Improve OpenMP exception handling (#6680)
This commit is contained in:
parent
c375173dca
commit
9b530e5697
@ -1,6 +1,7 @@
|
||||
// Copyright (c) 2014 by Contributors
|
||||
#include <dmlc/logging.h>
|
||||
#include <dmlc/omp.h>
|
||||
#include <dmlc/common.h>
|
||||
#include <xgboost/c_api.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
@ -92,12 +93,16 @@ SEXP XGDMatrixCreateFromMat_R(SEXP mat,
|
||||
din = REAL(mat);
|
||||
}
|
||||
std::vector<float> data(nrow * ncol);
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (omp_ulong i = 0; i < nrow; ++i) {
|
||||
for (size_t j = 0; j < ncol; ++j) {
|
||||
data[i * ncol +j] = is_int ? static_cast<float>(iin[i + nrow * j]) : din[i + nrow * j];
|
||||
}
|
||||
exc.Run([&]() {
|
||||
for (size_t j = 0; j < ncol; ++j) {
|
||||
data[i * ncol +j] = is_int ? static_cast<float>(iin[i + nrow * j]) : din[i + nrow * j];
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
DMatrixHandle handle;
|
||||
CHECK_CALL(XGDMatrixCreateFromMat(BeginPtr(data), nrow, ncol, asReal(missing), &handle));
|
||||
ret = PROTECT(R_MakeExternalPtr(handle, R_NilValue, R_NilValue));
|
||||
@ -126,11 +131,15 @@ SEXP XGDMatrixCreateFromCSC_R(SEXP indptr,
|
||||
for (size_t i = 0; i < nindptr; ++i) {
|
||||
col_ptr_[i] = static_cast<size_t>(p_indptr[i]);
|
||||
}
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (int64_t i = 0; i < static_cast<int64_t>(ndata); ++i) {
|
||||
indices_[i] = static_cast<unsigned>(p_indices[i]);
|
||||
data_[i] = static_cast<float>(p_data[i]);
|
||||
exc.Run([&]() {
|
||||
indices_[i] = static_cast<unsigned>(p_indices[i]);
|
||||
data_[i] = static_cast<float>(p_data[i]);
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
DMatrixHandle handle;
|
||||
CHECK_CALL(XGDMatrixCreateFromCSCEx(BeginPtr(col_ptr_), BeginPtr(indices_),
|
||||
BeginPtr(data_), nindptr, ndata,
|
||||
@ -175,12 +184,16 @@ SEXP XGDMatrixSetInfo_R(SEXP handle, SEXP field, SEXP array) {
|
||||
R_API_BEGIN();
|
||||
int len = length(array);
|
||||
const char *name = CHAR(asChar(field));
|
||||
dmlc::OMPException exc;
|
||||
if (!strcmp("group", name)) {
|
||||
std::vector<unsigned> vec(len);
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (int i = 0; i < len; ++i) {
|
||||
vec[i] = static_cast<unsigned>(INTEGER(array)[i]);
|
||||
exc.Run([&]() {
|
||||
vec[i] = static_cast<unsigned>(INTEGER(array)[i]);
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
CHECK_CALL(XGDMatrixSetUIntInfo(R_ExternalPtrAddr(handle),
|
||||
CHAR(asChar(field)),
|
||||
BeginPtr(vec), len));
|
||||
@ -188,8 +201,11 @@ SEXP XGDMatrixSetInfo_R(SEXP handle, SEXP field, SEXP array) {
|
||||
std::vector<float> vec(len);
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (int i = 0; i < len; ++i) {
|
||||
vec[i] = REAL(array)[i];
|
||||
exc.Run([&]() {
|
||||
vec[i] = REAL(array)[i];
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
CHECK_CALL(XGDMatrixSetFloatInfo(R_ExternalPtrAddr(handle),
|
||||
CHAR(asChar(field)),
|
||||
BeginPtr(vec), len));
|
||||
@ -280,11 +296,15 @@ SEXP XGBoosterBoostOneIter_R(SEXP handle, SEXP dtrain, SEXP grad, SEXP hess) {
|
||||
<< "gradient and hess must have same length";
|
||||
int len = length(grad);
|
||||
std::vector<float> tgrad(len), thess(len);
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (int j = 0; j < len; ++j) {
|
||||
tgrad[j] = REAL(grad)[j];
|
||||
thess[j] = REAL(hess)[j];
|
||||
exc.Run([&]() {
|
||||
tgrad[j] = REAL(grad)[j];
|
||||
thess[j] = REAL(hess)[j];
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
CHECK_CALL(XGBoosterBoostOneIter(R_ExternalPtrAddr(handle),
|
||||
R_ExternalPtrAddr(dtrain),
|
||||
BeginPtr(tgrad), BeginPtr(thess),
|
||||
|
||||
@ -290,15 +290,19 @@ class SparsePage {
|
||||
|
||||
void SortRows() {
|
||||
auto ncol = static_cast<bst_omp_uint>(this->Size());
|
||||
#pragma omp parallel for default(none) shared(ncol) schedule(dynamic, 1)
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(dynamic, 1)
|
||||
for (bst_omp_uint i = 0; i < ncol; ++i) {
|
||||
if (this->offset.HostVector()[i] < this->offset.HostVector()[i + 1]) {
|
||||
std::sort(
|
||||
this->data.HostVector().begin() + this->offset.HostVector()[i],
|
||||
this->data.HostVector().begin() + this->offset.HostVector()[i + 1],
|
||||
Entry::CmpValue);
|
||||
}
|
||||
exc.Run([&]() {
|
||||
if (this->offset.HostVector()[i] < this->offset.HostVector()[i + 1]) {
|
||||
std::sort(
|
||||
this->data.HostVector().begin() + this->offset.HostVector()[i],
|
||||
this->data.HostVector().begin() + this->offset.HostVector()[i + 1],
|
||||
Entry::CmpValue);
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@ -250,14 +250,18 @@ class SparsePageLZ4Format : public SparsePageFormat<SparsePage> {
|
||||
int nindex = index_.num_chunk();
|
||||
int nvalue = value_.num_chunk();
|
||||
int ntotal = nindex + nvalue;
|
||||
#pragma omp parallel for schedule(dynamic, 1) num_threads(nthread_write_)
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(dynamic, 1) num_threads(nthread_write_)
|
||||
for (int i = 0; i < ntotal; ++i) {
|
||||
if (i < nindex) {
|
||||
index_.Compress(i, use_lz4_hc_);
|
||||
} else {
|
||||
value_.Compress(i - nindex, use_lz4_hc_);
|
||||
}
|
||||
exc.Run([&]() {
|
||||
if (i < nindex) {
|
||||
index_.Compress(i, use_lz4_hc_);
|
||||
} else {
|
||||
value_.Compress(i - nindex, use_lz4_hc_);
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
index_.Write(fo);
|
||||
value_.Write(fo);
|
||||
// statistics
|
||||
@ -276,14 +280,18 @@ class SparsePageLZ4Format : public SparsePageFormat<SparsePage> {
|
||||
int nindex = index_.num_chunk();
|
||||
int nvalue = value_.num_chunk();
|
||||
int ntotal = nindex + nvalue;
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(dynamic, 1) num_threads(nthread_)
|
||||
for (int i = 0; i < ntotal; ++i) {
|
||||
if (i < nindex) {
|
||||
index_.Decompress(i);
|
||||
} else {
|
||||
value_.Decompress(i - nindex);
|
||||
}
|
||||
exc.Run([&]() {
|
||||
if (i < nindex) {
|
||||
index_.Decompress(i);
|
||||
} else {
|
||||
value_.Decompress(i - nindex);
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
@ -230,8 +230,7 @@ class ColumnMatrix {
|
||||
/* missing values make sense only for column with type kDenseColumn,
|
||||
and if no missing values were observed it could be handled much faster. */
|
||||
if (noMissingValues) {
|
||||
#pragma omp parallel for num_threads(omp_get_max_threads())
|
||||
for (omp_ulong rid = 0; rid < nrow; ++rid) {
|
||||
ParallelFor(omp_ulong(nrow), [&](omp_ulong rid) {
|
||||
const size_t ibegin = rid*nfeature;
|
||||
const size_t iend = (rid+1)*nfeature;
|
||||
size_t j = 0;
|
||||
@ -239,7 +238,7 @@ class ColumnMatrix {
|
||||
const size_t idx = feature_offsets_[j];
|
||||
local_index[idx + rid] = index[i];
|
||||
}
|
||||
}
|
||||
});
|
||||
} else {
|
||||
/* to handle rows in all batches, sum of all batch sizes equal to gmat.row_ptr.size() - 1 */
|
||||
size_t rbegin = 0;
|
||||
|
||||
@ -84,38 +84,46 @@ void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_bins) {
|
||||
|
||||
size_t block_size = batch.Size() / batch_threads;
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel num_threads(batch_threads)
|
||||
{
|
||||
#pragma omp for
|
||||
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
|
||||
size_t ibegin = block_size * tid;
|
||||
size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1)));
|
||||
exc.Run([&]() {
|
||||
size_t ibegin = block_size * tid;
|
||||
size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1)));
|
||||
|
||||
size_t sum = 0;
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
sum += page[i].size();
|
||||
row_ptr[rbegin + 1 + i] = sum;
|
||||
}
|
||||
size_t sum = 0;
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
sum += page[i].size();
|
||||
row_ptr[rbegin + 1 + i] = sum;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#pragma omp single
|
||||
{
|
||||
p_part[0] = prev_sum;
|
||||
for (size_t i = 1; i < batch_threads; ++i) {
|
||||
p_part[i] = p_part[i - 1] + row_ptr[rbegin + i*block_size];
|
||||
}
|
||||
exc.Run([&]() {
|
||||
p_part[0] = prev_sum;
|
||||
for (size_t i = 1; i < batch_threads; ++i) {
|
||||
p_part[i] = p_part[i - 1] + row_ptr[rbegin + i*block_size];
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#pragma omp for
|
||||
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
|
||||
size_t ibegin = block_size * tid;
|
||||
size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1)));
|
||||
exc.Run([&]() {
|
||||
size_t ibegin = block_size * tid;
|
||||
size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1)));
|
||||
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
row_ptr[rbegin + 1 + i] += p_part[tid];
|
||||
}
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
row_ptr[rbegin + 1 + i] += p_part[tid];
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
exc.Rethrow();
|
||||
|
||||
const size_t n_offsets = cut.Ptrs().size() - 1;
|
||||
const size_t n_index = row_ptr[rbegin + batch.Size()];
|
||||
@ -167,13 +175,12 @@ void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_bins) {
|
||||
[](auto idx, auto) { return idx; });
|
||||
}
|
||||
|
||||
#pragma omp parallel for num_threads(nthread) schedule(static)
|
||||
