Cleanup Python GPU tests. (#9934)

* Cleanup Python GPU tests.

- Remove the use of `gpu_hist` and `gpu_id` in cudf/cupy tests.
- Move base margin test into the testing directory.
This commit is contained in:
Jiaming Yuan 2024-01-04 13:15:18 +08:00 committed by GitHub
parent 3c004a4145
commit 9f73127a23
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 282 additions and 240 deletions

View File

@ -58,7 +58,7 @@ def individual_tree() -> None:
def model_slices() -> None:
"""Inference with each individual using model slices."""
"""Inference with each individual tree using model slices."""
X_train, y_train = load_svmlight_file(train)
X_test, y_test = load_svmlight_file(test)
Xy_train = xgb.QuantileDMatrix(X_train, y_train)

View File

@ -3,7 +3,17 @@
import os
import zipfile
from dataclasses import dataclass
from typing import Any, Generator, List, NamedTuple, Optional, Tuple, Union
from typing import (
Any,
Callable,
Generator,
List,
NamedTuple,
Optional,
Tuple,
Type,
Union,
)
from urllib import request
import numpy as np
@ -603,3 +613,51 @@ def sort_ltr_samples(
data = X, clicks, y, qid
return data
def run_base_margin_info(
DType: Callable, DMatrixT: Type[xgboost.DMatrix], device: str
) -> None:
"""Run tests for base margin."""
rng = np.random.default_rng()
X = DType(rng.normal(0, 1.0, size=100).astype(np.float32).reshape(50, 2))
if hasattr(X, "iloc"):
y = X.iloc[:, 0]
else:
y = X[:, 0]
base_margin = X
# no error at set
Xy = DMatrixT(X, y, base_margin=base_margin)
# Error at train, caused by check in predictor.
with pytest.raises(ValueError, match=r".*base_margin.*"):
xgboost.train({"tree_method": "hist", "device": device}, Xy)
if not hasattr(X, "iloc"):
# column major matrix
got = DType(Xy.get_base_margin().reshape(50, 2))
assert (got == base_margin).all()
assert base_margin.T.flags.c_contiguous is False
assert base_margin.T.flags.f_contiguous is True
Xy.set_info(base_margin=base_margin.T)
got = DType(Xy.get_base_margin().reshape(2, 50))
assert (got == base_margin.T).all()
# Row vs col vec.
base_margin = y
Xy.set_base_margin(base_margin)
bm_col = Xy.get_base_margin()
Xy.set_base_margin(base_margin.reshape(1, base_margin.size))
bm_row = Xy.get_base_margin()
assert (bm_row == bm_col).all()
# type
base_margin = base_margin.astype(np.float64)
Xy.set_base_margin(base_margin)
bm_f64 = Xy.get_base_margin()
assert (bm_f64 == bm_col).all()
# too many dimensions
base_margin = X.reshape(2, 5, 2, 5)
with pytest.raises(ValueError, match=r".*base_margin.*"):
Xy.set_base_margin(base_margin)

View File

@ -27,13 +27,8 @@ class LintersPaths:
"tests/python/test_tree_regularization.py",
"tests/python/test_shap.py",
"tests/python/test_with_pandas.py",
"tests/python-gpu/test_gpu_data_iterator.py",
"tests/python-gpu/test_gpu_prediction.py",
"tests/python-gpu/load_pickle.py",
"tests/python-gpu/test_gpu_pickling.py",
"tests/python-gpu/test_gpu_eval_metrics.py",
"tests/python-gpu/test_gpu_with_sklearn.py",
"tests/python-sycl/test_sycl_prediction.py",
"tests/python-gpu/",
"tests/python-sycl/",
"tests/test_distributed/test_with_spark/",
"tests/test_distributed/test_gpu_with_spark/",
# demo

View File

@ -203,9 +203,7 @@ class TestQuantileDMatrix:
np.testing.assert_equal(h_ret.indptr, d_ret.indptr)
np.testing.assert_equal(h_ret.indices, d_ret.indices)
booster = xgb.train(
{"tree_method": "hist", "device": "cuda:0"}, dtrain=d_m
)
booster = xgb.train({"tree_method": "hist", "device": "cuda:0"}, dtrain=d_m)
np.testing.assert_allclose(
booster.predict(d_m),
@ -215,6 +213,7 @@ class TestQuantileDMatrix:
def test_ltr(self) -> None:
import cupy as cp
X, y, qid, w = tm.make_ltr(100, 3, 3, 5)
# make sure GPU is used to run sketching.
cpX = cp.array(X)

