refine style with max.depth
This commit is contained in:
parent
1925321a16
commit
9e3b878943
@ -10,7 +10,7 @@
|
||||
#' \item \code{binary:logistic} logistic regression for classification
|
||||
#' }
|
||||
#' \item \code{eta} step size of each boosting step
|
||||
#' \item \code{max_depth} maximum depth of the tree
|
||||
#' \item \code{max.depth} maximum depth of the tree
|
||||
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
|
||||
#' }
|
||||
#'
|
||||
@ -50,7 +50,7 @@
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||
#' history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
|
||||
#' "max_depth"=3, "eta"=1, "objective"="binary:logistic")
|
||||
#' "max.depth"=3, "eta"=1, "objective"="binary:logistic")
|
||||
#' @export
|
||||
#'
|
||||
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL,
|
||||
|
||||
@ -10,7 +10,7 @@
|
||||
#' \item \code{binary:logistic} logistic regression for classification
|
||||
#' }
|
||||
#' \item \code{eta} step size of each boosting step
|
||||
#' \item \code{max_depth} maximum depth of the tree
|
||||
#' \item \code{max.depth} maximum depth of the tree
|
||||
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
|
||||
#' }
|
||||
#'
|
||||
@ -50,7 +50,7 @@
|
||||
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||
#' dtest <- dtrain
|
||||
#' watchlist <- list(eval = dtest, train = dtrain)
|
||||
#' param <- list(max_depth = 2, eta = 1, silent = 1)
|
||||
#' param <- list(max.depth = 2, eta = 1, silent = 1)
|
||||
#' logregobj <- function(preds, dtrain) {
|
||||
#' labels <- getinfo(dtrain, "label")
|
||||
#' preds <- 1/(1 + exp(-preds))
|
||||
|
||||
@ -14,7 +14,7 @@
|
||||
#' \item \code{binary:logistic} logistic regression for classification
|
||||
#' }
|
||||
#' \item \code{eta} step size of each boosting step
|
||||
#' \item \code{max_depth} maximum depth of the tree
|
||||
#' \item \code{max.depth} maximum depth of the tree
|
||||
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
|
||||
#' }
|
||||
#'
|
||||
|
||||
@ -15,7 +15,7 @@ xgb.cv(params = list(), data, nrounds, nfold, label = NULL, showsd = TRUE,
|
||||
\item \code{binary:logistic} logistic regression for classification
|
||||
}
|
||||
\item \code{eta} step size of each boosting step
|
||||
\item \code{max_depth} maximum depth of the tree
|
||||
\item \code{max.depth} maximum depth of the tree
|
||||
\item \code{nthread} number of thread used in training, if not set, all threads are used
|
||||
}
|
||||
|
||||
@ -67,6 +67,6 @@ This function only accepts an \code{xgb.DMatrix} object as the input.
|
||||
data(agaricus.train, package='xgboost')
|
||||
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||
history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
|
||||
"max_depth"=3, "eta"=1, "objective"="binary:logistic")
|
||||
"max.depth"=3, "eta"=1, "objective"="binary:logistic")
|
||||
}
|
||||
|
||||
|
||||
@ -15,7 +15,7 @@ xgb.train(params = list(), data, nrounds, watchlist = list(), obj = NULL,
|
||||
\item \code{binary:logistic} logistic regression for classification
|
||||
}
|
||||
\item \code{eta} step size of each boosting step
|
||||
\item \code{max_depth} maximum depth of the tree
|
||||
\item \code{max.depth} maximum depth of the tree
|
||||
\item \code{nthread} number of thread used in training, if not set, all threads are used
|
||||
}
|
||||
|
||||
@ -62,7 +62,7 @@ data(agaricus.train, package='xgboost')
|
||||
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||
dtest <- dtrain
|
||||
watchlist <- list(eval = dtest, train = dtrain)
|
||||
param <- list(max_depth = 2, eta = 1, silent = 1)
|
||||
param <- list(max.depth = 2, eta = 1, silent = 1)
|
||||
logregobj <- function(preds, dtrain) {
|
||||
labels <- getinfo(dtrain, "label")
|
||||
preds <- 1/(1 + exp(-preds))
|
||||
|
||||
@ -20,7 +20,7 @@ xgboost(data = NULL, label = NULL, params = list(), nrounds,
|
||||
\item \code{binary:logistic} logistic regression for classification
|
||||
}
|
||||
\item \code{eta} step size of each boosting step
|
||||
\item \code{max_depth} maximum depth of the tree
|
||||
\item \code{max.depth} maximum depth of the tree
|
||||
\item \code{nthread} number of thread used in training, if not set, all threads are used
|
||||
}
|
||||
|
||||
|
||||
@ -162,7 +162,7 @@ evalerror <- function(preds, dtrain) {
|
||||
|
||||
dtest <- xgb.DMatrix(test$data, label = test$label)
|
||||
watchlist <- list(eval = dtest, train = dtrain)
|
||||
param <- list(max_depth = 2, eta = 1, silent = 1)
|
||||
param <- list(max.depth = 2, eta = 1, silent = 1)
|
||||
|
||||
bst <- xgb.train(param, dtrain, nround = 2, watchlist, logregobj, evalerror)
|
||||
@
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user