for (bst_omp_uint idx = 0; idx < bst_omp_uint(nbins); ++idx) {
|
||||
ParallelFor(bst_omp_uint(nbins), nthread, [&](bst_omp_uint idx) {
|
||||
for (int32_t tid = 0; tid < nthread; ++tid) {
|
||||
hit_count[idx] += hit_count_tloc_[tid * nbins + idx];
|
||||
hit_count_tloc_[tid * nbins + idx] = 0; // reset for next batch
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
prev_sum = row_ptr[rbegin + batch.Size()];
|
||||
rbegin += batch.Size();
|
||||
@ -701,7 +708,7 @@ void GHistBuilder<GradientSumT>::BuildBlockHist(const std::vector<GradientPair>&
|
||||
const RowSetCollection::Elem row_indices,
|
||||
const GHistIndexBlockMatrix& gmatb,
|
||||
GHistRowT hist) {
|
||||
constexpr int kUnroll = 8; // loop unrolling factor
|
||||
static constexpr int kUnroll = 8; // loop unrolling factor
|
||||
const size_t nblock = gmatb.GetNumBlock();
|
||||
const size_t nrows = row_indices.end - row_indices.begin;
|
||||
const size_t rest = nrows % kUnroll;
|
||||
@ -710,40 +717,44 @@ void GHistBuilder<GradientSumT>::BuildBlockHist(const std::vector<GradientPair>&
|
||||
#endif // defined(_OPENMP)
|
||||
xgboost::detail::GradientPairInternal<GradientSumT>* p_hist = hist.data();
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for num_threads(nthread) schedule(guided)
|
||||
for (bst_omp_uint bid = 0; bid < nblock; ++bid) {
|
||||
auto gmat = gmatb[bid];
|
||||
exc.Run([&]() {
|
||||
auto gmat = gmatb[bid];
|
||||
|
||||
for (size_t i = 0; i < nrows - rest; i += kUnroll) {
|
||||
size_t rid[kUnroll];
|
||||
size_t ibegin[kUnroll];
|
||||
size_t iend[kUnroll];
|
||||
GradientPair stat[kUnroll];
|
||||
for (size_t i = 0; i < nrows - rest; i += kUnroll) {
|
||||
size_t rid[kUnroll];
|
||||
size_t ibegin[kUnroll];
|
||||
size_t iend[kUnroll];
|
||||
GradientPair stat[kUnroll];
|
||||
|
||||
for (int k = 0; k < kUnroll; ++k) {
|
||||
rid[k] = row_indices.begin[i + k];
|
||||
ibegin[k] = gmat.row_ptr[rid[k]];
|
||||
iend[k] = gmat.row_ptr[rid[k] + 1];
|
||||
stat[k] = gpair[rid[k]];
|
||||
}
|
||||
for (int k = 0; k < kUnroll; ++k) {
|
||||
for (size_t j = ibegin[k]; j < iend[k]; ++j) {
|
||||
const uint32_t bin = gmat.index[j];
|
||||
p_hist[bin].Add(stat[k].GetGrad(), stat[k].GetHess());
|
||||
for (int k = 0; k < kUnroll; ++k) {
|
||||
rid[k] = row_indices.begin[i + k];
|
||||
ibegin[k] = gmat.row_ptr[rid[k]];
|
||||
iend[k] = gmat.row_ptr[rid[k] + 1];
|
||||
stat[k] = gpair[rid[k]];
|
||||
}
|
||||
for (int k = 0; k < kUnroll; ++k) {
|
||||
for (size_t j = ibegin[k]; j < iend[k]; ++j) {
|
||||
const uint32_t bin = gmat.index[j];
|
||||
p_hist[bin].Add(stat[k].GetGrad(), stat[k].GetHess());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (size_t i = nrows - rest; i < nrows; ++i) {
|
||||
const size_t rid = row_indices.begin[i];
|
||||
const size_t ibegin = gmat.row_ptr[rid];
|
||||
const size_t iend = gmat.row_ptr[rid + 1];
|
||||
const GradientPair stat = gpair[rid];
|
||||
for (size_t j = ibegin; j < iend; ++j) {
|
||||
const uint32_t bin = gmat.index[j];
|
||||
p_hist[bin].Add(stat.GetGrad(), stat.GetHess());
|
||||
for (size_t i = nrows - rest; i < nrows; ++i) {
|
||||
const size_t rid = row_indices.begin[i];
|
||||
const size_t ibegin = gmat.row_ptr[rid];
|
||||
const size_t iend = gmat.row_ptr[rid + 1];
|
||||
const GradientPair stat = gpair[rid];
|
||||
for (size_t j = ibegin; j < iend; ++j) {
|
||||
const uint32_t bin = gmat.index[j];
|
||||
p_hist[bin].Add(stat.GetGrad(), stat.GetHess());
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
template
|
||||
void GHistBuilder<float>::BuildBlockHist(const std::vector<GradientPair>& gpair,
|
||||
@ -768,12 +779,11 @@ void GHistBuilder<GradientSumT>::SubtractionTrick(GHistRowT self,
|
||||
const size_t block_size = 1024; // aproximatly 1024 values per block
|
||||
size_t n_blocks = size/block_size + !!(size%block_size);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (omp_ulong iblock = 0; iblock < n_blocks; ++iblock) {
|
||||
ParallelFor(omp_ulong(n_blocks), [&](omp_ulong iblock) {
|
||||
const size_t ibegin = iblock*block_size;
|
||||
const size_t iend = (((iblock+1)*block_size > size) ? size : ibegin + block_size);
|
||||
SubtractionHist(self, parent, sibling, ibegin, iend);
|
||||
}
|
||||
});
|
||||
}
|
||||
template
|
||||
void GHistBuilder<float>::SubtractionTrick(GHistRow<float> self,
|
||||
|
||||
@ -257,8 +257,7 @@ struct GHistIndexMatrix {
|
||||
const size_t batch_size = batch.Size();
|
||||
CHECK_LT(batch_size, offset_vec.size());
|
||||
BinIdxType* index_data = index_data_span.data();
|
||||
#pragma omp parallel for num_threads(batch_threads) schedule(static)
|
||||
for (omp_ulong i = 0; i < batch_size; ++i) {
|
||||
ParallelFor(omp_ulong(batch_size), batch_threads, [&](omp_ulong i) {
|
||||
const int tid = omp_get_thread_num();
|
||||
size_t ibegin = row_ptr[rbegin + i];
|
||||
size_t iend = row_ptr[rbegin + i + 1];
|
||||
@ -270,7 +269,7 @@ struct GHistIndexMatrix {
|
||||
index_data[ibegin + j] = get_offset(idx, j);
|
||||
++hit_count_tloc_[tid * nbins + idx];
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void ResizeIndex(const size_t n_index,
|
||||
|
||||
@ -35,7 +35,7 @@ HostSketchContainer::CalcColumnSize(SparsePage const &batch,
|
||||
column.resize(n_columns, 0);
|
||||
}
|
||||
|
||||
ParallelFor(page.Size(), nthreads, [&](size_t i) {
|
||||
ParallelFor(omp_ulong(page.Size()), nthreads, [&](omp_ulong i) {
|
||||
auto &local_column_sizes = column_sizes.at(omp_get_thread_num());
|
||||
auto row = page[i];
|
||||
auto const *p_row = row.data();
|
||||
@ -44,7 +44,7 @@ HostSketchContainer::CalcColumnSize(SparsePage const &batch,
|
||||
}
|
||||
});
|
||||
std::vector<bst_row_t> entries_per_columns(n_columns, 0);
|
||||
ParallelFor(n_columns, nthreads, [&](size_t i) {
|
||||
ParallelFor(bst_omp_uint(n_columns), nthreads, [&](bst_omp_uint i) {
|
||||
for (auto const &thread : column_sizes) {
|
||||
entries_per_columns[i] += thread[i];
|
||||
}
|
||||
@ -99,15 +99,15 @@ void HostSketchContainer::PushRowPage(SparsePage const &page,
|
||||
std::vector<bst_uint> const &group_ptr = info.group_ptr_;
|
||||
// Use group index for weights?
|
||||
auto batch = page.GetView();
|
||||
dmlc::OMPException exec;
|
||||
// Parallel over columns. Each thread owns a set of consecutive columns.
|
||||
auto const ncol = static_cast<uint32_t>(info.num_col_);
|
||||
auto const is_dense = info.num_nonzero_ == info.num_col_ * info.num_row_;
|
||||
auto thread_columns_ptr = LoadBalance(page, info.num_col_, nthread);
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel num_threads(nthread)
|
||||
{
|
||||
exec.Run([&]() {
|
||||
exc.Run([&]() {
|
||||
auto tid = static_cast<uint32_t>(omp_get_thread_num());
|
||||
auto const begin = thread_columns_ptr[tid];
|
||||
auto const end = thread_columns_ptr[tid + 1];
|
||||
@ -140,7 +140,7 @@ void HostSketchContainer::PushRowPage(SparsePage const &page,
|
||||
}
|
||||
});
|
||||
}
|
||||
exec.Rethrow();
|
||||
exc.Rethrow();
|
||||
monitor_.Stop(__func__);
|
||||
}
|
||||
|
||||
@ -242,7 +242,7 @@ size_t nbytes = 0;
|
||||
&global_sketches);
|
||||
|
||||
std::vector<WQSketch::SummaryContainer> final_sketches(n_columns);
|
||||
ParallelFor(n_columns, omp_get_max_threads(), [&](size_t fidx) {
|
||||
ParallelFor(omp_ulong(n_columns), [&](omp_ulong fidx) {
|
||||
int32_t intermediate_num_cuts = num_cuts[fidx];
|
||||
auto nbytes =
|
||||
WQSketch::SummaryContainer::CalcMemCost(intermediate_num_cuts);
|
||||
|
||||
@ -115,11 +115,10 @@ void ParallelFor2d(const BlockedSpace2d& space, int nthreads, Func func) {
|
||||
nthreads = std::min(nthreads, omp_get_max_threads());
|
||||
nthreads = std::max(nthreads, 1);
|
||||
|
||||
dmlc::OMPException omp_exc;
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel num_threads(nthreads)
|
||||
{
|
||||
omp_exc.Run(
|
||||
[](size_t num_blocks_in_space, const BlockedSpace2d& space, int nthreads, Func func) {
|
||||
exc.Run([&]() {
|
||||
size_t tid = omp_get_thread_num();
|
||||
size_t chunck_size =
|
||||
num_blocks_in_space / nthreads + !!(num_blocks_in_space % nthreads);
|
||||
@ -129,19 +128,24 @@ void ParallelFor2d(const BlockedSpace2d& space, int nthreads, Func func) {
|
||||
for (auto i = begin; i < end; i++) {
|
||||
func(space.GetFirstDimension(i), space.GetRange(i));
|
||||
}
|
||||
}, num_blocks_in_space, space, nthreads, func);
|
||||
});
|
||||
}
|
||||
omp_exc.Rethrow();
|
||||
exc.Rethrow();
|
||||
}
|
||||
|
||||
template <typename Func>
|
||||
void ParallelFor(size_t size, size_t nthreads, Func fn) {
|
||||
dmlc::OMPException omp_exc;
|
||||
#pragma omp parallel for num_threads(nthreads)
|
||||
for (omp_ulong i = 0; i < size; ++i) {
|
||||
omp_exc.Run(fn, i);
|
||||
template <typename Index, typename Func>
|
||||
void ParallelFor(Index size, size_t nthreads, Func fn) {
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for num_threads(nthreads) schedule(static)
|
||||
for (Index i = 0; i < size; ++i) {
|
||||
exc.Run(fn, i);
|
||||
}
|
||||
omp_exc.Rethrow();
|
||||
exc.Rethrow();
|
||||
}
|
||||
|
||||
template <typename Index, typename Func>
|
||||
void ParallelFor(Index size, Func fn) {
|
||||
ParallelFor(size, omp_get_max_threads(), fn);
|
||||
}
|
||||
|
||||
/* \brief Configure parallel threads.
