GPUTreeShap (#6038)

This commit is contained in:
Rory Mitchell 2020-08-25 12:47:41 +12:00 committed by GitHub
parent b3193052b3
commit 9a4e8b1d81
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 266 additions and 62 deletions

3
.gitmodules vendored
View File

@ -4,3 +4,6 @@
[submodule "cub"] [submodule "cub"]
path = cub path = cub
url = https://github.com/NVlabs/cub url = https://github.com/NVlabs/cub
[submodule "gputreeshap"]
path = gputreeshap
url = https://github.com/rapidsai/gputreeshap.git

1
gputreeshap Submodule

@ -0,0 +1 @@
Subproject commit a3d4c44cc6a0a6c3870e7cebcd1ef1d09d7bc0cb

View File

@ -9,6 +9,7 @@ if (USE_CUDA)
file(GLOB_RECURSE CUDA_SOURCES *.cu *.cuh) file(GLOB_RECURSE CUDA_SOURCES *.cu *.cuh)
target_sources(objxgboost PRIVATE ${CUDA_SOURCES}) target_sources(objxgboost PRIVATE ${CUDA_SOURCES})
target_compile_definitions(objxgboost PRIVATE -DXGBOOST_USE_CUDA=1) target_compile_definitions(objxgboost PRIVATE -DXGBOOST_USE_CUDA=1)
target_include_directories(objxgboost PRIVATE ${xgboost_SOURCE_DIR}/gputreeshap)
if (CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.0) if (CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.0)
target_include_directories(objxgboost PRIVATE ${xgboost_SOURCE_DIR}/cub/) target_include_directories(objxgboost PRIVATE ${xgboost_SOURCE_DIR}/cub/)
endif (CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.0) endif (CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.0)

View File

@ -474,8 +474,18 @@ class TemporaryArray {
using AllocT = XGBCachingDeviceAllocator<T>; using AllocT = XGBCachingDeviceAllocator<T>;
using value_type = T; // NOLINT using value_type = T; // NOLINT
explicit TemporaryArray(size_t n) : size_(n) { ptr_ = AllocT().allocate(n); } explicit TemporaryArray(size_t n) : size_(n) { ptr_ = AllocT().allocate(n); }
TemporaryArray(size_t n, T val) : size_(n) {
ptr_ = AllocT().allocate(n);
this->fill(val);
}
~TemporaryArray() { AllocT().deallocate(ptr_, this->size()); } ~TemporaryArray() { AllocT().deallocate(ptr_, this->size()); }
void fill(T val) // NOLINT
{
int device = 0;
dh::safe_cuda(cudaGetDevice(&device));
auto d_data = ptr_.get();
LaunchN(device, this->size(), [=] __device__(size_t idx) { d_data[idx] = val; });
}
thrust::device_ptr<T> data() { return ptr_; } // NOLINT thrust::device_ptr<T> data() { return ptr_; } // NOLINT
size_t size() { return size_; } // NOLINT size_t size() { return size_; } // NOLINT

View File

@ -238,11 +238,11 @@ class GBTree : public GradientBooster {
void PredictContribution(DMatrix* p_fmat, void PredictContribution(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs, std::vector<bst_float>* out_contribs,
unsigned ntree_limit, bool approximate, int condition, unsigned ntree_limit, bool approximate,
unsigned condition_feature) override { int condition, unsigned condition_feature) override {
CHECK(configured_); CHECK(configured_);
cpu_predictor_->PredictContribution(p_fmat, out_contribs, model_, this->GetPredictor()->PredictContribution(
ntree_limit, nullptr, approximate); p_fmat, out_contribs, model_, ntree_limit, nullptr, approximate);
} }
void PredictInteractionContributions(DMatrix* p_fmat, void PredictInteractionContributions(DMatrix* p_fmat,