View File

@ -1,19 +1,17 @@
import json
import sys
import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.data import run_base_margin_info
sys.path.append("tests/python")
from test_dmatrix import set_base_margin_info
cudf = pytest.importorskip("cudf")
def dmatrix_from_cudf(input_type, DMatrixT, missing=np.NAN):
'''Test constructing DMatrix from cudf'''
import cudf
"""Test constructing DMatrix from cudf"""
import pandas as pd
kRows = 80
@ -25,9 +23,7 @@ def dmatrix_from_cudf(input_type, DMatrixT, missing=np.NAN):
na[5, 0] = missing
na[3, 1] = missing
pa = pd.DataFrame({'0': na[:, 0],
'1': na[:, 1],
'2': na[:, 2].astype(np.int32)})
pa = pd.DataFrame({"0": na[:, 0], "1": na[:, 1], "2": na[:, 2].astype(np.int32)})
np_label = np.random.randn(kRows).astype(input_type)
pa_label = pd.DataFrame(np_label)
@ -41,8 +37,7 @@ def dmatrix_from_cudf(input_type, DMatrixT, missing=np.NAN):
def _test_from_cudf(DMatrixT):
'''Test constructing DMatrix from cudf'''
import cudf
"""Test constructing DMatrix from cudf"""
dmatrix_from_cudf(np.float32, DMatrixT, np.NAN)
dmatrix_from_cudf(np.float64, DMatrixT, np.NAN)
@ -50,37 +45,38 @@ def _test_from_cudf(DMatrixT):
dmatrix_from_cudf(np.int32, DMatrixT, -2)
dmatrix_from_cudf(np.int64, DMatrixT, -3)
cd = cudf.DataFrame({'x': [1, 2, 3], 'y': [0.1, 0.2, 0.3]})
cd = cudf.DataFrame({"x": [1, 2, 3], "y": [0.1, 0.2, 0.3]})
dtrain = DMatrixT(cd)
assert dtrain.feature_names == ['x', 'y']
assert dtrain.feature_types == ['int', 'float']
assert dtrain.feature_names == ["x", "y"]
assert dtrain.feature_types == ["int", "float"]
series = cudf.DataFrame({'x': [1, 2, 3]}).iloc[:, 0]
series = cudf.DataFrame({"x": [1, 2, 3]}).iloc[:, 0]
assert isinstance(series, cudf.Series)
dtrain = DMatrixT(series)
assert dtrain.feature_names == ['x']
assert dtrain.feature_types == ['int']
assert dtrain.feature_names == ["x"]
assert dtrain.feature_types == ["int"]
with pytest.raises(ValueError, match=r".*multi.*"):
dtrain = DMatrixT(cd, label=cd)
xgb.train({"tree_method": "gpu_hist", "objective": "multi:softprob"}, dtrain)
xgb.train(
{"tree_method": "hist", "device": "cuda", "objective": "multi:softprob"},
dtrain,
)
# Test when number of elements is less than 8
X = cudf.DataFrame({'x': cudf.Series([0, 1, 2, np.NAN, 4],
dtype=np.int32)})
X = cudf.DataFrame({"x": cudf.Series([0, 1, 2, np.NAN, 4], dtype=np.int32)})
dtrain = DMatrixT(X)
assert dtrain.num_col() == 1
assert dtrain.num_row() == 5
# Boolean is not supported.
X_boolean = cudf.DataFrame({'x': cudf.Series([True, False])})
X_boolean = cudf.DataFrame({"x": cudf.Series([True, False])})
with pytest.raises(Exception):
dtrain = DMatrixT(X_boolean)
y_boolean = cudf.DataFrame({
'x': cudf.Series([True, False, True, True, True])})
y_boolean = cudf.DataFrame({"x": cudf.Series([True, False, True, True, True])})
with pytest.raises(Exception):
dtrain = DMatrixT(X_boolean, label=y_boolean)
@ -88,6 +84,7 @@ def _test_from_cudf(DMatrixT):
def _test_cudf_training(DMatrixT):
import pandas as pd
from cudf import DataFrame as df
np.random.seed(1)
X = pd.DataFrame(np.random.randn(50, 10))
y = pd.DataFrame(np.random.randn(50))
@ -97,21 +94,33 @@ def _test_cudf_training(DMatrixT):
cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin))
evals_result_cudf = {}
dtrain_cudf = DMatrixT(df.from_pandas(X), df.from_pandas(y), weight=cudf_weights,
base_margin=cudf_base_margin)
params = {'gpu_id': 0, 'tree_method': 'gpu_hist'}
xgb.train(params, dtrain_cudf, evals=[(dtrain_cudf, "train")],
evals_result=evals_result_cudf)
dtrain_cudf = DMatrixT(
df.from_pandas(X),
df.from_pandas(y),
weight=cudf_weights,
base_margin=cudf_base_margin,
)
params = {"device": "cuda", "tree_method": "hist"}
xgb.train(
params,
dtrain_cudf,
evals=[(dtrain_cudf, "train")],
evals_result=evals_result_cudf,
)
evals_result_np = {}
dtrain_np = xgb.DMatrix(X, y, weight=weights, base_margin=base_margin)
xgb.train(params, dtrain_np, evals=[(dtrain_np, "train")],
evals_result=evals_result_np)
assert np.array_equal(evals_result_cudf["train"]["rmse"], evals_result_np["train"]["rmse"])
xgb.train(
params, dtrain_np, evals=[(dtrain_np, "train")], evals_result=evals_result_np
)
assert np.array_equal(
evals_result_cudf["train"]["rmse"], evals_result_np["train"]["rmse"]
)
def _test_cudf_metainfo(DMatrixT):
import pandas as pd
from cudf import DataFrame as df
n = 100
X = np.random.random((n, 2))
dmat_cudf = DMatrixT(df.from_pandas(pd.DataFrame(X)))
@ -120,39 +129,53 @@ def _test_cudf_metainfo(DMatrixT):
uints = np.array([4, 2, 8]).astype("uint32")
cudf_floats = df.from_pandas(pd.DataFrame(floats))
cudf_uints = df.from_pandas(pd.DataFrame(uints))
dmat.set_float_info('weight', floats)
dmat.set_float_info('label', floats)
dmat.set_float_info('base_margin', floats)
dmat.set_uint_info('group', uints)
dmat.set_float_info("weight", floats)
dmat.set_float_info("label", floats)
dmat.set_float_info("base_margin", floats)
dmat.set_uint_info("group", uints)
dmat_cudf.set_info(weight=cudf_floats)
dmat_cudf.set_info(label=cudf_floats)
dmat_cudf.set_info(base_margin=cudf_floats)
dmat_cudf.set_info(group=cudf_uints)
# Test setting info with cudf DataFrame
assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight'))
assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label'))
assert np.array_equal(dmat.get_float_info('base_margin'),
dmat_cudf.get_float_info('base_margin'))
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr'))
assert np.array_equal(
dmat.get_float_info("weight"), dmat_cudf.get_float_info("weight")
)
assert np.array_equal(
dmat.get_float_info("label"), dmat_cudf.get_float_info("label")
)
assert np.array_equal(
dmat.get_float_info("base_margin"), dmat_cudf.get_float_info("base_margin")
)
assert np.array_equal(
dmat.get_uint_info("group_ptr"), dmat_cudf.get_uint_info("group_ptr")
)
# Test setting info with cudf Series
dmat_cudf.set_info(weight=cudf_floats[cudf_floats.columns[0]])
dmat_cudf.set_info(label=cudf_floats[cudf_floats.columns[0]])
dmat_cudf.set_info(base_margin=cudf_floats[cudf_floats.columns[0]])
dmat_cudf.set_info(group=cudf_uints[cudf_uints.columns[0]])
assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight'))
assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label'))
assert np.array_equal(dmat.get_float_info('base_margin'),
dmat_cudf.get_float_info('base_margin'))
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr'))
assert np.array_equal(
dmat.get_float_info("weight"), dmat_cudf.get_float_info("weight")
)
assert np.array_equal(
dmat.get_float_info("label"), dmat_cudf.get_float_info("label")
)
assert np.array_equal(
dmat.get_float_info("base_margin"), dmat_cudf.get_float_info("base_margin")
)
assert np.array_equal(
dmat.get_uint_info("group_ptr"), dmat_cudf.get_uint_info("group_ptr")
)
set_base_margin_info(df, DMatrixT, "gpu_hist")
run_base_margin_info(df, DMatrixT, "cuda")
class TestFromColumnar:
'''Tests for constructing DMatrix from data structure conforming Apache
Arrow specification.'''
"""Tests for constructing DMatrix from data structure conforming Apache
Arrow specification."""
@pytest.mark.skipif(**tm.no_cudf())
def test_simple_dmatrix_from_cudf(self):
@ -180,7 +203,6 @@ Arrow specification.'''
@pytest.mark.skipif(**tm.no_cudf())
def test_cudf_categorical(self) -> None:
import cudf
n_features = 30
_X, _y = tm.make_categorical(100, n_features, 17, False)
X = cudf.from_pandas(_X)
@ -251,6 +273,7 @@ def test_cudf_training_with_sklearn():
import pandas as pd
from cudf import DataFrame as df
from cudf import Series as ss
np.random.seed(1)
X = pd.DataFrame(np.random.randn(50, 10))
y = pd.DataFrame((np.random.randn(50) > 0).astype(np.int8))
@ -264,29 +287,34 @@ def test_cudf_training_with_sklearn():
y_cudf_series = ss(data=y.iloc[:, 0])
for y_obj in [y_cudf, y_cudf_series]:
clf = xgb.XGBClassifier(gpu_id=0, tree_method='gpu_hist')
clf.fit(X_cudf, y_obj, sample_weight=cudf_weights, base_margin=cudf_base_margin,
eval_set=[(X_cudf, y_obj)])
clf = xgb.XGBClassifier(tree_method="hist", device="cuda:0")
clf.fit(
X_cudf,
y_obj,
sample_weight=cudf_weights,
base_margin=cudf_base_margin,
eval_set=[(X_cudf, y_obj)],
)
pred = clf.predict(X_cudf)
assert np.array_equal(np.unique(pred), np.array([0, 1]))
class IterForDMatrixTest(xgb.core.DataIter):
'''A data iterator for XGBoost DMatrix.
"""A data iterator for XGBoost DMatrix.
`reset` and `next` are required for any data iterator, other functions here
are utilites for demonstration's purpose.
'''
ROWS_PER_BATCH = 100 # data is splited by rows
"""
ROWS_PER_BATCH = 100 # data is splited by rows
BATCHES = 16
def __init__(self, categorical):
'''Generate some random data for demostration.
"""Generate some random data for demostration.
Actual data can be anything that is currently supported by XGBoost.
'''
import cudf
"""
self.rows = self.ROWS_PER_BATCH
if categorical:
@ -300,34 +328,37 @@ class IterForDMatrixTest(xgb.core.DataIter):
rng = np.random.RandomState(1994)
self._data = [
cudf.DataFrame(
{'a': rng.randn(self.ROWS_PER_BATCH),
'b': rng.randn(self.ROWS_PER_BATCH)})] * self.BATCHES
{
"a": rng.randn(self.ROWS_PER_BATCH),
"b": rng.randn(self.ROWS_PER_BATCH),
}
)
] * self.BATCHES
self._labels = [rng.randn(self.rows)] * self.BATCHES
self.it = 0 # set iterator to 0
self.it = 0 # set iterator to 0
super().__init__(cache_prefix=None)
def as_array(self):
import cudf
return cudf.concat(self._data)
def as_array_labels(self):
return np.concatenate(self._labels)
def data(self):
'''Utility function for obtaining current batch of data.'''
"""Utility function for obtaining current batch of data."""
return self._data[self.it]
def labels(self):
'''Utility function for obtaining current batch of label.'''
"""Utility function for obtaining current batch of label."""
return self._labels[self.it]
def reset(self):
'''Reset the iterator'''
"""Reset the iterator"""
self.it = 0
def next(self, input_data):
'''Yield next batch of data'''
"""Yield next batch of data"""
if self.it == len(self._data):
# Return 0 when there's no more batch.
return 0
@ -341,7 +372,7 @@ class IterForDMatrixTest(xgb.core.DataIter):
def test_from_cudf_iter(enable_categorical):
rounds = 100
it = IterForDMatrixTest(enable_categorical)
params = {"tree_method": "gpu_hist"}
params = {"tree_method": "hist", "device": "cuda"}
# Use iterator
m_it = xgb.QuantileDMatrix(it, enable_categorical=enable_categorical)