|
||||
|
||||
@ -16,6 +16,7 @@
|
||||
#include "xgboost/span.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "threading_utils.h"
|
||||
|
||||
#if defined (__CUDACC__)
|
||||
#include "device_helpers.cuh"
|
||||
@ -168,13 +169,10 @@ class Transform {
|
||||
template <typename... HDV>
|
||||
void LaunchCPU(Functor func, HDV*... vectors) const {
|
||||
omp_ulong end = static_cast<omp_ulong>(*(range_.end()));
|
||||
dmlc::OMPException omp_exc;
|
||||
SyncHost(vectors...);
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (omp_ulong idx = 0; idx < end; ++idx) {
|
||||
omp_exc.Run(func, idx, UnpackHDV(vectors)...);
|
||||
}
|
||||
omp_exc.Rethrow();
|
||||
ParallelFor(end, [&](omp_ulong idx) {
|
||||
func(idx, UnpackHDV(vectors)...);
|
||||
});
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
@ -829,18 +829,16 @@ SparsePage SparsePage::GetTranspose(int num_columns) const {
|
||||
const int nthread = omp_get_max_threads();
|
||||
builder.InitBudget(num_columns, nthread);
|
||||
long batch_size = static_cast<long>(this->Size()); // NOLINT(*)
|
||||
auto page = this->GetView();
|
||||
#pragma omp parallel for default(none) shared(batch_size, builder, page) schedule(static)
|
||||
for (long i = 0; i < batch_size; ++i) { // NOLINT(*)
|
||||
auto page = this->GetView();
|
||||
common::ParallelFor(batch_size, [&](long i) { // NOLINT(*)
|
||||
int tid = omp_get_thread_num();
|
||||
auto inst = page[i];
|
||||
for (const auto& entry : inst) {
|
||||
builder.AddBudget(entry.index, tid);
|
||||
}
|
||||
}
|
||||
});
|
||||
builder.InitStorage();
|
||||
#pragma omp parallel for default(none) shared(batch_size, builder, page) schedule(static)
|
||||
for (long i = 0; i < batch_size; ++i) { // NOLINT(*)
|
||||
common::ParallelFor(batch_size, [&](long i) { // NOLINT(*)
|
||||
int tid = omp_get_thread_num();
|
||||
auto inst = page[i];
|
||||
for (const auto& entry : inst) {
|
||||
@ -849,7 +847,7 @@ SparsePage SparsePage::GetTranspose(int num_columns) const {
|
||||
Entry(static_cast<bst_uint>(this->base_rowid + i), entry.fvalue),
|
||||
tid);
|
||||
}
|
||||
}
|
||||
});
|
||||
return transpose;
|
||||
}
|
||||
void SparsePage::Push(const SparsePage &batch) {
|
||||
@ -900,11 +898,11 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
|
||||
return max_columns;
|
||||
}
|
||||
std::vector<std::vector<uint64_t>> max_columns_vector(nthread);
|
||||
dmlc::OMPException exec;
|
||||
dmlc::OMPException exc;
|
||||
// First-pass over the batch counting valid elements
|
||||
#pragma omp parallel num_threads(nthread)
|
||||
{
|
||||
exec.Run([&]() {
|
||||
exc.Run([&]() {
|
||||
int tid = omp_get_thread_num();
|
||||
size_t begin = tid*thread_size;
|
||||
size_t end = tid != (nthread-1) ? (tid+1)*thread_size : batch_size;
|
||||
@ -929,7 +927,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
|
||||
}
|
||||
});
|
||||
}
|
||||
exec.Rethrow();
|
||||
exc.Rethrow();
|
||||
for (const auto & max : max_columns_vector) {
|
||||
max_columns = std::max(max_columns, max[0]);
|
||||
}
|
||||
@ -940,7 +938,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
|
||||
|
||||
#pragma omp parallel num_threads(nthread)
|
||||
{
|
||||
exec.Run([&]() {
|
||||
exc.Run([&]() {
|
||||
int tid = omp_get_thread_num();
|
||||
size_t begin = tid*thread_size;
|
||||
size_t end = tid != (nthread-1) ? (tid+1)*thread_size : batch_size;
|
||||
@ -956,7 +954,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
|
||||
}
|
||||
});
|
||||
}
|
||||
exec.Rethrow();
|
||||
exc.Rethrow();
|
||||
omp_set_num_threads(nthread_original);
|
||||
|
||||
return max_columns;
|
||||
|
||||
@ -23,6 +23,7 @@
|
||||
#include "gblinear_model.h"
|
||||
#include "../common/timer.h"
|
||||
#include "../common/common.h"
|
||||
#include "../common/threading_utils.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace gbm {
|
||||
@ -178,8 +179,7 @@ class GBLinear : public GradientBooster {
|
||||
// parallel over local batch
|
||||
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
||||
auto page = batch.GetView();
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
common::ParallelFor(nsize, [&](bst_omp_uint i) {
|
||||
auto inst = page[i];
|
||||
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
|
||||
// loop over output groups
|
||||
@ -195,7 +195,7 @@ class GBLinear : public GradientBooster {
|
||||
((base_margin.size() != 0) ? base_margin[row_idx * ngroup + gid] :
|
||||
learner_model_param_->base_score);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
@ -246,8 +246,7 @@ class GBLinear : public GradientBooster {
|
||||
if (base_margin.size() != 0) {
|
||||
CHECK_EQ(base_margin.size(), nsize * ngroup);
|
||||
}
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (omp_ulong i = 0; i < nsize; ++i) {
|
||||
common::ParallelFor(nsize, [&](omp_ulong i) {
|
||||
const size_t ridx = page.base_rowid + i;
|
||||
// loop over output groups
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
@ -256,7 +255,7 @@ class GBLinear : public GradientBooster {
|
||||
base_margin[ridx * ngroup + gid] : learner_model_param_->base_score;
|
||||
this->Pred(batch[i], &preds[ridx * ngroup], gid, margin);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
monitor_.Stop("PredictBatchInternal");
|
||||
}
|
||||
|
||||
@ -27,6 +27,7 @@
|
||||
#include "../common/common.h"
|
||||
#include "../common/random.h"
|
||||
#include "../common/timer.h"
|
||||
#include "../common/threading_utils.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace gbm {
|
||||
@ -219,10 +220,9 @@ void GBTree::DoBoost(DMatrix* p_fmat,
|
||||
bool update_predict = true;
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
std::vector<GradientPair>& tmp_h = tmp.HostVector();
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
common::ParallelFor(nsize, [&](bst_omp_uint i) {
|
||||
tmp_h[i] = gpair_h[i * ngroup + gid];
|
||||
}
|
||||
});
|
||||
std::vector<std::unique_ptr<RegTree> > ret;
|
||||
BoostNewTrees(&tmp, p_fmat, gid, &ret);
|
||||
const size_t num_new_trees = ret.size();
|
||||
|
||||
@ -14,6 +14,7 @@
|
||||
#include "./param.h"
|
||||
#include "../gbm/gblinear_model.h"
|
||||
#include "../common/random.h"
|
||||
#include "../common/threading_utils.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace linear {
|
||||
@ -115,14 +116,18 @@ inline std::pair<double, double> GetGradientParallel(int group_idx, int num_grou
|
||||
auto page = batch.GetView();
|
||||
auto col = page[fidx];
|
||||
const auto ndata = static_cast<bst_omp_uint>(col.size());
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static) reduction(+ : sum_grad, sum_hess)
|
||||
for (bst_omp_uint j = 0; j < ndata; ++j) {
|
||||
const bst_float v = col[j].fvalue;
|
||||
auto &p = gpair[col[j].index * num_group + group_idx];
|
||||
if (p.GetHess() < 0.0f) continue;
|
||||
sum_grad += p.GetGrad() * v;
|
||||
sum_hess += p.GetHess() * v * v;
|
||||
exc.Run([&]() {
|
||||
const bst_float v = col[j].fvalue;
|
||||
auto &p = gpair[col[j].index * num_group + group_idx];
|
||||
if (p.GetHess() < 0.0f) return;
|
||||
sum_grad += p.GetGrad() * v;
|
||||
sum_hess += p.GetHess() * v * v;
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
return std::make_pair(sum_grad, sum_hess);
|
||||
}
|
||||
@ -142,14 +147,18 @@ inline std::pair<double, double> GetBiasGradientParallel(int group_idx, int num_
|
||||
DMatrix *p_fmat) {
|
||||
double sum_grad = 0.0, sum_hess = 0.0;
|
||||
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static) reduction(+ : sum_grad, sum_hess)
|
||||
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
||||
auto &p = gpair[i * num_group + group_idx];
|
||||
if (p.GetHess() >= 0.0f) {
|
||||
sum_grad += p.GetGrad();
|
||||
sum_hess += p.GetHess();
|
||||
}
|
||||
exc.Run([&]() {
|
||||
auto &p = gpair[i * num_group + group_idx];
|
||||
if (p.GetHess() >= 0.0f) {
|
||||
sum_grad += p.GetGrad();
|
||||
sum_hess += p.GetHess();
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
return std::make_pair(sum_grad, sum_hess);
|
||||
}
|
||||
|
||||
@ -172,12 +181,16 @@ inline void UpdateResidualParallel(int fidx, int group_idx, int num_group,
|
||||
auto col = page[fidx];
|
||||
// update grad value
|
||||
const auto num_row = static_cast<bst_omp_uint>(col.size());
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint j = 0; j < num_row; ++j) {
|
||||
GradientPair &p = (*in_gpair)[col[j].index * num_group + group_idx];
|
||||
if (p.GetHess() < 0.0f) continue;
|
||||
p += GradientPair(p.GetHess() * col[j].fvalue * dw, 0);
|
||||
exc.Run([&]() {
|
||||
GradientPair &p = (*in_gpair)[col[j].index * num_group + group_idx];
|
||||
if (p.GetHess() < 0.0f) return;
|
||||
p += GradientPair(p.GetHess() * col[j].fvalue * dw, 0);
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
}
|
||||
|
||||
@ -195,12 +208,16 @@ inline void UpdateBiasResidualParallel(int group_idx, int num_group, float dbias
|
||||
DMatrix *p_fmat) {
|
||||
if (dbias == 0.0f) return;
|
||||
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
||||
GradientPair &g = (*in_gpair)[i * num_group + group_idx];
|
||||
if (g.GetHess() < 0.0f) continue;
|
||||
g += GradientPair(g.GetHess() * dbias, 0);
|
||||
exc.Run([&]() {
|
||||
GradientPair &g = (*in_gpair)[i * num_group + group_idx];
|
||||
if (g.GetHess() < 0.0f) return;
|
||||
g += GradientPair(g.GetHess() * dbias, 0);