View File

@ -5,6 +5,7 @@
#include <thrust/device_ptr.h> #include <thrust/device_ptr.h>
#include <thrust/device_vector.h> #include <thrust/device_vector.h>
#include <thrust/fill.h> #include <thrust/fill.h>
#include <GPUTreeShap/gpu_treeshap.h>
#include <memory> #include <memory>
#include "xgboost/data.h" #include "xgboost/data.h"
@ -27,72 +28,79 @@ DMLC_REGISTRY_FILE_TAG(gpu_predictor);
struct SparsePageView { struct SparsePageView {
common::Span<const Entry> d_data; common::Span<const Entry> d_data;
common::Span<const bst_row_t> d_row_ptr; common::Span<const bst_row_t> d_row_ptr;
bst_feature_t num_features;
XGBOOST_DEVICE SparsePageView(common::Span<const Entry> data, XGBOOST_DEVICE SparsePageView(common::Span<const Entry> data,
common::Span<const bst_row_t> row_ptr) : common::Span<const bst_row_t> row_ptr,
d_data{data}, d_row_ptr{row_ptr} {} bst_feature_t num_features)
: d_data{data}, d_row_ptr{row_ptr}, num_features(num_features) {}
__device__ float GetElement(size_t ridx, size_t fidx) const {
// Binary search
auto begin_ptr = d_data.begin() + d_row_ptr[ridx];
auto end_ptr = d_data.begin() + d_row_ptr[ridx + 1];
if (end_ptr - begin_ptr == this->NumCols()) {
// Bypass span check for dense data
return d_data.data()[d_row_ptr[ridx] + fidx].fvalue;
}
common::Span<const Entry>::iterator previous_middle;
while (end_ptr != begin_ptr) {
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
if (middle == previous_middle) {
break;
} else {
previous_middle = middle;
}
if (middle->index == fidx) {
return middle->fvalue;
} else if (middle->index < fidx) {
begin_ptr = middle;
} else {
end_ptr = middle;
}
}
// Value is missing
return nanf("");
}
XGBOOST_DEVICE size_t NumRows() const { return d_row_ptr.size() - 1; }
XGBOOST_DEVICE size_t NumCols() const { return num_features; }
}; };
struct SparsePageLoader { struct SparsePageLoader {
bool use_shared; bool use_shared;
common::Span<const bst_row_t> d_row_ptr; SparsePageView data;
common::Span<const Entry> d_data;
bst_feature_t num_features;
float* smem; float* smem;
size_t entry_start; size_t entry_start;
__device__ SparsePageLoader(SparsePageView data, bool use_shared, bst_feature_t num_features, __device__ SparsePageLoader(SparsePageView data, bool use_shared, bst_feature_t num_features,
bst_row_t num_rows, size_t entry_start) bst_row_t num_rows, size_t entry_start)
: use_shared(use_shared), : use_shared(use_shared),
d_row_ptr(data.d_row_ptr), data(data),
d_data(data.d_data),
num_features(num_features),
entry_start(entry_start) { entry_start(entry_start) {
extern __shared__ float _smem[]; extern __shared__ float _smem[];
smem = _smem; smem = _smem;
// Copy instances // Copy instances
if (use_shared) { if (use_shared) {
bst_uint global_idx = blockDim.x * blockIdx.x + threadIdx.x; bst_uint global_idx = blockDim.x * blockIdx.x + threadIdx.x;
int shared_elements = blockDim.x * num_features; int shared_elements = blockDim.x * data.num_features;
dh::BlockFill(smem, shared_elements, nanf("")); dh::BlockFill(smem, shared_elements, nanf(""));
__syncthreads(); __syncthreads();
if (global_idx < num_rows) { if (global_idx < num_rows) {
bst_uint elem_begin = d_row_ptr[global_idx]; bst_uint elem_begin = data.d_row_ptr[global_idx];
bst_uint elem_end = d_row_ptr[global_idx + 1]; bst_uint elem_end = data.d_row_ptr[global_idx + 1];
for (bst_uint elem_idx = elem_begin; elem_idx < elem_end; elem_idx++) { for (bst_uint elem_idx = elem_begin; elem_idx < elem_end; elem_idx++) {
Entry elem = d_data[elem_idx - entry_start]; Entry elem = data.d_data[elem_idx - entry_start];
smem[threadIdx.x * num_features + elem.index] = elem.fvalue; smem[threadIdx.x * data.num_features + elem.index] = elem.fvalue;
} }
} }
__syncthreads(); __syncthreads();
} }
} }