View File

@ -1,31 +1,25 @@
import json
import sys
import numpy as np
import pytest
import xgboost as xgb
sys.path.append("tests/python")
from test_dmatrix import set_base_margin_info
from xgboost import testing as tm
from xgboost.testing.data import run_base_margin_info
cupy = pytest.importorskip("cupy")
cp = pytest.importorskip("cupy")
def test_array_interface() -> None:
arr = cupy.array([[1, 2, 3, 4], [1, 2, 3, 4]])
arr = cp.array([[1, 2, 3, 4], [1, 2, 3, 4]])
i_arr = arr.__cuda_array_interface__
i_arr = json.loads(json.dumps(i_arr))
ret = xgb.core.from_array_interface(i_arr)
np.testing.assert_equal(cupy.asnumpy(arr), cupy.asnumpy(ret))
np.testing.assert_equal(cp.asnumpy(arr), cp.asnumpy(ret))
def dmatrix_from_cupy(input_type, DMatrixT, missing=np.NAN):
'''Test constructing DMatrix from cupy'''
import cupy as cp
"""Test constructing DMatrix from cupy"""
kRows = 80
kCols = 3
@ -51,9 +45,7 @@ def dmatrix_from_cupy(input_type, DMatrixT, missing=np.NAN):
def _test_from_cupy(DMatrixT):
'''Test constructing DMatrix from cupy'''
import cupy as cp
"""Test constructing DMatrix from cupy"""
dmatrix_from_cupy(np.float16, DMatrixT, np.NAN)
dmatrix_from_cupy(np.float32, DMatrixT, np.NAN)
dmatrix_from_cupy(np.float64, DMatrixT, np.NAN)
@ -73,7 +65,6 @@ def _test_from_cupy(DMatrixT):
def _test_cupy_training(DMatrixT):
import cupy as cp
np.random.seed(1)
cp.random.seed(1)
X = cp.random.randn(50, 10, dtype="float32")
@ -85,19 +76,23 @@ def _test_cupy_training(DMatrixT):
evals_result_cupy = {}
dtrain_cp = DMatrixT(X, y, weight=cupy_weights, base_margin=cupy_base_margin)
params = {'gpu_id': 0, 'nthread': 1, 'tree_method': 'gpu_hist'}
xgb.train(params, dtrain_cp, evals=[(dtrain_cp, "train")],
evals_result=evals_result_cupy)
params = {"tree_method": "hist", "device": "cuda:0"}
xgb.train(
params, dtrain_cp, evals=[(dtrain_cp, "train")], evals_result=evals_result_cupy
)
evals_result_np = {}
dtrain_np = xgb.DMatrix(cp.asnumpy(X), cp.asnumpy(y), weight=weights,
base_margin=base_margin)
xgb.train(params, dtrain_np, evals=[(dtrain_np, "train")],
evals_result=evals_result_np)
assert np.array_equal(evals_result_cupy["train"]["rmse"], evals_result_np["train"]["rmse"])
dtrain_np = xgb.DMatrix(
cp.asnumpy(X), cp.asnumpy(y), weight=weights, base_margin=base_margin
)
xgb.train(
params, dtrain_np, evals=[(dtrain_np, "train")], evals_result=evals_result_np
)
assert np.array_equal(
evals_result_cupy["train"]["rmse"], evals_result_np["train"]["rmse"]
)
def _test_cupy_metainfo(DMatrixT):
import cupy as cp
n = 100
X = np.random.random((n, 2))
dmat_cupy = DMatrixT(cp.array(X))
@ -106,33 +101,35 @@ def _test_cupy_metainfo(DMatrixT):
uints = np.array([4, 2, 8]).astype("uint32")
cupy_floats = cp.array(floats)
cupy_uints = cp.array(uints)
dmat.set_float_info('weight', floats)
dmat.set_float_info('label', floats)
dmat.set_float_info('base_margin', floats)
dmat.set_uint_info('group', uints)
dmat.set_float_info("weight", floats)
dmat.set_float_info("label", floats)
dmat.set_float_info("base_margin", floats)
dmat.set_uint_info("group", uints)
dmat_cupy.set_info(weight=cupy_floats)
dmat_cupy.set_info(label=cupy_floats)
dmat_cupy.set_info(base_margin=cupy_floats)
dmat_cupy.set_info(group=cupy_uints)
# Test setting info with cupy
assert np.array_equal(dmat.get_float_info('weight'),
