j = 0; j < data_size; j++){
preds[j] = mparam.PredTransform(mparam.base_score +
base_model.Predict(data.data[j],buffer_index_offset + j));
}
}
/*! \brief training parameter for regression */
struct ModelParam{
/* \brief global bias */
float base_score;
/* \brief type of loss function */
int loss_type;
ModelParam( void ){
base_score = 0.5f;
loss_type = 0;
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam( const char *name, const char *val ){
if( !strcmp("base_score", name ) ) base_score = (float)atof( val );
if( !strcmp("loss_type", name ) ) loss_type = atoi( val );
}
/*!
* \brief adjust base_score
*/
inline void AdjustBase( void ){
if( loss_type == 1 ){
utils::Assert( base_score > 0.0f && base_score < 1.0f, "sigmoid range constrain" );
base_score = - logf( 1.0f / base_score - 1.0f );
}
}
/*!
* \brief calculate first order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return first order gradient
*/
inline float FirstOrderGradient( float predt, float label ) const{
switch( loss_type ){
case LINEAR_SQUARE: return predt - label;
case 1: return predt - label;
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculate second order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return second order gradient
*/
inline float SecondOrderGradient( float predt, float label ) const{
switch( loss_type ){
case LINEAR_SQUARE: return 1.0f;
case LOGISTIC_NEGLOGLIKELIHOOD: return predt * ( 1 - predt );
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
private:
/*! \brief get the first order and second order gradient, given the transformed predictions and labels*/
inline void Gradient(const std::vector<float> &preds, const std::vector<float> &labels, std::vector<float> &grad,
std::vector<float> &hess){
grad.clear();
hess.clear();
for(int j = 0; j < preds.size(); j++){
grad.push_back(mparam.FirstOrderGradient(preds[j],labels[j]));
hess.push_back(mparam.SecondOrderGradient(preds[j],labels[j]));
}
}
/*!
* \brief calculating the loss, given the predictions, labels and the loss type
* \param preds the given predictions
* \param labels the given labels
* \return the specified loss
*/
inline float Loss(const std::vector<float> &preds, const std::vector<float> &labels) const{
switch( loss_type ){
case LINEAR_SQUARE: return SquareLoss(preds,labels);
case LOGISTIC_NEGLOGLIKELIHOOD: return NegLoglikelihoodLoss(preds,labels);
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
enum LOSS_TYPE_LIST{
LINEAR_SQUARE,
LOGISTIC_NEGLOGLIKELIHOOD,
};
/*!
* \brief calculating the square loss, given the predictions and labels
* \param preds the given predictions
* \param labels the given labels
* \return the summation of square loss
*/
inline float SquareLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for(int i = 0; i < preds.size(); i++)
ans += pow(preds[i] - labels[i], 2);
return ans;
}
/*! \brief training parameter for regression */
struct ModelParam{
/* \brief global bias */
float base_score;
/* \brief type of loss function */
int loss_type;
/*!
* \brief calculating the square loss, given the predictions and labels
* \param preds the given predictions
* \param labels the given labels
* \return the summation of square loss
*/
inline float NegLoglikelihoodLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for(int i = 0; i < preds.size(); i++)
ans -= labels[i] * log(preds[i]) + ( 1 - labels[i] ) * log(1 - preds[i]);
return ans;
}
ModelParam( void ){
base_score = 0.5f;
loss_type = 0;
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam( const char *name, const char *val ){
if( !strcmp("base_score", name ) ) base_score = (float)atof( val );
if( !strcmp("loss_type", name ) ) loss_type = atoi( val );
}
/*!
* \brief adjust base_score
*/
inline void AdjustBase( void ){
if( loss_type == 1 ){
utils::Assert( base_score > 0.0f && base_score < 1.0f, "sigmoid range constrain" );
base_score = - logf( 1.0f / base_score - 1.0f );
}
}
/*!