__device__ float GetFvalue(int ridx, int fidx) const { __device__ float GetElement(size_t ridx, size_t fidx) const {
if (use_shared) { if (use_shared) {
return smem[threadIdx.x * num_features + fidx]; return smem[threadIdx.x * data.num_features + fidx];
} else { } else {
// Binary search return data.GetElement(ridx, fidx);
auto begin_ptr = d_data.begin() + (d_row_ptr[ridx] - entry_start);
auto end_ptr = d_data.begin() + (d_row_ptr[ridx + 1] - entry_start);
common::Span<const Entry>::iterator previous_middle;
while (end_ptr != begin_ptr) {
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
if (middle == previous_middle) {
break;
} else {
previous_middle = middle;
}
if (middle->index == fidx) {
return middle->fvalue;
} else if (middle->index < fidx) {
begin_ptr = middle;
} else {
end_ptr = middle;
}
}
// Value is missing
return nanf("");
} }
} }
}; };
@ -103,7 +111,7 @@ struct EllpackLoader {
bst_feature_t num_features, bst_row_t num_rows, bst_feature_t num_features, bst_row_t num_rows,
size_t entry_start) size_t entry_start)
: matrix{m} {} : matrix{m} {}
__device__ __forceinline__ float GetFvalue(int ridx, int fidx) const { __device__ __forceinline__ float GetElement(size_t ridx, size_t fidx) const {
auto gidx = matrix.GetBinIndex(ridx, fidx); auto gidx = matrix.GetBinIndex(ridx, fidx);
if (gidx == -1) { if (gidx == -1) {
return nan(""); return nan("");
@ -150,7 +158,7 @@ struct DeviceAdapterLoader {
__syncthreads(); __syncthreads();
} }
DEV_INLINE float GetFvalue(bst_row_t ridx, bst_feature_t fidx) const { DEV_INLINE float GetElement(size_t ridx, size_t fidx) const {
if (use_shared) { if (use_shared) {
return smem[threadIdx.x * columns + fidx]; return smem[threadIdx.x * columns + fidx];
} }
@ -163,7 +171,7 @@ __device__ float GetLeafWeight(bst_uint ridx, const RegTree::Node* tree,
Loader* loader) { Loader* loader) {
RegTree::Node n = tree[0]; RegTree::Node n = tree[0];
while (!n.IsLeaf()) { while (!n.IsLeaf()) {
float fvalue = loader->GetFvalue(ridx, n.SplitIndex()); float fvalue = loader->GetElement(ridx, n.SplitIndex());
// Missing value // Missing value
if (isnan(fvalue)) { if (isnan(fvalue)) {
n = tree[n.DefaultChild()]; n = tree[n.DefaultChild()];
@ -273,7 +281,8 @@ class GPUPredictor : public xgboost::Predictor {
use_shared = false; use_shared = false;
} }
size_t entry_start = 0; size_t entry_start = 0;
SparsePageView data{batch.data.DeviceSpan(), batch.offset.DeviceSpan()}; SparsePageView data(batch.data.DeviceSpan(), batch.offset.DeviceSpan(),
num_features);
dh::LaunchKernel {GRID_SIZE, BLOCK_THREADS, shared_memory_bytes} ( dh::LaunchKernel {GRID_SIZE, BLOCK_THREADS, shared_memory_bytes} (
PredictKernel<SparsePageLoader, SparsePageView>, PredictKernel<SparsePageLoader, SparsePageView>,
data, data,
@ -447,6 +456,60 @@ class GPUPredictor : public xgboost::Predictor {
} }
} }
void PredictContribution(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, unsigned ntree_limit,
std::vector<bst_float>* tree_weights,
bool approximate, int condition,
unsigned condition_feature) override {
if (approximate) {
LOG(FATAL) << "[Internal error]: " << __func__
<< " approximate is not implemented in GPU Predictor.";
}
uint32_t real_ntree_limit =
ntree_limit * model.learner_model_param->num_output_group;
if (real_ntree_limit == 0 || real_ntree_limit > model.trees.size()) {
real_ntree_limit = static_cast<uint32_t>(model.trees.size());
}
const int ngroup = model.learner_model_param->num_output_group;
CHECK_NE(ngroup, 0);
// allocate space for (number of features + bias) times the number of rows
std::vector<bst_float>& contribs = *out_contribs;
size_t contributions_columns =
model.learner_model_param->num_feature + 1; // +1 for bias
contribs.resize(p_fmat->Info().num_row_ * contributions_columns *
model.learner_model_param->num_output_group);