dmat_cupy.get_float_info('weight'))
assert np.array_equal(dmat.get_float_info('label'),
dmat_cupy.get_float_info('label'))
assert np.array_equal(dmat.get_float_info('base_margin'),
dmat_cupy.get_float_info('base_margin'))
assert np.array_equal(dmat.get_uint_info('group_ptr'),
dmat_cupy.get_uint_info('group_ptr'))
assert np.array_equal(
dmat.get_float_info("weight"), dmat_cupy.get_float_info("weight")
)
assert np.array_equal(
dmat.get_float_info("label"), dmat_cupy.get_float_info("label")
)
assert np.array_equal(
dmat.get_float_info("base_margin"), dmat_cupy.get_float_info("base_margin")
)
assert np.array_equal(
dmat.get_uint_info("group_ptr"), dmat_cupy.get_uint_info("group_ptr")
)
set_base_margin_info(cp.asarray, DMatrixT, "gpu_hist")
run_base_margin_info(cp.asarray, DMatrixT, "cuda")
@pytest.mark.skipif(**tm.no_cupy())
@pytest.mark.skipif(**tm.no_sklearn())
def test_cupy_training_with_sklearn():
import cupy as cp
np.random.seed(1)
cp.random.seed(1)
X = cp.random.randn(50, 10, dtype="float32")
@ -142,7 +139,7 @@ def test_cupy_training_with_sklearn():
base_margin = np.random.random(50)
cupy_base_margin = cp.array(base_margin)
clf = xgb.XGBClassifier(gpu_id=0, tree_method="gpu_hist")
clf = xgb.XGBClassifier(tree_method="hist", device="cuda:0")
clf.fit(
X,
y,
@ -155,8 +152,8 @@ def test_cupy_training_with_sklearn():
class TestFromCupy:
'''Tests for constructing DMatrix from data structure conforming Apache
Arrow specification.'''
"""Tests for constructing DMatrix from data structure conforming Apache
Arrow specification."""
@pytest.mark.skipif(**tm.no_cupy())
def test_simple_dmat_from_cupy(self):
@ -184,19 +181,17 @@ Arrow specification.'''
@pytest.mark.skipif(**tm.no_cupy())
def test_dlpack_simple_dmat(self):
import cupy as cp
n = 100
X = cp.random.random((n, 2))
xgb.DMatrix(X.toDlpack())
@pytest.mark.skipif(**tm.no_cupy())
def test_cupy_categorical(self):
import cupy as cp
n_features = 10
X, y = tm.make_categorical(10, n_features, n_categories=4, onehot=False)
X = cp.asarray(X.values.astype(cp.float32))
y = cp.array(y)
feature_types = ['c'] * n_features
feature_types = ["c"] * n_features
assert isinstance(X, cp.ndarray)
Xy = xgb.DMatrix(X, y, feature_types=feature_types)
@ -204,7 +199,6 @@ Arrow specification.'''
@pytest.mark.skipif(**tm.no_cupy())
def test_dlpack_device_dmat(self):
import cupy as cp
n = 100
X = cp.random.random((n, 2))
m = xgb.QuantileDMatrix(X.toDlpack())
@ -213,7 +207,6 @@ Arrow specification.'''
@pytest.mark.skipif(**tm.no_cupy())
def test_qid(self):
import cupy as cp
rng = cp.random.RandomState(1994)
rows = 100
cols = 10
@ -223,19 +216,16 @@ Arrow specification.'''
Xy = xgb.DMatrix(X, y)
Xy.set_info(qid=qid)
group_ptr = Xy.get_uint_info('group_ptr')
group_ptr = Xy.get_uint_info("group_ptr")
assert group_ptr[0] == 0
assert group_ptr[-1] == rows
@pytest.mark.skipif(**tm.no_cupy())
@pytest.mark.mgpu
def test_specified_device(self):
import cupy as cp
cp.cuda.runtime.setDevice(0)
dtrain = dmatrix_from_cupy(np.float32, xgb.QuantileDMatrix, np.nan)
with pytest.raises(
xgb.core.XGBoostError, match="Invalid device ordinal"
):
with pytest.raises(xgb.core.XGBoostError, match="Invalid device ordinal"):
xgb.train(
{'tree_method': 'gpu_hist', 'gpu_id': 1}, dtrain, num_boost_round=10
{"tree_method": "hist", "device": "cuda:1"}, dtrain, num_boost_round=10
)

