DOC/TST: Fix Python sklearn dep
This commit is contained in:
parent
2f2ad21de4
commit
9da2f3e613
@ -48,11 +48,13 @@ try:
|
||||
from sklearn.cross_validation import KFold, StratifiedKFold
|
||||
SKLEARN_INSTALLED = True
|
||||
|
||||
XGBKFold = KFold
|
||||
XGBStratifiedKFold = StratifiedKFold
|
||||
XGBModelBase = BaseEstimator
|
||||
XGBRegressorBase = RegressorMixin
|
||||
XGBClassifierBase = ClassifierMixin
|
||||
|
||||
XGBKFold = KFold
|
||||
XGBStratifiedKFold = StratifiedKFold
|
||||
XGBLabelEncoder = LabelEncoder
|
||||
except ImportError:
|
||||
SKLEARN_INSTALLED = False
|
||||
|
||||
@ -60,5 +62,7 @@ except ImportError:
|
||||
XGBModelBase = object
|
||||
XGBClassifierBase = object
|
||||
XGBRegressorBase = object
|
||||
|
||||
XGBKFold = None
|
||||
XGBStratifiedKFold = None
|
||||
XGBLabelEncoder = None
|
||||
|
||||
@ -7,8 +7,10 @@ import numpy as np
|
||||
from .core import Booster, DMatrix, XGBoostError
|
||||
from .training import train
|
||||
|
||||
# Do not use class names on scikit-learn directly.
|
||||
# Re-define the classes on .compat to guarantee the behavior without scikit-learn
|
||||
from .compat import (SKLEARN_INSTALLED, XGBModelBase,
|
||||
XGBClassifierBase, XGBRegressorBase, LabelEncoder)
|
||||
XGBClassifierBase, XGBRegressorBase, XGBLabelEncoder)
|
||||
|
||||
|
||||
def _objective_decorator(func):
|
||||
@ -398,7 +400,7 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
|
||||
self._features_count = X.shape[1]
|
||||
|
||||
self._le = LabelEncoder().fit(y)
|
||||
self._le = XGBLabelEncoder().fit(y)
|
||||
training_labels = self._le.transform(y)
|
||||
|
||||
if sample_weight is not None:
|
||||
|
||||
22
python-package/xgboost/testing.py
Normal file
22
python-package/xgboost/testing.py
Normal file
@ -0,0 +1,22 @@
|
||||
# coding: utf-8
|
||||
|
||||
import nose
|
||||
|
||||
from xgboost.compat import SKLEARN_INSTALLED, PANDAS_INSTALLED
|
||||
|
||||
|
||||
def _skip_if_no_sklearn():
|
||||
if not SKLEARN_INSTALLED:
|
||||
raise nose.SkipTest()
|
||||
|
||||
|
||||
def _skip_if_no_pandas():
|
||||
if not PANDAS_INSTALLED:
|
||||
raise nose.SkipTest()
|
||||
|
||||
|
||||
def _skip_if_no_matplotlib():
|
||||
try:
|
||||
import matplotlib.pyplot as plt # noqa
|
||||
except ImportError:
|
||||
raise nose.SkipTest()
|
||||
@ -1,15 +1,18 @@
|
||||
import xgboost as xgb
|
||||
import xgboost.testing as tm
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.cross_validation import train_test_split
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import unittest
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
class TestEarlyStopping(unittest.TestCase):
|
||||
|
||||
def test_early_stopping_nonparallel(self):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.cross_validation import train_test_split
|
||||
|
||||
digits = load_digits(2)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
@ -30,10 +33,16 @@ class TestEarlyStopping(unittest.TestCase):
|
||||
assert clf3.best_score == 1
|
||||
|
||||
def evalerror(self, preds, dtrain):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
labels = dtrain.get_label()
|
||||
return 'rmse', mean_squared_error(labels, preds)
|
||||
|
||||
def test_cv_early_stopping(self):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
|
||||
digits = load_digits(2)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
|
||||
@ -1,8 +1,6 @@
|
||||
import xgboost as xgb
|
||||
import xgboost.testing as tm
|
||||
import numpy as np
|
||||
from sklearn.cross_validation import train_test_split
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.datasets import load_digits
|
||||
import unittest
|
||||
|
||||
rng = np.random.RandomState(1337)
|
||||
@ -42,16 +40,26 @@ class TestEvalMetrics(unittest.TestCase):
|
||||
return [('error', float(sum(labels != (preds > 0.0))) / len(labels))]
|
||||
|
||||
def evalerror_03(self, preds, dtrain):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
labels = dtrain.get_label()
|
||||
return [('rmse', mean_squared_error(labels, preds)),
|
||||
('error', float(sum(labels != (preds > 0.0))) / len(labels))]
|
||||
|
||||
def evalerror_04(self, preds, dtrain):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
labels = dtrain.get_label()
|
||||
return [('error', float(sum(labels != (preds > 0.0))) / len(labels)),
|
||||
('rmse', mean_squared_error(labels, preds))]
|
||||
|
||||
def test_eval_metrics(self):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.cross_validation import train_test_split
|
||||
from sklearn.datasets import load_digits
|
||||
|
||||
digits = load_digits(2)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
|
||||
@ -1,19 +1,27 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
import xgboost.testing as tm
|
||||
import unittest
|
||||
|
||||
import matplotlib
|
||||
from matplotlib.axes import Axes
|
||||
from graphviz import Digraph
|
||||
try:
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
from matplotlib.axes import Axes
|
||||
from graphviz import Digraph
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
tm._skip_if_no_matplotlib()
|
||||
|
||||
matplotlib.use('Agg')
|
||||
|
||||
dpath = 'demo/data/'
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
class TestPlotting(unittest.TestCase):
|
||||
|
||||
def test_plotting(self):
|
||||
bst2 = xgb.Booster(model_file='xgb.model')
|
||||
|
||||
|
||||
@ -1,7 +1,6 @@
|