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
|
||||
/**
|
||||
@ -336,10 +353,9 @@ class GreedyFeatureSelector : public FeatureSelector {
|
||||
const bst_omp_uint nfeat = model.learner_model_param->num_feature;
|
||||
// Calculate univariate gradient sums
|
||||
std::fill(gpair_sums_.begin(), gpair_sums_.end(), std::make_pair(0., 0.));
|
||||
for (const auto &batch : p_fmat->GetBatches<CSCPage>()) {
|
||||
auto page = batch.GetView();
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nfeat; ++i) {
|
||||
for (const auto &batch : p_fmat->GetBatches<CSCPage>()) {
|
||||
auto page = batch.GetView();
|
||||
common::ParallelFor(nfeat, [&](bst_omp_uint i) {
|
||||
const auto col = page[i];
|
||||
const bst_uint ndata = col.size();
|
||||
auto &sums = gpair_sums_[group_idx * nfeat + i];
|
||||
@ -350,7 +366,7 @@ class GreedyFeatureSelector : public FeatureSelector {
|
||||
sums.first += p.GetGrad() * v;
|
||||
sums.second += p.GetHess() * v * v;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
// Find a feature with the largest magnitude of weight change
|
||||
int best_fidx = 0;
|
||||
@ -405,8 +421,7 @@ class ThriftyFeatureSelector : public FeatureSelector {
|
||||
for (const auto &batch : p_fmat->GetBatches<CSCPage>()) {
|
||||
auto page = batch.GetView();
|
||||
// column-parallel is usually fastaer than row-parallel
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nfeat; ++i) {
|
||||
common::ParallelFor(nfeat, [&](bst_omp_uint i) {
|
||||
const auto col = page[i];
|
||||
const bst_uint ndata = col.size();
|
||||
for (bst_uint gid = 0u; gid < ngroup; ++gid) {
|
||||
@ -419,7 +434,7 @@ class ThriftyFeatureSelector : public FeatureSelector {
|
||||
sums.second += p.GetHess() * v * v;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
// rank by descending weight magnitude within the groups
|
||||
std::fill(deltaw_.begin(), deltaw_.end(), 0.f);
|
||||
|
||||
@ -54,38 +54,42 @@ class ShotgunUpdater : public LinearUpdater {
|
||||
for (const auto &batch : p_fmat->GetBatches<CSCPage>()) {
|
||||
auto page = batch.GetView();
|
||||
const auto nfeat = static_cast<bst_omp_uint>(batch.Size());
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nfeat; ++i) {
|
||||
int ii = selector_->NextFeature
|
||||
(i, *model, 0, in_gpair->ConstHostVector(), p_fmat, param_.reg_alpha_denorm,
|
||||
param_.reg_lambda_denorm);
|
||||
if (ii < 0) continue;
|
||||
const bst_uint fid = ii;
|
||||
auto col = page[ii];
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
double sum_grad = 0.0, sum_hess = 0.0;
|
||||
for (auto& c : col) {
|
||||
const GradientPair &p = gpair[c.index * ngroup + gid];
|
||||
if (p.GetHess() < 0.0f) continue;
|
||||
const bst_float v = c.fvalue;
|
||||
sum_grad += p.GetGrad() * v;
|
||||
sum_hess += p.GetHess() * v * v;
|
||||
exc.Run([&]() {
|
||||
int ii = selector_->NextFeature
|
||||
(i, *model, 0, in_gpair->ConstHostVector(), p_fmat, param_.reg_alpha_denorm,
|
||||
param_.reg_lambda_denorm);
|
||||
if (ii < 0) return;
|
||||
const bst_uint fid = ii;
|
||||
auto col = page[ii];
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
double sum_grad = 0.0, sum_hess = 0.0;
|
||||
for (auto& c : col) {
|
||||
const GradientPair &p = gpair[c.index * ngroup + gid];
|
||||
if (p.GetHess() < 0.0f) continue;
|
||||
const bst_float v = c.fvalue;
|
||||
sum_grad += p.GetGrad() * v;
|
||||
sum_hess += p.GetHess() * v * v;
|
||||
}
|
||||
bst_float &w = (*model)[fid][gid];
|
||||
auto dw = static_cast<bst_float>(
|
||||
param_.learning_rate *
|
||||
CoordinateDelta(sum_grad, sum_hess, w, param_.reg_alpha_denorm,
|
||||
param_.reg_lambda_denorm));
|
||||
if (dw == 0.f) continue;
|
||||
w += dw;
|
||||
// update grad values
|
||||
for (auto& c : col) {
|
||||
GradientPair &p = gpair[c.index * ngroup + gid];
|
||||
if (p.GetHess() < 0.0f) continue;
|
||||
p += GradientPair(p.GetHess() * c.fvalue * dw, 0);
|
||||
}
|
||||
}
|
||||
bst_float &w = (*model)[fid][gid];
|
||||
auto dw = static_cast<bst_float>(
|
||||
param_.learning_rate *
|
||||
CoordinateDelta(sum_grad, sum_hess, w, param_.reg_alpha_denorm,
|
||||
param_.reg_lambda_denorm));
|
||||
if (dw == 0.f) continue;
|
||||
w += dw;
|
||||
// update grad values
|
||||
for (auto& c : col) {
|
||||
GradientPair &p = gpair[c.index * ngroup + gid];
|
||||
if (p.GetHess() < 0.0f) continue;
|
||||
p += GradientPair(p.GetHess() * c.fvalue * dw, 0);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -47,12 +47,16 @@ class ElementWiseMetricsReduction {
|
||||
bst_float residue_sum = 0;
|
||||
bst_float weights_sum = 0;
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for reduction(+: residue_sum, weights_sum) schedule(static)
|
||||
for (omp_ulong i = 0; i < ndata; ++i) {
|
||||
const bst_float wt = h_weights.size() > 0 ? h_weights[i] : 1.0f;
|
||||
residue_sum += policy_.EvalRow(h_labels[i], h_preds[i]) * wt;
|
||||
weights_sum += wt;
|
||||
exc.Run([&]() {
|
||||
const bst_float wt = h_weights.size() > 0 ? h_weights[i] : 1.0f;
|
||||
residue_sum += policy_.EvalRow(h_labels[i], h_preds[i]) * wt;
|
||||
weights_sum += wt;
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
PackedReduceResult res { residue_sum, weights_sum };
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -53,18 +53,23 @@ class MultiClassMetricsReduction {
|
||||
int label_error = 0;
|
||||
bool const is_null_weight = weights.Size() == 0;
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for reduction(+: residue_sum, weights_sum) schedule(static)
|
||||
for (omp_ulong idx = 0; idx < ndata; ++idx) {
|
||||
bst_float weight = is_null_weight ? 1.0f : h_weights[idx];
|
||||
auto label = static_cast<int>(h_labels[idx]);
|
||||
if (label >= 0 && label < static_cast<int>(n_class)) {
|
||||
residue_sum += EvalRowPolicy::EvalRow(
|
||||
label, h_preds.data() + idx * n_class, n_class) * weight;
|
||||
weights_sum += weight;
|
||||
} else {
|
||||
label_error = label;
|
||||
}
|
||||
exc.Run([&]() {
|
||||
bst_float weight = is_null_weight ? 1.0f : h_weights[idx];
|
||||
auto label = static_cast<int>(h_labels[idx]);
|
||||
if (label >= 0 && label < static_cast<int>(n_class)) {
|
||||
residue_sum += EvalRowPolicy::EvalRow(
|
||||
label, h_preds.data() + idx * n_class, n_class) * weight;
|
||||
weights_sum += weight;
|
||||
} else {
|
||||
label_error = label;
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
|
||||
CheckLabelError(label_error, n_class);
|
||||
PackedReduceResult res { residue_sum, weights_sum };
|
||||
|
||||
|
||||
@ -29,6 +29,7 @@
|
||||
|
||||
#include "xgboost/host_device_vector.h"
|
||||
#include "../common/math.h"
|
||||
#include "../common/threading_utils.h"
|
||||
#include "metric_common.h"
|
||||
|
||||
namespace {
|
||||
@ -111,10 +112,9 @@ struct EvalAMS : public Metric {
|
||||
PredIndPairContainer rec(ndata);
|
||||
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
||||
common::ParallelFor(ndata, [&](bst_omp_uint i) {
|
||||
rec[i] = std::make_pair(h_preds[i], i);
|
||||
}
|
||||
});
|
||||
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
auto ntop = static_cast<unsigned>(ratio_ * ndata);
|
||||
if (ntop == 0) ntop = ndata;
|
||||
@ -175,49 +175,57 @@ struct EvalAuc : public Metric {
|
||||
const auto& labels = info.labels_.ConstHostVector();
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel reduction(+:sum_auc, auc_error) if (ngroups > 1)
|
||||
{
|
||||
// Each thread works on a distinct group and sorts the predictions in that group
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
|
||||
// Same thread can work on multiple groups one after another; hence, resize
|
||||
// the predictions array based on the current group
|
||||
rec.resize(gptr[group_id + 1] - gptr[group_id]);
|
||||
#pragma omp parallel for schedule(static) if (!omp_in_parallel())
|
||||
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
||||
rec[j - gptr[group_id]] = {h_preds[j], j};
|
||||
}
|
||||
exc.Run([&]() {
|
||||
// Each thread works on a distinct group and sorts the predictions in that group
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
|
||||
exc.Run([&]() {
|
||||
// Same thread can work on multiple groups one after another; hence, resize
|
||||
// the predictions array based on the current group
|
||||
rec.resize(gptr[group_id + 1] - gptr[group_id]);
|
||||
#pragma omp parallel for schedule(static) if (!omp_in_parallel())
|
||||
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
||||
exc.Run([&]() {
|
||||
rec[j - gptr[group_id]] = {h_preds[j], j};
|
||||
});
|
||||
}
|
||||
|
||||
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
// calculate AUC
|
||||
double sum_pospair = 0.0;
|
||||
double sum_npos = 0.0, sum_nneg = 0.0, buf_pos = 0.0, buf_neg = 0.0;
|
||||
for (size_t j = 0; j < rec.size(); ++j) {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
||||
const bst_float ctr = labels[rec[j].second];
|
||||
// keep bucketing predictions in same bucket
|
||||
if (j != 0 && rec[j].first != rec[j - 1].first) {
|
||||
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
// calculate AUC
|
||||
double sum_pospair = 0.0;
|
||||
double sum_npos = 0.0, sum_nneg = 0.0, buf_pos = 0.0, buf_neg = 0.0;
|
||||
for (size_t j = 0; j < rec.size(); ++j) {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
||||
const bst_float ctr = labels[rec[j].second];
|
||||