View File

@ -21,21 +21,21 @@ class TestGPUBasicModels:
cpu_test_bm = test_bm.TestModels()
def run_cls(self, X, y):
cls = xgb.XGBClassifier(tree_method='gpu_hist')
cls = xgb.XGBClassifier(tree_method="hist", device="cuda")
cls.fit(X, y)
cls.get_booster().save_model('test_deterministic_gpu_hist-0.json')
cls.get_booster().save_model("test_deterministic_gpu_hist-0.json")
cls = xgb.XGBClassifier(tree_method='gpu_hist')
cls = xgb.XGBClassifier(tree_method="hist", device="cuda")
cls.fit(X, y)
cls.get_booster().save_model('test_deterministic_gpu_hist-1.json')
cls.get_booster().save_model("test_deterministic_gpu_hist-1.json")
with open('test_deterministic_gpu_hist-0.json', 'r') as fd:
with open("test_deterministic_gpu_hist-0.json", "r") as fd:
model_0 = fd.read()
with open('test_deterministic_gpu_hist-1.json', 'r') as fd:
with open("test_deterministic_gpu_hist-1.json", "r") as fd:
model_1 = fd.read()
os.remove('test_deterministic_gpu_hist-0.json')
os.remove('test_deterministic_gpu_hist-1.json')
os.remove("test_deterministic_gpu_hist-0.json")
os.remove("test_deterministic_gpu_hist-1.json")
return hash(model_0), hash(model_1)
@ -43,7 +43,7 @@ class TestGPUBasicModels:
self.cpu_test_bm.run_custom_objective("gpu_hist")
def test_eta_decay(self):
self.cpu_test_cb.run_eta_decay('gpu_hist')
self.cpu_test_cb.run_eta_decay("gpu_hist")
@pytest.mark.parametrize(
"objective", ["binary:logistic", "reg:absoluteerror", "reg:quantileerror"]

View File

@ -12,18 +12,18 @@ import test_demos as td # noqa
@pytest.mark.skipif(**tm.no_cupy())
def test_data_iterator():
script = os.path.join(td.PYTHON_DEMO_DIR, 'quantile_data_iterator.py')
cmd = ['python', script]
script = os.path.join(td.PYTHON_DEMO_DIR, "quantile_data_iterator.py")
cmd = ["python", script]
subprocess.check_call(cmd)
def test_update_process_demo():
script = os.path.join(td.PYTHON_DEMO_DIR, 'update_process.py')
cmd = ['python', script]
script = os.path.join(td.PYTHON_DEMO_DIR, "update_process.py")
cmd = ["python", script]
subprocess.check_call(cmd)
def test_categorical_demo():
script = os.path.join(td.PYTHON_DEMO_DIR, 'categorical.py')
cmd = ['python', script]
script = os.path.join(td.PYTHON_DEMO_DIR, "categorical.py")
cmd = ["python", script]
subprocess.check_call(cmd)