dh::TemporaryArray<float> phis(contribs.size(), 0.0);
p_fmat->Info().base_margin_.SetDevice(generic_param_->gpu_id);
const auto margin = p_fmat->Info().base_margin_.ConstDeviceSpan();
float base_score = model.learner_model_param->base_score;
auto d_phis = phis.data().get();
// Add the base margin term to last column
dh::LaunchN(
generic_param_->gpu_id,
p_fmat->Info().num_row_ * model.learner_model_param->num_output_group,
[=] __device__(size_t idx) {
d_phis[(idx + 1) * contributions_columns - 1] =
margin.empty() ? base_score : margin[idx];
});
const auto& paths = this->ExtractPaths(model, real_ntree_limit);
for (auto& batch : p_fmat->GetBatches<SparsePage>()) {
batch.data.SetDevice(generic_param_->gpu_id);
batch.offset.SetDevice(generic_param_->gpu_id);
SparsePageView X(batch.data.DeviceSpan(), batch.offset.DeviceSpan(),
model.learner_model_param->num_feature);
gpu_treeshap::GPUTreeShap(
X, paths, ngroup,
phis.data().get() + batch.base_rowid * contributions_columns);
}
dh::safe_cuda(cudaMemcpyAsync(contribs.data(), phis.data().get(),
sizeof(float) * phis.size(),
cudaMemcpyDefault));
}
protected: protected:
void InitOutPredictions(const MetaInfo& info, void InitOutPredictions(const MetaInfo& info,
HostDeviceVector<bst_float>* out_preds, HostDeviceVector<bst_float>* out_preds,
@ -478,16 +541,6 @@ class GPUPredictor : public xgboost::Predictor {
<< " is not implemented in GPU Predictor."; << " is not implemented in GPU Predictor.";
} }
void PredictContribution(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, unsigned ntree_limit,
std::vector<bst_float>* tree_weights,
bool approximate, int condition,
unsigned condition_feature) override {
LOG(FATAL) << "[Internal error]: " << __func__
<< " is not implemented in GPU Predictor.";
}
void PredictInteractionContributions(DMatrix* p_fmat, void PredictInteractionContributions(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs, std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, const gbm::GBTreeModel& model,
@ -510,6 +563,49 @@ class GPUPredictor : public xgboost::Predictor {
} }
} }
std::vector<gpu_treeshap::PathElement> ExtractPaths(
const gbm::GBTreeModel& model, size_t tree_limit) {
std::vector<gpu_treeshap::PathElement> paths;
size_t path_idx = 0;
CHECK_LE(tree_limit, model.trees.size());
for (auto i = 0ull; i < tree_limit; i++) {
const auto& tree = *model.trees.at(i);
size_t group = model.tree_info[i];
const auto& nodes = tree.GetNodes();
for (auto j = 0ull; j < nodes.size(); j++) {
if (nodes[j].IsLeaf() && !nodes[j].IsDeleted()) {
auto child = nodes[j];
float v = child.LeafValue();
size_t child_idx = j;
const float inf = std::numeric_limits<float>::infinity();
while (!child.IsRoot()) {
float child_cover = tree.Stat(child_idx).sum_hess;
float parent_cover = tree.Stat(child.Parent()).sum_hess;
float zero_fraction = child_cover / parent_cover;
CHECK(zero_fraction >= 0.0 && zero_fraction <= 1.0);
auto parent = nodes[child.Parent()];
CHECK(parent.LeftChild() == child_idx ||
parent.RightChild() == child_idx);
bool is_left_path = parent.LeftChild() == child_idx;
bool is_missing_path = (!parent.DefaultLeft() && !is_left_path) ||
(parent.DefaultLeft() && is_left_path);
float lower_bound = is_left_path ? -inf : parent.SplitCond();
float upper_bound = is_left_path ? parent.SplitCond() : inf;
paths.emplace_back(path_idx, parent.SplitIndex(), group,
lower_bound, upper_bound, is_missing_path,
zero_fraction, v);
child_idx = child.Parent();
child = parent;
}
// Root node has feature -1
paths.emplace_back(path_idx, -1, group, -inf, inf, false, 1.0, v);
path_idx++;
}
}
}
return paths;
}
std::mutex lock_; std::mutex lock_;
DeviceModel model_; DeviceModel model_;
size_t max_shared_memory_bytes_; size_t max_shared_memory_bytes_;