// keep bucketing predictions in same bucket
|
||||
if (j != 0 && rec[j].first != rec[j - 1].first) {
|
||||
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
|
||||
sum_npos += buf_pos;
|
||||
sum_nneg += buf_neg;
|
||||
buf_neg = buf_pos = 0.0f;
|
||||
}
|
||||
buf_pos += ctr * wt;
|
||||
buf_neg += (1.0f - ctr) * wt;
|
||||
}
|
||||
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
|
||||
sum_npos += buf_pos;
|
||||
sum_nneg += buf_neg;
|
||||
buf_neg = buf_pos = 0.0f;
|
||||
}
|
||||
buf_pos += ctr * wt;
|
||||
buf_neg += (1.0f - ctr) * wt;
|
||||
// check weird conditions
|
||||
if (sum_npos <= 0.0 || sum_nneg <= 0.0) {
|
||||
auc_error += 1;
|
||||
} else {
|
||||
// this is the AUC
|
||||
sum_auc += sum_pospair / (sum_npos * sum_nneg);
|
||||
}
|
||||
});
|
||||
}
|
||||
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
|
||||
sum_npos += buf_pos;
|
||||
sum_nneg += buf_neg;
|
||||
// check weird conditions
|
||||
if (sum_npos <= 0.0 || sum_nneg <= 0.0) {
|
||||
auc_error += 1;
|
||||
} else {
|
||||
// this is the AUC
|
||||
sum_auc += sum_pospair / (sum_npos * sum_nneg);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
|
||||
// Report average AUC across all groups
|
||||
// In distributed mode, workers which only contains pos or neg samples
|
||||
@ -316,19 +324,25 @@ struct EvalRank : public Metric, public EvalRankConfig {
|
||||
const auto &labels = info.labels_.ConstHostVector();
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel reduction(+:sum_metric)
|
||||
{
|
||||
// each thread takes a local rec
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint k = 0; k < ngroups; ++k) {
|
||||
rec.clear();
|
||||
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
|
||||
rec.emplace_back(h_preds[j], static_cast<int>(labels[j]));
|
||||
exc.Run([&]() {
|
||||
// each thread takes a local rec
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint k = 0; k < ngroups; ++k) {
|
||||
exc.Run([&]() {
|
||||
rec.clear();
|
||||
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
|
||||
rec.emplace_back(h_preds[j], static_cast<int>(labels[j]));
|
||||
}
|
||||
sum_metric += this->EvalGroup(&rec);
|
||||
});
|
||||
}
|
||||
sum_metric += this->EvalGroup(&rec);
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
|
||||
if (distributed) {
|
||||
@ -526,66 +540,75 @@ struct EvalAucPR : public Metric {
|
||||
const auto &h_labels = info.labels_.ConstHostVector();
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel reduction(+:sum_auc, auc_error) if (ngroups > 1)
|
||||
{
|
||||
// Each thread works on a distinct group and sorts the predictions in that group
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
|
||||
double total_pos = 0.0;
|
||||
double total_neg = 0.0;
|
||||
// Same thread can work on multiple groups one after another; hence, resize
|
||||
// the predictions array based on the current group
|
||||
rec.resize(gptr[group_id + 1] - gptr[group_id]);
|
||||
#pragma omp parallel for schedule(static) reduction(+:total_pos, total_neg) \
|
||||
if (!omp_in_parallel()) // NOLINT
|
||||
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfInstance(info, j, group_id);
|
||||
total_pos += wt * h_labels[j];
|
||||
total_neg += wt * (1.0f - h_labels[j]);
|
||||
rec[j - gptr[group_id]] = {h_preds[j], j};
|
||||
}
|
||||
|
||||
// we need pos > 0 && neg > 0
|
||||
if (total_pos <= 0.0 || total_neg <= 0.0) {
|
||||
auc_error += 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
|
||||
// calculate AUC
|
||||
double tp = 0.0, prevtp = 0.0, fp = 0.0, prevfp = 0.0, h = 0.0, a = 0.0, b = 0.0;
|
||||
for (size_t j = 0; j < rec.size(); ++j) {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
||||
tp += wt * h_labels[rec[j].second];
|
||||
fp += wt * (1.0f - h_labels[rec[j].second]);
|
||||
if ((j < rec.size() - 1 && rec[j].first != rec[j + 1].first) || j == rec.size() - 1) {
|
||||
if (tp == prevtp) {
|
||||
a = 1.0;
|
||||
b = 0.0;
|
||||
} else {
|
||||
h = (fp - prevfp) / (tp - prevtp);
|
||||
a = 1.0 + h;
|
||||
b = (prevfp - h * prevtp) / total_pos;
|
||||
exc.Run([&]() {
|
||||
// Each thread works on a distinct group and sorts the predictions in that group
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
|
||||
exc.Run([&]() {
|
||||
double total_pos = 0.0;
|
||||
double total_neg = 0.0;
|
||||
// Same thread can work on multiple groups one after another; hence, resize
|
||||
// the predictions array based on the current group
|
||||
rec.resize(gptr[group_id + 1] - gptr[group_id]);
|
||||
#pragma omp parallel for schedule(static) reduction(+:total_pos, total_neg) \
|
||||
if (!omp_in_parallel()) // NOLINT
|
||||
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
||||
exc.Run([&]() {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfInstance(info, j, group_id);
|
||||
total_pos += wt * h_labels[j];
|
||||
total_neg += wt * (1.0f - h_labels[j]);
|
||||
rec[j - gptr[group_id]] = {h_preds[j], j};
|
||||
});
|
||||
}
|
||||
if (0.0 != b) {
|
||||
sum_auc += (tp / total_pos - prevtp / total_pos -
|
||||
b / a * (std::log(a * tp / total_pos + b) -
|
||||
std::log(a * prevtp / total_pos + b))) / a;
|
||||
} else {
|
||||
sum_auc += (tp / total_pos - prevtp / total_pos) / a;
|
||||
|
||||
// we need pos > 0 && neg > 0
|
||||
if (total_pos <= 0.0 || total_neg <= 0.0) {
|
||||
auc_error += 1;
|
||||
return;
|
||||
}
|
||||
prevtp = tp;
|
||||
prevfp = fp;
|
||||
}
|
||||
|
||||
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
|
||||
// calculate AUC
|
||||
double tp = 0.0, prevtp = 0.0, fp = 0.0, prevfp = 0.0, h = 0.0, a = 0.0, b = 0.0;
|
||||
for (size_t j = 0; j < rec.size(); ++j) {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
||||
tp += wt * h_labels[rec[j].second];
|
||||
fp += wt * (1.0f - h_labels[rec[j].second]);
|
||||
if ((j < rec.size() - 1 && rec[j].first != rec[j + 1].first) ||
|
||||
j == rec.size() - 1) {
|
||||
if (tp == prevtp) {
|
||||
a = 1.0;
|
||||
b = 0.0;
|
||||
} else {
|
||||
h = (fp - prevfp) / (tp - prevtp);
|
||||
a = 1.0 + h;
|
||||
b = (prevfp - h * prevtp) / total_pos;
|
||||
}
|
||||
if (0.0 != b) {
|
||||
sum_auc += (tp / total_pos - prevtp / total_pos -
|
||||
b / a * (std::log(a * tp / total_pos + b) -
|
||||
std::log(a * prevtp / total_pos + b))) / a;
|
||||
} else {
|
||||
sum_auc += (tp / total_pos - prevtp / total_pos) / a;
|
||||
}
|
||||
prevtp = tp;
|
||||
prevfp = fp;
|
||||
}
|
||||
}
|
||||
// sanity check
|
||||
if (tp < 0 || prevtp < 0 || fp < 0 || prevfp < 0) {
|
||||
CHECK(!auc_error) << "AUC-PR: error in calculation";
|
||||
}
|
||||
});
|
||||
}
|
||||
// sanity check
|
||||
if (tp < 0 || prevtp < 0 || fp < 0 || prevfp < 0) {
|
||||
CHECK(!auc_error) << "AUC-PR: error in calculation";
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
|
||||
// Report average AUC-PR across all groups
|
||||
// In distributed mode, workers which only contains pos or neg samples
|
||||
|
||||
@ -58,15 +58,19 @@ class ElementWiseSurvivalMetricsReduction {
|
||||
double residue_sum = 0;
|
||||
double weights_sum = 0;
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for reduction(+: residue_sum, weights_sum) schedule(static)
|
||||
for (omp_ulong i = 0; i < ndata; ++i) {
|
||||
const double wt = h_weights.empty() ? 1.0 : static_cast<double>(h_weights[i]);
|
||||
residue_sum += policy_.EvalRow(
|
||||
static_cast<double>(h_labels_lower_bound[i]),
|
||||
static_cast<double>(h_labels_upper_bound[i]),
|
||||
static_cast<double>(h_preds[i])) * wt;
|
||||
weights_sum += wt;
|
||||
exc.Run([&]() {
|
||||
const double wt = h_weights.empty() ? 1.0 : static_cast<double>(h_weights[i]);
|
||||
residue_sum += policy_.EvalRow(
|
||||
static_cast<double>(h_labels_lower_bound[i]),
|
||||
static_cast<double>(h_labels_upper_bound[i]),
|
||||
static_cast<double>(h_preds[i])) * wt;
|
||||
weights_sum += wt;
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
PackedReduceResult res{residue_sum, weights_sum};
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -823,72 +823,80 @@ class LambdaRankObj : public ObjFunction {
|
||||
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
|
||||
out_gpair->Resize(preds.Size());
|
||||
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel
|
||||
{
|
||||
// parallel construct, declare random number generator here, so that each
|
||||
// thread use its own random number generator, seed by thread id and current iteration
|
||||
std::minstd_rand rnd((iter + 1) * 1111);
|
||||
std::vector<LambdaPair> pairs;
|
||||
std::vector<ListEntry> lst;
|
||||
std::vector< std::pair<bst_float, unsigned> > rec;
|
||||
exc.Run([&]() {
|
||||
// parallel construct, declare random number generator here, so that each
|
||||
// thread use its own random number generator, seed by thread id and current iteration
|
||||
std::minstd_rand rnd((iter + 1) * 1111);
|
||||
std::vector<LambdaPair> pairs;
|
||||
std::vector<ListEntry> lst;
|
||||
std::vector< std::pair<bst_float, unsigned> > rec;
|
||||
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint k = 0; k < ngroup; ++k) {
|
||||
lst.clear(); pairs.clear();
|
||||
for (unsigned j = gptr[k]; j < gptr[k+1]; ++j) {
|
||||
lst.emplace_back(preds_h[j], labels[j], j);
|
||||
gpair[j] = GradientPair(0.0f, 0.0f);
|
||||
}
|
||||
std::stable_sort(lst.begin(), lst.end(), ListEntry::CmpPred);
|
||||