* \brief calculate first order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return first order gradient
*/
inline float FirstOrderGradient( float predt, float label ) const{
switch( loss_type ){
case LINEAR_SQUARE: return predt - label;
case 1: return predt - label;
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculate second order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return second order gradient
*/
inline float SecondOrderGradient( float predt, float label ) const{
switch( loss_type ){
case LINEAR_SQUARE: return 1.0f;
case LOGISTIC_NEGLOGLIKELIHOOD: return predt * ( 1 - predt );
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief transform the linear sum to prediction
* \param x linear sum of boosting ensemble
* \return transformed prediction
*/
inline float PredTransform( float x ){
switch( loss_type ){
case LINEAR_SQUARE: return x;
case LOGISTIC_NEGLOGLIKELIHOOD: return 1.0f/(1.0f + expf(-x));
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculating the loss, given the predictions, labels and the loss type
* \param preds the given predictions
* \param labels the given labels
* \return the specified loss
*/
inline float Loss(const std::vector<float> &preds, const std::vector<float> &labels) const{
switch( loss_type ){
case LINEAR_SQUARE: return SquareLoss(preds,labels);
case LOGISTIC_NEGLOGLIKELIHOOD: return NegLoglikelihoodLoss(preds,labels);
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
};
private:
booster::GBMBaseModel base_model;
ModelParam mparam;
const DMatrix *train_;
std::vector<const DMatrix *> evals_;
std::vector<std::string> evname_;
bool silent;
};
}
/*!
* \brief calculating the square loss, given the predictions and labels
* \param preds the given predictions
* \param labels the given labels
* \return the summation of square loss
*/
inline float SquareLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for(int i = 0; i < preds.size(); i++)
ans += pow(preds[i] - labels[i], 2);
return ans;
}
/*!
* \brief calculating the square loss, given the predictions and labels
* \param preds the given predictions
* \param labels the given labels
* \return the summation of square loss
*/
inline float NegLoglikelihoodLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for(int i = 0; i < preds.size(); i++)
ans -= labels[i] * log(preds[i]) + ( 1 - labels[i] ) * log(1 - preds[i]);
return ans;
}
/*!
* \brief transform the linear sum to prediction
* \param x linear sum of boosting ensemble
* \return transformed prediction
*/
inline float PredTransform( float x ){
switch( loss_type ){
case LINEAR_SQUARE: return x;
case LOGISTIC_NEGLOGLIKELIHOOD: return 1.0f/(1.0f + expf(-x));
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
};
private:
booster::GBMBaseModel base_model;
ModelParam mparam;
const DMatrix *train_;
std::vector<const DMatrix *> evals_;
std::vector<std::string> evname_;
bool silent;
};
}
};
#endif

View File

@ -3,13 +3,13 @@
using namespace xgboost::regression;
int main(int argc, char *argv[]){
// char* config_path = argv[1];
// bool silent = ( atoi(argv[2]) == 1 );
char* config_path = "c:\\cygwin64\\home\\chen\\github\\xgboost\\demo\\regression\\reg.conf";
bool silent = false;
RegBoostTrain train;
train.train(config_path,false);
//char* config_path = argv[1];
//bool silent = ( atoi(argv[2]) == 1 );
char* config_path = "c:\\cygwin64\\home\\chen\\github\\xgboost\\demo\\regression\\reg.conf";
bool silent = false;
RegBoostTrain train;
train.train(config_path,false);
RegBoostTest test;
test.test(config_path,false);
RegBoostTest test;
test.test(config_path,false);
}

View File

@ -11,89 +11,89 @@
using namespace xgboost::utils;
namespace xgboost{
namespace regression{
/*!
* \brief wrapping the testing process of the gradient
boosting regression model,given the configuation
* \author Kailong Chen: chenkl198812@gmail.com
*/
class RegBoostTest{
public:
/*!
* \brief to start the testing process of gradient boosting regression
* model given the configuation, and finally save the prediction
* results to the specified paths.