View File

@ -163,5 +163,61 @@ TEST(GPUPredictor, MGPU_InplacePredict) { // NOLINT
TEST(GpuPredictor, LesserFeatures) { TEST(GpuPredictor, LesserFeatures) {
TestPredictionWithLesserFeatures("gpu_predictor"); TestPredictionWithLesserFeatures("gpu_predictor");
} }
// Very basic test of empty model
TEST(GPUPredictor, ShapStump) {
cudaSetDevice(0);
LearnerModelParam param;
param.num_feature = 1;
param.num_output_group = 1;
param.base_score = 0.5;
gbm::GBTreeModel model(&param);
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
model.CommitModel(std::move(trees), 0);
auto gpu_lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &gpu_lparam));
gpu_predictor->Configure({});
std::vector<float > phis;
auto dmat = RandomDataGenerator(3, 1, 0).GenerateDMatrix();
gpu_predictor->PredictContribution(dmat.get(), &phis, model);
EXPECT_EQ(phis[0], 0.0);
EXPECT_EQ(phis[1], param.base_score);
EXPECT_EQ(phis[2], 0.0);
EXPECT_EQ(phis[3], param.base_score);
EXPECT_EQ(phis[4], 0.0);
EXPECT_EQ(phis[5], param.base_score);
}
TEST(GPUPredictor, Shap) {
LearnerModelParam param;
param.num_feature = 1;
param.num_output_group = 1;
param.base_score = 0.5;
gbm::GBTreeModel model(&param);
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
trees[0]->ExpandNode(0, 0, 0.5, true, 1.0, -1.0, 1.0, 0.0, 5.0, 2.0, 3.0);
model.CommitModel(std::move(trees), 0);
auto gpu_lparam = CreateEmptyGenericParam(0);
auto cpu_lparam = CreateEmptyGenericParam(-1);
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &gpu_lparam));
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &cpu_lparam));
gpu_predictor->Configure({});
cpu_predictor->Configure({});
std::vector<float > phis;
std::vector<float > cpu_phis;
auto dmat = RandomDataGenerator(3, 1, 0).GenerateDMatrix();
gpu_predictor->PredictContribution(dmat.get(), &phis, model);
cpu_predictor->PredictContribution(dmat.get(), &cpu_phis, model);
for(auto i = 0ull; i < phis.size(); i++)
{
EXPECT_NEAR(cpu_phis[i], phis[i], 1e-3);
}
}
} // namespace predictor } // namespace predictor
} // namespace xgboost } // namespace xgboost

View File

@ -4,6 +4,7 @@ import pytest
import numpy as np import numpy as np
import xgboost as xgb import xgboost as xgb
from hypothesis import given, strategies, assume, settings, note
sys.path.append("tests/python") sys.path.append("tests/python")
import testing as tm import testing as tm
@ -11,6 +12,12 @@ from test_predict import run_threaded_predict # noqa
rng = np.random.RandomState(1994) rng = np.random.RandomState(1994)
shap_parameter_strategy = strategies.fixed_dictionaries({
'max_depth': strategies.integers(0, 11),
'max_leaves': strategies.integers(0, 256),
'num_parallel_tree': strategies.sampled_from([1, 10]),
})
class TestGPUPredict(unittest.TestCase): class TestGPUPredict(unittest.TestCase):
def test_predict(self): def test_predict(self):
@ -149,7 +156,8 @@ class TestGPUPredict(unittest.TestCase):
# Don't do this on Windows, see issue #5793 # Don't do this on Windows, see issue #5793
if sys.platform.startswith("win"): if sys.platform.startswith("win"):
pytest.skip('Multi-threaded in-place prediction with cuPy is not working on Windows') pytest.skip(
'Multi-threaded in-place prediction with cuPy is not working on Windows')
for i in range(10): for i in range(10):
run_threaded_predict(X, rows, predict_dense) run_threaded_predict(X, rows, predict_dense)
@ -185,3 +193,24 @@ class TestGPUPredict(unittest.TestCase):
for i in range(10): for i in range(10):
run_threaded_predict(X, rows, predict_df) run_threaded_predict(X, rows, predict_df)
@given(strategies.integers(1, 200),
tm.dataset_strategy, shap_parameter_strategy, strategies.booleans())
@settings(deadline=None)
def test_shap(self, num_rounds, dataset, param, all_rows):
param.update({"predictor": "gpu_predictor", "gpu_id": 0})
param = dataset.set_params(param)
dmat = dataset.get_dmat()
bst = xgb.train(param, dmat, num_rounds)
if all_rows:
test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin)
else:
test_dmat = xgb.DMatrix(dataset.X[0:1, :])
shap = bst.predict(test_dmat, pred_contribs=True)
bst.set_param({"predictor": "cpu_predictor"})
cpu_shap = bst.predict(test_dmat, pred_contribs=True)
margin = bst.predict(test_dmat, output_margin=True)
assert np.allclose(shap, cpu_shap, 1e-3, 1e-3)
# feature contributions should add up to predictions
assume(len(dataset.y) > 0)
assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-3, 1e-3)