||||
import xgboost as xgb
|
||||
import xgboost.testing as tm
|
||||
import numpy as np
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.datasets import load_digits
|
||||
import unittest
|
||||
|
||||
rng = np.random.RandomState(1337)
|
||||
@ -29,6 +28,10 @@ class TestTrainingContinuation(unittest.TestCase):
|
||||
}
|
||||
|
||||
def test_training_continuation(self):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
digits_2class = load_digits(2)
|
||||
digits_5class = load_digits(5)
|
||||
|
||||
|
||||
@ -1,15 +1,26 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
import xgboost.testing as tm
|
||||
import unittest
|
||||
import pandas as pd
|
||||
|
||||
try:
|
||||
import pandas as pd
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
tm._skip_if_no_pandas()
|
||||
|
||||
|
||||
dpath = 'demo/data/'
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
class TestPandas(unittest.TestCase):
|
||||
|
||||
def test_pandas(self):
|
||||
|
||||
df = pd.DataFrame([[1, 2., True], [2, 3., False]], columns=['a', 'b', 'c'])
|
||||
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
|
||||
assert dm.feature_names == ['a', 'b', 'c']
|
||||
|
||||
@ -1,15 +1,16 @@
|
||||
import numpy as np
|
||||
import random
|
||||
import xgboost as xgb
|
||||
import numpy as np
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
from sklearn.datasets import load_iris, load_digits, load_boston
|
||||
from sklearn.cross_validation import KFold, StratifiedKFold, train_test_split
|
||||
import xgboost.testing as tm
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
def test_binary_classification():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.cross_validation import KFold
|
||||
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
@ -24,6 +25,9 @@ def test_binary_classification():
|
||||
|
||||
|
||||
def test_multiclass_classification():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.cross_validation import KFold
|
||||
|
||||
def check_pred(preds, labels):
|
||||
err = sum(1 for i in range(len(preds))
|
||||
@ -50,6 +54,9 @@ def test_multiclass_classification():
|
||||
|
||||
|
||||
def test_feature_importances():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
@ -81,6 +88,11 @@ def test_feature_importances():
|
||||
|
||||
|
||||
def test_boston_housing_regression():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.datasets import load_boston
|
||||
from sklearn.cross_validation import KFold
|
||||
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
@ -102,6 +114,10 @@ def test_boston_housing_regression():
|
||||
|
||||
|
||||
def test_parameter_tuning():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
from sklearn.datasets import load_boston
|
||||
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
@ -114,6 +130,11 @@ def test_parameter_tuning():
|
||||
|
||||
|
||||
def test_regression_with_custom_objective():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.datasets import load_boston
|
||||
from sklearn.cross_validation import KFold
|
||||
|
||||
def objective_ls(y_true, y_pred):
|
||||
grad = (y_pred - y_true)
|
||||
hess = np.ones(len(y_true))
|
||||
@ -143,6 +164,10 @@ def test_regression_with_custom_objective():
|
||||
|
||||
|
||||
def test_classification_with_custom_objective():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.cross_validation import KFold
|
||||
|
||||
def logregobj(y_true, y_pred):
|
||||
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
|
||||
grad = y_pred - y_true
|
||||
@ -178,6 +203,10 @@ def test_classification_with_custom_objective():
|
||||
|
||||
|
||||
def test_sklearn_api():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.cross_validation import train_test_split
|
||||
|
||||
iris = load_iris()
|
||||
tr_d, te_d, tr_l, te_l = train_test_split(iris.data, iris.target, train_size=120)
|
||||
|
||||
@ -191,6 +220,9 @@ def test_sklearn_api():
|
||||
|
||||
|
||||
def test_sklearn_plotting():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
iris = load_iris()
|
||||
|
||||
classifier = xgb.XGBClassifier()
|
||||
@ -217,6 +249,10 @@ def test_sklearn_plotting():
|
||||
|
||||
|
||||
def test_sklearn_nfolds_cv():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.cross_validation import StratifiedKFold
|
||||
|
||||
digits = load_digits(3)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
@ -243,6 +279,9 @@ def test_sklearn_nfolds_cv():
|
||||
|
||||
|
||||
def test_split_value_histograms():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
|
||||
digits_2class = load_digits(2)
|
||||
|
||||
X = digits_2class['data']
|
||||
|
||||
@ -45,13 +45,13 @@ if [ ${TASK} == "python_lightweight_test" ]; then
|
||||
python --version
|
||||
conda install numpy scipy nose
|
||||
python -m pip install graphviz
|
||||
python -m nose tests/python/test_basic*.py || exit -1
|
||||
python -m nose tests/python || exit -1
|
||||
source activate python2
|
||||
echo "-------------------------------"
|
||||
python --version
|
||||
conda install numpy scipy nose
|
||||
python -m pip install graphviz
|
||||
python -m nose tests/python/test_basic*.py || exit -1
|
||||
python -m nose tests/python || exit -1
|
||||
python -m pip install flake8
|
||||
flake8 --ignore E501 python-package || exit -1
|
||||
flake8 --ignore E501 tests/python || exit -1
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user