View File

@ -6,22 +6,29 @@ from xgboost import testing as tm
pytestmark = tm.timeout(10)
parameter_strategy = strategies.fixed_dictionaries({
'booster': strategies.just('gblinear'),
'eta': strategies.floats(0.01, 0.25),
'tolerance': strategies.floats(1e-5, 1e-2),
'nthread': strategies.integers(1, 4),
'feature_selector': strategies.sampled_from(['cyclic', 'shuffle',
'greedy', 'thrifty']),
'top_k': strategies.integers(1, 10),
})
parameter_strategy = strategies.fixed_dictionaries(
{
"booster": strategies.just("gblinear"),
"eta": strategies.floats(0.01, 0.25),
"tolerance": strategies.floats(1e-5, 1e-2),
"nthread": strategies.integers(1, 4),
"feature_selector": strategies.sampled_from(
["cyclic", "shuffle", "greedy", "thrifty"]
),
"top_k": strategies.integers(1, 10),
}
)
def train_result(param, dmat, num_rounds):
result = {}
booster = xgb.train(
param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False,
evals_result=result
param,
dmat,
num_rounds,
[(dmat, "train")],
verbose_eval=False,
evals_result=result,
)
assert booster.num_boosted_rounds() == num_rounds
return result
@ -32,9 +39,11 @@ class TestGPULinear:
@settings(deadline=None, max_examples=20, print_blob=True)
def test_gpu_coordinate(self, param, num_rounds, dataset):
assume(len(dataset.y) > 0)
param['updater'] = 'gpu_coord_descent'
param["updater"] = "gpu_coord_descent"
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric]
result = train_result(param, dataset.get_dmat(), num_rounds)["train"][
dataset.metric
]
note(result)
assert tm.non_increasing(result)
@ -46,16 +55,18 @@ class TestGPULinear:
strategies.integers(10, 50),
tm.make_dataset_strategy(),
strategies.floats(1e-5, 0.8),
strategies.floats(1e-5, 0.8)
strategies.floats(1e-5, 0.8),
)
@settings(deadline=None, max_examples=20, print_blob=True)
def test_gpu_coordinate_regularised(self, param, num_rounds, dataset, alpha, lambd):
assume(len(dataset.y) > 0)
param['updater'] = 'gpu_coord_descent'
param['alpha'] = alpha
param['lambda'] = lambd
param["updater"] = "gpu_coord_descent"
param["alpha"] = alpha
param["lambda"] = lambd
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric]
result = train_result(param, dataset.get_dmat(), num_rounds)["train"][
dataset.metric
]
note(result)
assert tm.non_increasing([result[0], result[-1]])
@ -64,8 +75,12 @@ class TestGPULinear:
# Training linear model is quite expensive, so we don't include it in
# test_from_cupy.py
import cupy
params = {'booster': 'gblinear', 'updater': 'gpu_coord_descent',
'n_estimators': 100}
params = {
"booster": "gblinear",
"updater": "gpu_coord_descent",
"n_estimators": 100,
}
X, y = tm.get_california_housing()
cpu_model = xgb.XGBRegressor(**params)
cpu_model.fit(X, y)

View File

@ -14,14 +14,18 @@ class TestGPUTrainingContinuation:
X = np.random.randn(kRows, kCols)
y = np.random.randn(kRows)
dtrain = xgb.DMatrix(X, y)
params = {'tree_method': 'gpu_hist', 'max_depth': '2',
'gamma': '0.1', 'alpha': '0.01'}
params = {
"tree_method": "gpu_hist",
"max_depth": "2",
"gamma": "0.1",
"alpha": "0.01",
}
bst_0 = xgb.train(params, dtrain, num_boost_round=64)
dump_0 = bst_0.get_dump(dump_format='json')
dump_0 = bst_0.get_dump(dump_format="json")
bst_1 = xgb.train(params, dtrain, num_boost_round=32)
bst_1 = xgb.train(params, dtrain, num_boost_round=32, xgb_model=bst_1)
dump_1 = bst_1.get_dump(dump_format='json')
dump_1 = bst_1.get_dump(dump_format="json")
def recursive_compare(obj_0, obj_1):
if isinstance(obj_0, float):
@ -37,9 +41,8 @@ class TestGPUTrainingContinuation:
values_1 = list(obj_1.values())
for i in range(len(obj_0.items())):
assert keys_0[i] == keys_1[i]
if list(obj_0.keys())[i] != 'missing':
recursive_compare(values_0[i],
values_1[i])
if list(obj_0.keys())[i] != "missing":
recursive_compare(values_0[i], values_1[i])
else:
for i in range(len(obj_0)):
recursive_compare(obj_0[i], obj_1[i])