View File

@ -131,6 +131,7 @@ class TestDataset:
self.metric = metric self.metric = metric
self.X, self.y = get_dataset() self.X, self.y = get_dataset()
self.w = None self.w = None
self.margin = None
def set_params(self, params_in): def set_params(self, params_in):
params_in['objective'] = self.objective params_in['objective'] = self.objective
@ -140,13 +141,13 @@ class TestDataset:
return params_in return params_in
def get_dmat(self): def get_dmat(self):
return xgb.DMatrix(self.X, self.y, self.w) return xgb.DMatrix(self.X, self.y, self.w, base_margin=self.margin)
def get_device_dmat(self): def get_device_dmat(self):
w = None if self.w is None else cp.array(self.w) w = None if self.w is None else cp.array(self.w)
X = cp.array(self.X, dtype=np.float32) X = cp.array(self.X, dtype=np.float32)
y = cp.array(self.y, dtype=np.float32) y = cp.array(self.y, dtype=np.float32)
return xgb.DeviceQuantileDMatrix(X, y, w) return xgb.DeviceQuantileDMatrix(X, y, w, base_margin=self.margin)
def get_external_dmat(self): def get_external_dmat(self):
with tempfile.TemporaryDirectory() as tmpdir: with tempfile.TemporaryDirectory() as tmpdir:
@ -157,7 +158,7 @@ class TestDataset:
uri = path + '?format=csv&label_column=0#tmptmp_' uri = path + '?format=csv&label_column=0#tmptmp_'
# The uri looks like: # The uri looks like:
# 'tmptmp_1234.csv?format=csv&label_column=0#tmptmp_' # 'tmptmp_1234.csv?format=csv&label_column=0#tmptmp_'
return xgb.DMatrix(uri, weight=self.w) return xgb.DMatrix(uri, weight=self.w, base_margin=self.margin)
def __repr__(self): def __repr__(self):
return self.name return self.name
@ -206,16 +207,23 @@ _unweighted_datasets_strategy = strategies.sampled_from(
@strategies.composite @strategies.composite
def _dataset_and_weight(draw): def _dataset_weight_margin(draw):
data = draw(_unweighted_datasets_strategy) data = draw(_unweighted_datasets_strategy)
if draw(strategies.booleans()): if draw(strategies.booleans()):
data.w = draw(arrays(np.float64, (len(data.y)), elements=strategies.floats(0.1, 2.0))) data.w = draw(arrays(np.float64, (len(data.y)), elements=strategies.floats(0.1, 2.0)))
if draw(strategies.booleans()):
num_class = 1
if data.objective == "multi:softmax":
num_class = int(np.max(data.y) + 1)
data.margin = draw(
arrays(np.float64, (len(data.y) * num_class), elements=strategies.floats(0.5, 1.0)))
return data return data
# A strategy for drawing from a set of example datasets # A strategy for drawing from a set of example datasets
# May add random weights to the dataset # May add random weights to the dataset
dataset_strategy = _dataset_and_weight() dataset_strategy = _dataset_weight_margin()
def non_increasing(L, tolerance=1e-4): def non_increasing(L, tolerance=1e-4):