* \param config_path the location of the configuration
* \param silent whether to print feedback messages
*/
void test(char* config_path,bool silent = false){
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
ConfigIterator config_itr(config_path);
//Get the training data and validation data paths, config the Learner
while (config_itr.Next()){
reg_boost_learner->SetParam(config_itr.name(),config_itr.val());
test_param.SetParam(config_itr.name(),config_itr.val());
}
namespace regression{
/*!
* \brief wrapping the testing process of the gradient
boosting regression model,given the configuation
* \author Kailong Chen: chenkl198812@gmail.com
*/
class RegBoostTest{
public:
/*!
* \brief to start the testing process of gradient boosting regression
* model given the configuation, and finally save the prediction
* results to the specified paths.
* \param config_path the location of the configuration
* \param silent whether to print feedback messages
*/
void test(char* config_path,bool silent = false){
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
ConfigIterator config_itr(config_path);
//Get the training data and validation data paths, config the Learner
while (config_itr.Next()){
reg_boost_learner->SetParam(config_itr.name(),config_itr.val());
test_param.SetParam(config_itr.name(),config_itr.val());
}
Assert(test_param.test_paths.size() == test_param.test_names.size(),
"The number of test data set paths is not the same as the number of test data set data set names");
Assert(test_param.test_paths.size() == test_param.test_names.size(),
"The number of test data set paths is not the same as the number of test data set data set names");
//begin testing
reg_boost_learner->InitModel();
char model_path[256];
std::vector<float> preds;
for(int i = 0; i < test_param.test_paths.size(); i++){
xgboost::regression::DMatrix test_data;
test_data.LoadText(test_param.test_paths[i].c_str());
sprintf(model_path,"%s/final.model",test_param.model_dir_path);
FileStream fin(fopen(model_path,"r"));
reg_boost_learner->LoadModel(fin);
fin.Close();
reg_boost_learner->Predict(preds,test_data);
}
}
//begin testing
reg_boost_learner->InitModel();
char model_path[256];
std::vector<float> preds;
for(int i = 0; i < test_param.test_paths.size(); i++){
xgboost::regression::DMatrix test_data;
test_data.LoadText(test_param.test_paths[i].c_str());
sprintf(model_path,"%s/final.model",test_param.model_dir_path);
FileStream fin(fopen(model_path,"r"));
reg_boost_learner->LoadModel(fin);
fin.Close();
reg_boost_learner->Predict(preds,test_data);
}
}
private:
struct TestParam{
/* \brief upperbound of the number of boosters */
int boost_iterations;
private:
struct TestParam{
/* \brief upperbound of the number of boosters */
int boost_iterations;
/* \brief the period to save the model, -1 means only save the final round model */
int save_period;
/* \brief the period to save the model, -1 means only save the final round model */
int save_period;
/* \brief the path of directory containing the saved models */
char model_dir_path[256];
/* \brief the path of directory containing the saved models */
char model_dir_path[256];
/* \brief the path of directory containing the output prediction results */
char pred_dir_path[256];
/* \brief the path of directory containing the output prediction results */
char pred_dir_path[256];
/* \brief the paths of test data sets */
std::vector<std::string> test_paths;
/* \brief the paths of test data sets */
std::vector<std::string> test_paths;
/* \brief the names of the test data sets */
std::vector<std::string> test_names;
/* \brief the names of the test data sets */
std::vector<std::string> test_names;
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name,const char *val ){
if( !strcmp("model_dir_path", name ) ) strcpy(model_dir_path,val);
if( !strcmp("pred_dir_path", name ) ) strcpy(pred_dir_path,val);
if( !strcmp("test_paths", name) ) {
test_paths = StringProcessing::split(val,';');
}
if( !strcmp("test_names", name) ) {
test_names = StringProcessing::split(val,';');
}
}
};
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name,const char *val ){
if( !strcmp("model_dir_path", name ) ) strcpy(model_dir_path,val);
if( !strcmp("pred_dir_path", name ) ) strcpy(pred_dir_path,val);
if( !strcmp("test_paths", name) ) {
test_paths = StringProcessing::split(val,';');
}
if( !strcmp("test_names", name) ) {
test_names = StringProcessing::split(val,';');
}
}
};
TestParam test_param;
xgboost::regression::RegBoostLearner* reg_boost_learner;
};
}
TestParam test_param;
xgboost::regression::RegBoostLearner* reg_boost_learner;
};
}
}
#endif

View File

@ -12,120 +12,120 @@
using namespace xgboost::utils;
namespace xgboost{
namespace regression{
/*!