rec.resize(lst.size());
|
||||
for (unsigned i = 0; i < lst.size(); ++i) {
|
||||
rec[i] = std::make_pair(lst[i].label, i);
|
||||
}
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
// enumerate buckets with same label, for each item in the lst, grab another sample randomly
|
||||
for (unsigned i = 0; i < rec.size(); ) {
|
||||
unsigned j = i + 1;
|
||||
while (j < rec.size() && rec[j].first == rec[i].first) ++j;
|
||||
// bucket in [i,j), get a sample outside bucket
|
||||
unsigned nleft = i, nright = static_cast<unsigned>(rec.size() - j);
|
||||
if (nleft + nright != 0) {
|
||||
int nsample = param_.num_pairsample;
|
||||
while (nsample --) {
|
||||
for (unsigned pid = i; pid < j; ++pid) {
|
||||
unsigned ridx = std::uniform_int_distribution<unsigned>(0, nleft + nright - 1)(rnd);
|
||||
if (ridx < nleft) {
|
||||
pairs.emplace_back(rec[ridx].second, rec[pid].second,
|
||||
info.GetWeight(k) * weight_normalization_factor);
|
||||
} else {
|
||||
pairs.emplace_back(rec[pid].second, rec[ridx+j-i].second,
|
||||
info.GetWeight(k) * weight_normalization_factor);
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint k = 0; k < ngroup; ++k) {
|
||||
exc.Run([&]() {
|
||||
lst.clear(); pairs.clear();
|
||||
for (unsigned j = gptr[k]; j < gptr[k+1]; ++j) {
|
||||
lst.emplace_back(preds_h[j], labels[j], j);
|
||||
gpair[j] = GradientPair(0.0f, 0.0f);
|
||||
}
|
||||
std::stable_sort(lst.begin(), lst.end(), ListEntry::CmpPred);
|
||||
rec.resize(lst.size());
|
||||
for (unsigned i = 0; i < lst.size(); ++i) {
|
||||
rec[i] = std::make_pair(lst[i].label, i);
|
||||
}
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
// enumerate buckets with same label
|
||||
// for each item in the lst, grab another sample randomly
|
||||
for (unsigned i = 0; i < rec.size(); ) {
|
||||
unsigned j = i + 1;
|
||||
while (j < rec.size() && rec[j].first == rec[i].first) ++j;
|
||||
// bucket in [i,j), get a sample outside bucket
|
||||
unsigned nleft = i, nright = static_cast<unsigned>(rec.size() - j);
|
||||
if (nleft + nright != 0) {
|
||||
int nsample = param_.num_pairsample;
|
||||
while (nsample --) {
|
||||
for (unsigned pid = i; pid < j; ++pid) {
|
||||
unsigned ridx =
|
||||
std::uniform_int_distribution<unsigned>(0, nleft + nright - 1)(rnd);
|
||||
if (ridx < nleft) {
|
||||
pairs.emplace_back(rec[ridx].second, rec[pid].second,
|
||||
info.GetWeight(k) * weight_normalization_factor);
|
||||
} else {
|
||||
pairs.emplace_back(rec[pid].second, rec[ridx+j-i].second,
|
||||
info.GetWeight(k) * weight_normalization_factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
i = j;
|
||||
}
|
||||
}
|
||||
i = j;
|
||||
// get lambda weight for the pairs
|
||||
LambdaWeightComputerT::GetLambdaWeight(lst, &pairs);
|
||||
// rescale each gradient and hessian so that the lst have constant weighted
|
||||
float scale = 1.0f / param_.num_pairsample;
|
||||
if (param_.fix_list_weight != 0.0f) {
|
||||
scale *= param_.fix_list_weight / (gptr[k + 1] - gptr[k]);
|
||||
}
|
||||
for (auto & pair : pairs) {
|
||||
const ListEntry &pos = lst[pair.pos_index];
|
||||
const ListEntry &neg = lst[pair.neg_index];
|
||||
const bst_float w = pair.weight * scale;
|
||||
const float eps = 1e-16f;
|
||||
bst_float p = common::Sigmoid(pos.pred - neg.pred);
|
||||
bst_float g = p - 1.0f;
|
||||
bst_float h = std::max(p * (1.0f - p), eps);
|
||||
// accumulate gradient and hessian in both pid, and nid
|
||||
gpair[pos.rindex] += GradientPair(g * w, 2.0f*w*h);
|
||||
gpair[neg.rindex] += GradientPair(-g * w, 2.0f*w*h);
|
||||
}
|
||||
});
|
||||
}
|
||||
// get lambda weight for the pairs
|
||||
LambdaWeightComputerT::GetLambdaWeight(lst, &pairs);
|
||||
// rescale each gradient and hessian so that the lst have constant weighted
|
||||
float scale = 1.0f / param_.num_pairsample;
|
||||
if (param_.fix_list_weight != 0.0f) {
|
||||
scale *= param_.fix_list_weight / (gptr[k + 1] - gptr[k]);
|
||||
}
|
||||
for (auto & pair : pairs) {
|
||||
const ListEntry &pos = lst[pair.pos_index];
|
||||
const ListEntry &neg = lst[pair.neg_index];
|
||||
const bst_float w = pair.weight * scale;
|
||||
const float eps = 1e-16f;
|
||||
bst_float p = common::Sigmoid(pos.pred - neg.pred);
|
||||
bst_float g = p - 1.0f;
|
||||
bst_float h = std::max(p * (1.0f - p), eps);
|
||||
// accumulate gradient and hessian in both pid, and nid
|
||||
gpair[pos.rindex] += GradientPair(g * w, 2.0f*w*h);
|
||||
gpair[neg.rindex] += GradientPair(-g * w, 2.0f*w*h);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
|
||||
#if defined(__CUDACC__)
|
||||
|
||||
@ -19,6 +19,7 @@
|
||||
|
||||
#include "../common/transform.h"
|
||||
#include "../common/common.h"
|
||||
#include "../common/threading_utils.h"
|
||||
#include "./regression_loss.h"
|
||||
|
||||
|
||||
@ -345,10 +346,9 @@ class CoxRegression : public ObjFunction {
|
||||
void PredTransform(HostDeviceVector<bst_float> *io_preds) override {
|
||||
std::vector<bst_float> &preds = io_preds->HostVector();
|
||||
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (long j = 0; j < ndata; ++j) { // NOLINT(*)
|
||||
common::ParallelFor(ndata, [&](long j) { // NOLINT(*)
|
||||
preds[j] = std::exp(preds[j]);
|
||||
}
|
||||
});
|
||||
}
|
||||
void EvalTransform(HostDeviceVector<bst_float> *io_preds) override {
|
||||
PredTransform(io_preds);
|
||||
|
||||
@ -18,6 +18,7 @@
|
||||
|
||||
#include "../data/adapter.h"
|
||||
#include "../common/math.h"
|
||||
#include "../common/threading_utils.h"
|
||||
#include "../gbm/gbtree_model.h"
|
||||
|
||||
namespace xgboost {
|
||||
@ -157,8 +158,7 @@ void PredictBatchByBlockOfRowsKernel(DataView batch, std::vector<bst_float> *out
|
||||
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
||||
const int num_feature = model.learner_model_param->num_feature;
|
||||
const bst_omp_uint n_row_blocks = (nsize) / block_of_rows_size + !!((nsize) % block_of_rows_size);
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint block_id = 0; block_id < n_row_blocks; ++block_id) {
|
||||
common::ParallelFor(n_row_blocks, [&](bst_omp_uint block_id) {
|
||||
const size_t batch_offset = block_id * block_of_rows_size;
|
||||
const size_t block_size = std::min(nsize - batch_offset, block_of_rows_size);
|
||||
const size_t fvec_offset = omp_get_thread_num() * block_of_rows_size;
|
||||
@ -168,7 +168,7 @@ void PredictBatchByBlockOfRowsKernel(DataView batch, std::vector<bst_float> *out
|
||||
PredictByAllTrees(model, tree_begin, tree_end, out_preds, batch_offset + batch.base_rowid,
|
||||
num_group, thread_temp, fvec_offset, block_size);
|
||||
FVecDrop(block_size, batch_offset, &batch, fvec_offset, p_thread_temp);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
class CPUPredictor : public Predictor {
|
||||
@ -335,8 +335,7 @@ class CPUPredictor : public Predictor {
|
||||
// parallel over local batch
|
||||
auto page = batch.GetView();
|
||||
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
common::ParallelFor(nsize, [&](bst_omp_uint i) {
|
||||
const int tid = omp_get_thread_num();
|
||||
auto ridx = static_cast<size_t>(batch.base_rowid + i);
|
||||
RegTree::FVec &feats = feat_vecs[tid];
|
||||
@ -349,7 +348,7 @@ class CPUPredictor : public Predictor {
|
||||
preds[ridx * ntree_limit + j] = static_cast<bst_float>(tid);
|
||||
}
|
||||
feats.Drop(page[i]);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
@ -378,18 +377,16 @@ class CPUPredictor : public Predictor {
|
||||
// allocated one
|
||||
std::fill(contribs.begin(), contribs.end(), 0);
|
||||
// initialize tree node mean values
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < ntree_limit; ++i) {
|
||||
common::ParallelFor(bst_omp_uint(ntree_limit), [&](bst_omp_uint i) {
|
||||
model.trees[i]->FillNodeMeanValues();
|
||||
}
|
||||
});
|
||||
const std::vector<bst_float>& base_margin = info.base_margin_.HostVector();
|
||||
// start collecting the contributions
|
||||
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
||||
auto page = batch.GetView();
|
||||
// parallel over local batch
|
||||
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
common::ParallelFor(nsize, [&](bst_omp_uint i) {
|
||||
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
|
||||
RegTree::FVec &feats = feat_vecs[omp_get_thread_num()];
|
||||
if (feats.Size() == 0) {
|
||||
@ -425,7 +422,7 @@ class CPUPredictor : public Predictor {
|
||||
p_contribs[ncolumns - 1] += model.learner_model_param->base_score;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -25,6 +25,7 @@
|
||||
#include "../common/io.h"
|
||||
#include "../common/random.h"
|
||||
#include "../common/quantile.h"
|
||||
#include "../common/threading_utils.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
@ -221,8 +222,7 @@ class BaseMaker: public TreeUpdater {
|
||||
// so that they are ignored in future statistics collection
|
||||
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
|
||||
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
|
||||
common::ParallelFor(ndata, [&](bst_omp_uint ridx) {
|
||||
const int nid = this->DecodePosition(ridx);
|
||||
if (tree[nid].IsLeaf()) {
|
||||
// mark finish when it is not a fresh leaf
|
||||
@ -237,7 +237,7 @@ class BaseMaker: public TreeUpdater {
|
||||
this->SetEncodePosition(ridx, tree[nid].RightChild());
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
/*!