View File

@ -22,12 +22,13 @@ def non_increasing(L):
def assert_constraint(constraint, tree_method):
from sklearn.datasets import make_regression
n = 1000
X, y = make_regression(n, random_state=rng, n_features=1, n_informative=1)
dtrain = xgb.DMatrix(X, y)
param = {}
param['tree_method'] = tree_method
param['monotone_constraints'] = "(" + str(constraint) + ")"
param["tree_method"] = tree_method
param["monotone_constraints"] = "(" + str(constraint) + ")"
bst = xgb.train(param, dtrain)
dpredict = xgb.DMatrix(X[X[:, 0].argsort()])
pred = bst.predict(dpredict)
@ -40,15 +41,15 @@ def assert_constraint(constraint, tree_method):
@pytest.mark.skipif(**tm.no_sklearn())
def test_gpu_hist_basic():
assert_constraint(1, 'gpu_hist')
assert_constraint(-1, 'gpu_hist')
assert_constraint(1, "gpu_hist")
assert_constraint(-1, "gpu_hist")
def test_gpu_hist_depthwise():
params = {
'tree_method': 'gpu_hist',
'grow_policy': 'depthwise',
'monotone_constraints': '(1, -1)'
"tree_method": "gpu_hist",
"grow_policy": "depthwise",
"monotone_constraints": "(1, -1)",
}
model = xgb.train(params, tmc.training_dset)
tmc.is_correctly_constrained(model)
@ -56,9 +57,9 @@ def test_gpu_hist_depthwise():
def test_gpu_hist_lossguide():
params = {
'tree_method': 'gpu_hist',
'grow_policy': 'lossguide',
'monotone_constraints': '(1, -1)'
"tree_method": "gpu_hist",
"grow_policy": "lossguide",
"monotone_constraints": "(1, -1)",
}
model = xgb.train(params, tmc.training_dset)
tmc.is_correctly_constrained(model)

View File

@ -1,6 +1,5 @@
import csv
import os
import sys
import tempfile
import numpy as np
@ -12,59 +11,12 @@ from scipy.sparse import csr_matrix, rand
import xgboost as xgb
from xgboost import testing as tm
from xgboost.core import DataSplitMode
from xgboost.testing.data import np_dtypes
rng = np.random.RandomState(1)
from xgboost.testing.data import np_dtypes, run_base_margin_info
dpath = "demo/data/"
rng = np.random.RandomState(1994)
def set_base_margin_info(DType, DMatrixT, tm: str):
rng = np.random.default_rng()
X = DType(rng.normal(0, 1.0, size=100).astype(np.float32).reshape(50, 2))
if hasattr(X, "iloc"):
y = X.iloc[:, 0]
else:
y = X[:, 0]
base_margin = X
# no error at set
Xy = DMatrixT(X, y, base_margin=base_margin)
# Error at train, caused by check in predictor.
with pytest.raises(ValueError, match=r".*base_margin.*"):
xgb.train({"tree_method": tm}, Xy)
if not hasattr(X, "iloc"):
# column major matrix
got = DType(Xy.get_base_margin().reshape(50, 2))
assert (got == base_margin).all()
assert base_margin.T.flags.c_contiguous is False
assert base_margin.T.flags.f_contiguous is True
Xy.set_info(base_margin=base_margin.T)
got = DType(Xy.get_base_margin().reshape(2, 50))
assert (got == base_margin.T).all()
# Row vs col vec.
base_margin = y
Xy.set_base_margin(base_margin)
bm_col = Xy.get_base_margin()
Xy.set_base_margin(base_margin.reshape(1, base_margin.size))
bm_row = Xy.get_base_margin()
assert (bm_row == bm_col).all()
# type
base_margin = base_margin.astype(np.float64)
Xy.set_base_margin(base_margin)
bm_f64 = Xy.get_base_margin()
assert (bm_f64 == bm_col).all()
# too many dimensions
base_margin = X.reshape(2, 5, 2, 5)
with pytest.raises(ValueError, match=r".*base_margin.*"):
Xy.set_base_margin(base_margin)
class TestDMatrix:
def test_warn_missing(self):
from xgboost import data
@ -417,8 +369,8 @@ class TestDMatrix:
)
np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))
def test_base_margin(self):
set_base_margin_info(np.asarray, xgb.DMatrix, "hist")
def test_base_margin(self) -> None:
run_base_margin_info(np.asarray, xgb.DMatrix, "cpu")
@given(
strategies.integers(0, 1000),

View File

@ -1,9 +1,9 @@
import numpy as np
import pytest
from test_dmatrix import set_base_margin_info
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.data import run_base_margin_info
try:
import modin.pandas as md
@ -145,4 +145,4 @@ class TestModin:
np.testing.assert_array_equal(data.get_weight(), w)
def test_base_margin(self):
set_base_margin_info(md.DataFrame, xgb.DMatrix, "hist")
run_base_margin_info(md.DataFrame, xgb.DMatrix, "cpu")

View File

@ -1,14 +1,12 @@
import sys
from typing import Type
import numpy as np
import pytest
from test_dmatrix import set_base_margin_info
import xgboost as xgb
from xgboost import testing as tm
from xgboost.core import DataSplitMode
from xgboost.testing.data import pd_arrow_dtypes, pd_dtypes
from xgboost.testing.data import pd_arrow_dtypes, pd_dtypes, run_base_margin_info
try:
import pandas as pd
@ -336,7 +334,7 @@ class TestPandas:
np.testing.assert_array_equal(data.get_weight(), w)
def test_base_margin(self):
set_base_margin_info(pd.DataFrame, xgb.DMatrix, "hist")
run_base_margin_info(pd.DataFrame, xgb.DMatrix, "cpu")
def test_cv_as_pandas(self):
dm, _ = tm.load_agaricus(__file__)