* \brief wrapping the training process of the gradient
boosting regression model,given the configuation
* \author Kailong Chen: chenkl198812@gmail.com
*/
class RegBoostTrain{
public:
/*!
* \brief to start the training process of gradient boosting regression
* model given the configuation, and finally saved the models
* to the specified model directory
* \param config_path the location of the configuration
* \param silent whether to print feedback messages
*/
void train(char* config_path,bool silent = false){
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
ConfigIterator config_itr(config_path);
//Get the training data and validation data paths, config the Learner
while (config_itr.Next()){
printf("%s %s\n",config_itr.name(),config_itr.val());
reg_boost_learner->SetParam(config_itr.name(),config_itr.val());
train_param.SetParam(config_itr.name(),config_itr.val());
}
namespace regression{
/*!
* \brief wrapping the training process of the gradient
boosting regression model,given the configuation
* \author Kailong Chen: chenkl198812@gmail.com
*/
class RegBoostTrain{
public:
/*!
* \brief to start the training process of gradient boosting regression
* model given the configuation, and finally saved the models
* to the specified model directory
* \param config_path the location of the configuration
* \param silent whether to print feedback messages
*/
void train(char* config_path,bool silent = false){
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
ConfigIterator config_itr(config_path);
//Get the training data and validation data paths, config the Learner
while (config_itr.Next()){
printf("%s %s\n",config_itr.name(),config_itr.val());
reg_boost_learner->SetParam(config_itr.name(),config_itr.val());
train_param.SetParam(config_itr.name(),config_itr.val());
}
Assert(train_param.validation_data_paths.size() == train_param.validation_data_names.size(),
"The number of validation paths is not the same as the number of validation data set names");
Assert(train_param.validation_data_paths.size() == train_param.validation_data_names.size(),
"The number of validation paths is not the same as the number of validation data set names");
//Load Data
xgboost::regression::DMatrix train;
printf("%s",train_param.train_path);
train.LoadText(train_param.train_path);
std::vector<const xgboost::regression::DMatrix*> evals;
for(int i = 0; i < train_param.validation_data_paths.size(); i++){
xgboost::regression::DMatrix eval;
eval.LoadText(train_param.validation_data_paths[i].c_str());
evals.push_back(&eval);
}
reg_boost_learner->SetData(&train,evals,train_param.validation_data_names);
//Load Data
xgboost::regression::DMatrix train;
printf("%s",train_param.train_path);
train.LoadText(train_param.train_path);
std::vector<const xgboost::regression::DMatrix*> evals;
for(int i = 0; i < train_param.validation_data_paths.size(); i++){
xgboost::regression::DMatrix eval;
eval.LoadText(train_param.validation_data_paths[i].c_str());
evals.push_back(&eval);
}
reg_boost_learner->SetData(&train,evals,train_param.validation_data_names);
//begin training
reg_boost_learner->InitTrainer();
char suffix[256];
for(int i = 1; i <= train_param.boost_iterations; i++){
reg_boost_learner->UpdateOneIter(i);
if(train_param.save_period != 0 && i % train_param.save_period == 0){
sscanf(suffix,"%d.model",i);
SaveModel(suffix);
}
}
//begin training
reg_boost_learner->InitTrainer();
char suffix[256];
for(int i = 1; i <= train_param.boost_iterations; i++){
reg_boost_learner->UpdateOneIter(i);
if(train_param.save_period != 0 && i % train_param.save_period == 0){
sscanf(suffix,"%d.model",i);
SaveModel(suffix);
}
}
//save the final round model
SaveModel("final.model");
}
//save the final round model
SaveModel("final.model");
}
private:
/*! \brief save model in the model directory with specified suffix*/
void SaveModel(const char* suffix){
char model_path[256];
//save the final round model
sprintf(model_path,"%s/%s",train_param.model_dir_path,suffix);
FILE* file = fopen(model_path,"w");
FileStream fin(file);
reg_boost_learner->SaveModel(fin);
fin.Close();
}
private:
/*! \brief save model in the model directory with specified suffix*/
void SaveModel(const char* suffix){
char model_path[256];
//save the final round model
sprintf(model_path,"%s/%s",train_param.model_dir_path,suffix);
FILE* file = fopen(model_path,"w");
FileStream fin(file);
reg_boost_learner->SaveModel(fin);
fin.Close();
}
struct TrainParam{
/* \brief upperbound of the number of boosters */
int boost_iterations;
struct TrainParam{
/* \brief upperbound of the number of boosters */
int boost_iterations;
/* \brief the period to save the model, -1 means only save the final round model */
int save_period;
/* \brief the period to save the model, -1 means only save the final round model */
int save_period;
/* \brief the path of training data set */
char train_path[256];
/* \brief the path of training data set */
char train_path[256];
/* \brief the path of directory containing the saved models */
char model_dir_path[256];
/* \brief the path of directory containing the saved models */
char model_dir_path[256];
/* \brief the paths of validation data sets */
std::vector<std::string> validation_data_paths;
/* \brief the paths of validation data sets */
std::vector<std::string> validation_data_paths;
/* \brief the names of the validation data sets */
std::vector<std::string> validation_data_names;
/* \brief the names of the validation data sets */
std::vector<std::string> validation_data_names;
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name,const char *val ){
if( !strcmp("boost_iterations", name ) ) boost_iterations = atoi( val );
if( !strcmp("save_period", name ) ) save_period = atoi( val );
if( !strcmp("train_path", name ) ) strcpy(train_path,val);
if( !strcmp("model_dir_path", name ) ) {
strcpy(model_dir_path,val);
}
if( !strcmp("validation_paths", name) ) {
validation_data_paths = StringProcessing::split(val,';');
}
if( !strcmp("validation_names", name) ) {
validation_data_names = StringProcessing::split(val,';');
}
}
};
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name,const char *val ){
if( !strcmp("boost_iterations", name ) ) boost_iterations = atoi( val );
if( !strcmp("save_period", name ) ) save_period = atoi( val );
if( !strcmp("train_path", name ) ) strcpy(train_path,val);
if( !strcmp("model_dir_path", name ) ) {
strcpy(model_dir_path,val);
}
if( !strcmp("validation_paths", name) ) {
validation_data_paths = StringProcessing::split(val,';');
}
if( !strcmp("validation_names", name) ) {
validation_data_names = StringProcessing::split(val,';');
}
}
};
/*! \brief the parameters of the training process*/
TrainParam train_param;
/*! \brief the gradient boosting regression tree model*/
xgboost::regression::RegBoostLearner* reg_boost_learner;
};
}
/*! \brief the parameters of the training process*/
TrainParam train_param;
/*! \brief the gradient boosting regression tree model*/
xgboost::regression::RegBoostLearner* reg_boost_learner;
};
}
}
#endif

View File

@ -2,14 +2,14 @@
#define _XGBOOST_REGDATA_H_
/*!
* \file xgboost_regdata.h
* \brief input data structure for regression and binary classification task.
* Format:
* The data should contain each data instance in each line.
* The format of line data is as below:
* label <nonzero feature dimension> [feature index:feature value]+
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
*/
* \file xgboost_regdata.h
* \brief input data structure for regression and binary classification task.