|
||||
* \brief this is helper function uses column based data structure,
|
||||
@ -257,8 +257,7 @@ class BaseMaker: public TreeUpdater {
|
||||
|
||||
if (it != sorted_split_set.end() && *it == fid) {
|
||||
const auto ndata = static_cast<bst_omp_uint>(col.size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint j = 0; j < ndata; ++j) {
|
||||
common::ParallelFor(ndata, [&](bst_omp_uint j) {
|
||||
const bst_uint ridx = col[j].index;
|
||||
const bst_float fvalue = col[j].fvalue;
|
||||
const int nid = this->DecodePosition(ridx);
|
||||
@ -273,7 +272,7 @@ class BaseMaker: public TreeUpdater {
|
||||
this->SetEncodePosition(ridx, tree[pid].RightChild());
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -314,8 +313,7 @@ class BaseMaker: public TreeUpdater {
|
||||
for (auto fid : fsplits) {
|
||||
auto col = page[fid];
|
||||
const auto ndata = static_cast<bst_omp_uint>(col.size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint j = 0; j < ndata; ++j) {
|
||||
common::ParallelFor(ndata, [&](bst_omp_uint j) {
|
||||
const bst_uint ridx = col[j].index;
|
||||
const bst_float fvalue = col[j].fvalue;
|
||||
const int nid = this->DecodePosition(ridx);
|
||||
@ -327,7 +325,7 @@ class BaseMaker: public TreeUpdater {
|
||||
this->SetEncodePosition(ridx, tree[nid].RightChild());
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -341,24 +339,27 @@ class BaseMaker: public TreeUpdater {
|
||||
std::vector< std::vector<TStats> > &thread_temp = *p_thread_temp;
|
||||
thread_temp.resize(omp_get_max_threads());
|
||||
p_node_stats->resize(tree.param.num_nodes);
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel
|
||||
{
|
||||
const int tid = omp_get_thread_num();
|
||||
thread_temp[tid].resize(tree.param.num_nodes, TStats());
|
||||
for (unsigned int nid : qexpand_) {
|
||||
thread_temp[tid][nid] = TStats();
|
||||
}
|
||||
exc.Run([&]() {
|
||||
const int tid = omp_get_thread_num();
|
||||
thread_temp[tid].resize(tree.param.num_nodes, TStats());
|
||||
for (unsigned int nid : qexpand_) {
|
||||
thread_temp[tid][nid] = TStats();
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
// setup position
|
||||
const auto ndata = static_cast<bst_omp_uint>(fmat.Info().num_row_);
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
|
||||
common::ParallelFor(ndata, [&](bst_omp_uint ridx) {
|
||||
const int nid = position_[ridx];
|
||||
const int tid = omp_get_thread_num();
|
||||
if (nid >= 0) {
|
||||
thread_temp[tid][nid].Add(gpair[ridx]);
|
||||
}
|
||||
}
|
||||
});
|
||||
// sum the per thread statistics together
|
||||
for (int nid : qexpand_) {
|
||||
TStats &s = (*p_node_stats)[nid];
|
||||
|
||||
@ -264,12 +264,16 @@ class ColMaker: public TreeUpdater {
|
||||
const MetaInfo& info = fmat.Info();
|
||||
// setup position
|
||||
const auto ndata = static_cast<bst_omp_uint>(info.num_row_);
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
|
||||
const int tid = omp_get_thread_num();
|
||||
if (position_[ridx] < 0) continue;
|
||||
stemp_[tid][position_[ridx]].stats.Add(gpair[ridx]);
|
||||
exc.Run([&]() {
|
||||
const int tid = omp_get_thread_num();
|
||||
if (position_[ridx] < 0) return;
|
||||
stemp_[tid][position_[ridx]].stats.Add(gpair[ridx]);
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
// sum the per thread statistics together
|
||||
for (int nid : qexpand) {
|
||||
GradStats stats;
|
||||
@ -447,11 +451,11 @@ class ColMaker: public TreeUpdater {
|
||||
std::max(static_cast<int>(num_features / this->nthread_ / 32), 1);
|
||||
#endif // defined(_OPENMP)
|
||||
{
|
||||
dmlc::OMPException omp_handler;
|
||||
auto page = batch.GetView();
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(dynamic, batch_size)
|
||||
for (bst_omp_uint i = 0; i < num_features; ++i) {
|
||||
omp_handler.Run([&]() {
|
||||
exc.Run([&]() {
|
||||
auto evaluator = tree_evaluator_.GetEvaluator();
|
||||
bst_feature_t const fid = feat_set[i];
|
||||
int32_t const tid = omp_get_thread_num();
|
||||
@ -461,16 +465,16 @@ class ColMaker: public TreeUpdater {
|
||||
if (colmaker_train_param_.NeedForwardSearch(
|
||||
param_.default_direction, column_densities_[fid], ind)) {
|
||||
this->EnumerateSplit(c.data(), c.data() + c.size(), +1, fid,
|
||||
gpair, stemp_[tid], evaluator);
|
||||
gpair, stemp_[tid], evaluator);
|
||||
}
|
||||
if (colmaker_train_param_.NeedBackwardSearch(
|
||||
param_.default_direction)) {
|
||||
this->EnumerateSplit(c.data() + c.size() - 1, c.data() - 1, -1,
|
||||
fid, gpair, stemp_[tid], evaluator);
|
||||
fid, gpair, stemp_[tid], evaluator);
|
||||
}
|
||||
});
|
||||
}
|
||||
omp_handler.Rethrow();
|
||||
exc.Rethrow();
|
||||
}
|
||||
}
|
||||
// find splits at current level, do split per level
|
||||
@ -521,8 +525,7 @@ class ColMaker: public TreeUpdater {
|
||||
// so that they are ignored in future statistics collection
|
||||
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
|
||||
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
|
||||
common::ParallelFor(ndata, [&](bst_omp_uint ridx) {
|
||||
CHECK_LT(ridx, position_.size())
|
||||
<< "ridx exceed bound " << "ridx="<< ridx << " pos=" << position_.size();
|
||||
const int nid = this->DecodePosition(ridx);
|
||||
@ -539,7 +542,7 @@ class ColMaker: public TreeUpdater {
|
||||
this->SetEncodePosition(ridx, tree[nid].RightChild());
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
// customization part
|
||||
// synchronize the best solution of each node
|
||||
@ -568,8 +571,7 @@ class ColMaker: public TreeUpdater {
|
||||
for (auto fid : fsplits) {
|
||||
auto col = page[fid];
|
||||
const auto ndata = static_cast<bst_omp_uint>(col.size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint j = 0; j < ndata; ++j) {
|
||||
common::ParallelFor(ndata, [&](bst_omp_uint j) {
|
||||
const bst_uint ridx = col[j].index;
|
||||
const int nid = this->DecodePosition(ridx);
|
||||
const bst_float fvalue = col[j].fvalue;
|
||||
@ -581,7 +583,7 @@ class ColMaker: public TreeUpdater {
|
||||
this->SetEncodePosition(ridx, tree[nid].RightChild());
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -202,22 +202,26 @@ class HistMaker: public BaseMaker {
|
||||
std::vector<SplitEntry> sol(qexpand_.size());
|
||||
std::vector<GradStats> left_sum(qexpand_.size());
|
||||
auto nexpand = static_cast<bst_omp_uint>(qexpand_.size());
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(dynamic, 1)
|
||||
for (bst_omp_uint wid = 0; wid < nexpand; ++wid) {
|
||||
const int nid = qexpand_[wid];
|
||||
CHECK_EQ(node2workindex_[nid], static_cast<int>(wid));
|
||||
SplitEntry &best = sol[wid];
|
||||
GradStats &node_sum = wspace_.hset[0][num_feature + wid * (num_feature + 1)].data[0];
|
||||
for (size_t i = 0; i < feature_set.size(); ++i) {
|
||||
// Query is thread safe as it's a const function.
|
||||
if (!this->interaction_constraints_.Query(nid, feature_set[i])) {
|
||||
continue;
|
||||
}
|
||||
exc.Run([&]() {
|
||||
const int nid = qexpand_[wid];
|
||||
CHECK_EQ(node2workindex_[nid], static_cast<int>(wid));
|
||||
SplitEntry &best = sol[wid];
|
||||
GradStats &node_sum = wspace_.hset[0][num_feature + wid * (num_feature + 1)].data[0];
|
||||
for (size_t i = 0; i < feature_set.size(); ++i) {
|
||||
// Query is thread safe as it's a const function.
|
||||
if (!this->interaction_constraints_.Query(nid, feature_set[i])) {
|
||||
continue;
|
||||
}
|
||||
|
||||
EnumerateSplit(this->wspace_.hset[0][i + wid * (num_feature+1)],
|
||||
node_sum, feature_set[i], &best, &left_sum[wid]);
|
||||
}
|
||||
EnumerateSplit(this->wspace_.hset[0][i + wid * (num_feature+1)],
|
||||
node_sum, feature_set[i], &best, &left_sum[wid]);
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
// get the best result, we can synchronize the solution
|
||||
for (bst_omp_uint wid = 0; wid < nexpand; ++wid) {
|
||||
const bst_node_t nid = qexpand_[wid];
|
||||
@ -341,16 +345,20 @@ class CQHistMaker: public HistMaker {
|
||||
auto page = batch.GetView();
|
||||
// start enumeration
|
||||
const auto nsize = static_cast<bst_omp_uint>(fset.size());
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(dynamic, 1)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
int fid = fset[i];
|
||||
int offset = feat2workindex_[fid];
|
||||
if (offset >= 0) {
|
||||
this->UpdateHistCol(gpair, page[fid], info, tree,
|
||||
fset, offset,
|
||||
&thread_hist_[omp_get_thread_num()]);
|
||||
}
|
||||
exc.Run([&]() {
|
||||
int fid = fset[i];
|
||||
int offset = feat2workindex_[fid];
|
||||
if (offset >= 0) {
|
||||
this->UpdateHistCol(gpair, page[fid], info, tree,
|
||||
fset, offset,
|
||||
&thread_hist_[omp_get_thread_num()]);
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
// update node statistics.
|
||||
this->GetNodeStats(gpair, *p_fmat, tree,
|
||||
@ -417,16 +425,20 @@ class CQHistMaker: public HistMaker {
|
||||
auto page = batch.GetView();
|
||||
// start enumeration
|
||||
const auto nsize = static_cast<bst_omp_uint>(work_set_.size());
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(dynamic, 1)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
int fid = work_set_[i];
|
||||
int offset = feat2workindex_[fid];
|
||||
if (offset >= 0) {
|
||||
this->UpdateSketchCol(gpair, page[fid], tree,
|
||||
work_set_size, offset,
|
||||
&thread_sketch_[omp_get_thread_num()]);
|
||||
}
|
||||
exc.Run([&]() {
|
||||
int fid = work_set_[i];
|
||||
int offset = feat2workindex_[fid];
|
||||
if (offset >= 0) {
|
||||
this->UpdateSketchCol(gpair, page[fid], tree,
|
||||
work_set_size, offset,
|
||||
&thread_sketch_[omp_get_thread_num()]);
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
for (size_t i = 0; i < sketchs_.size(); ++i) {
|
||||
common::WXQuantileSketch<bst_float, bst_float>::SummaryContainer out;
|
||||
@ -701,16 +713,20 @@ class GlobalProposalHistMaker: public CQHistMaker {
|
||||
|
||||
// start enumeration
|
||||
const auto nsize = static_cast<bst_omp_uint>(this->work_set_.size());
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel for schedule(dynamic, 1)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
int fid = this->work_set_[i];
|
||||
int offset = this->feat2workindex_[fid];
|
||||
if (offset >= 0) {
|
||||
this->UpdateHistCol(gpair, page[fid], info, tree,
|
||||
fset, offset,
|
||||
&this->thread_hist_[omp_get_thread_num()]);
|
||||
}
|
||||
exc.Run([&]() {
|
||||
int fid = this->work_set_[i];
|
||||
int offset = this->feat2workindex_[fid];
|
||||
if (offset >= 0) {
|
||||
this->UpdateHistCol(gpair, page[fid], info, tree,
|
||||
fset, offset,
|
||||
&this->thread_hist_[omp_get_thread_num()]);
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
|
||||
// update node statistics.
|
||||
|
||||
@ -713,20 +713,24 @@ void QuantileHistMaker::Builder<GradientSumT>::InitSampling(const std::vector<Gr
|
||||
const size_t discard_size = info.num_row_ / nthread;
|
||||
auto upper_border = static_cast<float>(std::numeric_limits<uint32_t>::max());
|
||||
uint32_t coin_flip_border = static_cast<uint32_t>(upper_border * param_.subsample);
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel num_threads(nthread)
|
||||
{
|
||||
const size_t tid = omp_get_thread_num();
|
||||
const size_t ibegin = tid * discard_size;
|
||||
const size_t iend = (tid == (nthread - 1)) ?
|
||||
info.num_row_ : ibegin + discard_size;
|
||||
exc.Run([&]() {
|
||||
const size_t tid = omp_get_thread_num();
|
||||
const size_t ibegin = tid * discard_size;
|
||||
const size_t iend = (tid == (nthread - 1)) ?
|
||||
info.num_row_ : ibegin + discard_size;
|
||||
|
||||
rnds[tid].discard(discard_size * tid);
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
if (gpair[i].GetHess() >= 0.0f && rnds[tid]() < coin_flip_border) {
|
||||
p_row_indices[ibegin + row_offsets[tid]++] = i;
|
||||
rnds[tid].discard(discard_size * tid);
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
if (gpair[i].GetHess() >= 0.0f && rnds[tid]() < coin_flip_border) {
|
||||
p_row_indices[ibegin + row_offsets[tid]++] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
/* discard global engine */
|
||||
rnd = rnds[nthread - 1];
|
||||
size_t prefix_sum = row_offsets[0];
|
||||
@ -769,10 +773,14 @@ void QuantileHistMaker::Builder<GradientSumT>::InitData(const GHistIndexMatrix&
|
||||
hist_buffer_.Init(nbins);
|
||||
|
||||
// initialize histogram builder
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel
|
||||
{
|
||||
this->nthread_ = omp_get_num_threads();
|
||||
exc.Run([&]() {
|
||||
this->nthread_ = omp_get_num_threads();
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
hist_builder_ = GHistBuilder<GradientSumT>(this->nthread_, nbins);
|
||||
|
||||
std::vector<size_t>& row_indices = *row_set_collection_.Data();
|
||||
@ -794,18 +802,21 @@ void QuantileHistMaker::Builder<GradientSumT>::InitData(const GHistIndexMatrix&
|
||||
|
||||
#pragma omp parallel num_threads(this->nthread_)
|
||||
{
|
||||
const size_t tid = omp_get_thread_num();
|
||||
const size_t ibegin = tid * block_size;
|
||||
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size),
|
||||
static_cast<size_t>(info.num_row_));
|
||||
exc.Run([&]() {
|
||||
const size_t tid = omp_get_thread_num();
|
||||
const size_t ibegin = tid * block_size;
|
||||
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size),
|
||||
static_cast<size_t>(info.num_row_));
|
||||
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
if (gpair[i].GetHess() < 0.0f) {
|
||||
p_buff[tid] = true;
|
||||
break;
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
if (gpair[i].GetHess() < 0.0f) {
|
||||
p_buff[tid] = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
|
||||
bool has_neg_hess = false;
|
||||
for (int32_t tid = 0; tid < this->nthread_; ++tid) {
|
||||
@ -825,14 +836,17 @@ void QuantileHistMaker::Builder<GradientSumT>::InitData(const GHistIndexMatrix&
|
||||
} else {
|
||||
#pragma omp parallel num_threads(this->nthread_)
|
||||
{
|
||||
const size_t tid = omp_get_thread_num();
|
||||
const size_t ibegin = tid * block_size;
|
||||
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size),
|
||||
static_cast<size_t>(info.num_row_));
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
p_row_indices[i] = i;
|
||||
}
|
||||
exc.Run([&]() {
|
||||
const size_t tid = omp_get_thread_num();
|
||||
const size_t ibegin = tid * block_size;
|
||||
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size),
|
||||
static_cast<size_t>(info.num_row_));
|
||||
for (size_t i = ibegin; i < iend; ++i) {
|
||||
p_row_indices[i] = i;
|
||||
}
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -13,6 +13,7 @@
|
||||
#include "xgboost/json.h"
|
||||
#include "./param.h"
|
||||
#include "../common/io.h"
|
||||
#include "../common/threading_utils.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
@ -52,17 +53,21 @@ class TreeRefresher: public TreeUpdater {
|
||||
const int nthread = omp_get_max_threads();
|
||||
fvec_temp.resize(nthread, RegTree::FVec());
|
||||
stemp.resize(nthread, std::vector<GradStats>());
|
||||
dmlc::OMPException exc;
|
||||
#pragma omp parallel
|
||||
{
|
||||
int tid = omp_get_thread_num();
|
||||
int num_nodes = 0;
|
||||
for (auto tree : trees) {
|
||||
num_nodes += tree->param.num_nodes;
|
||||
}
|
||||
stemp[tid].resize(num_nodes, GradStats());
|
||||
std::fill(stemp[tid].begin(), stemp[tid].end(), GradStats());
|
||||
fvec_temp[tid].Init(trees[0]->param.num_feature);
|
||||
exc.Run([&]() {
|
||||
int tid = omp_get_thread_num();
|
||||
int num_nodes = 0;
|
||||
for (auto tree : trees) {
|
||||
num_nodes += tree->param.num_nodes;
|
||||
}
|
||||
stemp[tid].resize(num_nodes, GradStats());
|
||||
std::fill(stemp[tid].begin(), stemp[tid].end(), GradStats());
|
||||
fvec_temp[tid].Init(trees[0]->param.num_feature);
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
// if it is C++11, use lazy evaluation for Allreduce,
|
||||
// to gain speedup in recovery
|
||||
auto lazy_get_stats = [&]() {
|
||||
@ -72,8 +77,7 @@ class TreeRefresher: public TreeUpdater {
|
||||
auto page = batch.GetView();
|
||||
CHECK_LT(batch.Size(), std::numeric_limits<unsigned>::max());
|
||||
const auto nbatch = static_cast<bst_omp_uint>(batch.Size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nbatch; ++i) {
|
||||
common::ParallelFor(nbatch, [&](bst_omp_uint i) {
|
||||
SparsePage::Inst inst = page[i];
|
||||
const int tid = omp_get_thread_num();
|
||||
const auto ridx = static_cast<bst_uint>(batch.base_rowid + i);
|
||||
@ -86,16 +90,15 @@ class TreeRefresher: public TreeUpdater {
|
||||
offset += tree->param.num_nodes;
|
||||
}
|
||||
feats.Drop(inst);
|
||||
}
|
||||
});
|
||||
}
|
||||
// aggregate the statistics
|
||||
auto num_nodes = static_cast<int>(stemp[0].size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (int nid = 0; nid < num_nodes; ++nid) {
|
||||
common::ParallelFor(num_nodes, [&](int nid) {
|
||||
for (int tid = 1; tid < nthread; ++tid) {
|
||||
stemp[0][nid].Add(stemp[tid][nid]);
|
||||
}
|
||||
}
|
||||
});
|
||||
};
|
||||
reducer_.Allreduce(dmlc::BeginPtr(stemp[0]), stemp[0].size(), lazy_get_stats);
|
||||
// rescale learning rate according to size of trees
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user