* Format:
* The data should contain each data instance in each line.
* The format of line data is as below:
* label <nonzero feature dimension> [feature index:feature value]+
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
*/
#include <cstdio>
#include <vector>
#include "../booster/xgboost_data.h"
@ -31,17 +31,17 @@ namespace xgboost{
/*! \brief default constructor */
DMatrix( void ){}
/*! \brief get the number of instances */
inline int size() const{
return labels.size();
}
/*! \brief get the number of instances */
inline int size() const{
return labels.size();
}
/*!
* \brief load from text file
* \param fname name of text data
* \param silent whether print information or not
*/
* \brief load from text file
* \param fname name of text data
* \param silent whether print information or not
*/
inline void LoadText( const char* fname, bool silent = false ){
data.Clear();
FILE* file = utils::FopenCheck( fname, "r" );
@ -49,7 +49,7 @@ namespace xgboost{
char tmp[ 1024 ];
std::vector<booster::bst_uint> findex;
std::vector<booster::bst_float> fvalue;
while( fscanf( file, "%s", tmp ) == 1 ){
unsigned index; float value;
if( sscanf( tmp, "%u:%f", &index, &value ) == 2 ){
@ -64,23 +64,23 @@ namespace xgboost{
init = false;
}
}
labels.push_back( label );
labels.push_back( label );
data.AddRow( findex, fvalue );
this->UpdateInfo();
if( !silent ){
printf("%ux%u matrix with %lu entries is loaded from %s\n",
(unsigned)labels.size(), num_feature, (unsigned long)data.NumEntry(), fname );
(unsigned)labels.size(), num_feature, (unsigned long)data.NumEntry(), fname );
}
fclose(file);
}
/*!
* \brief load from binary file
* \param fname name of binary data
* \param silent whether print information or not
* \return whether loading is success
*/
* \brief load from binary file
* \param fname name of binary data
* \param silent whether print information or not
* \return whether loading is success
*/
inline bool LoadBinary( const char* fname, bool silent = false ){
FILE *fp = fopen64( fname, "rb" );
if( fp == NULL ) return false;
@ -92,15 +92,15 @@ namespace xgboost{
this->UpdateInfo();
if( !silent ){
printf("%ux%u matrix with %lu entries is loaded from %s\n",
(unsigned)labels.size(), num_feature, (unsigned long)data.NumEntry(), fname );
(unsigned)labels.size(), num_feature, (unsigned long)data.NumEntry(), fname );
}
return true;
}
/*!
* \brief save to binary file
* \param fname name of binary data
* \param silent whether print information or not
*/
* \brief save to binary file
* \param fname name of binary data
* \param silent whether print information or not
*/
inline void SaveBinary( const char* fname, bool silent = false ){
utils::FileStream fs( utils::FopenCheck( fname, "wb" ) );
data.SaveBinary( fs );
@ -108,17 +108,17 @@ namespace xgboost{
fs.Close();
if( !silent ){
printf("%ux%u matrix with %lu entries is saved to %s\n",
(unsigned)labels.size(), num_feature, (unsigned long)data.NumEntry(), fname );
(unsigned)labels.size(), num_feature, (unsigned long)data.NumEntry(), fname );
}
}
/*!
* \brief cache load data given a file name, the function will first check if fname + '.xgbuffer' exists,
* if binary buffer exists, it will reads from binary buffer, otherwise, it will load from text file,
* and try to create a buffer file
* \param fname name of binary data
* \param silent whether print information or not
* \return whether loading is success
*/
* \brief cache load data given a file name, the function will first check if fname + '.xgbuffer' exists,
* if binary buffer exists, it will reads from binary buffer, otherwise, it will load from text file,
* and try to create a buffer file
* \param fname name of binary data
* \param silent whether print information or not
* \return whether loading is success
*/
inline void CacheLoad( const char *fname, bool silent = false ){
char bname[ 1024 ];
sprintf( bname, "%s.buffer", fname );