Avoid warning from NVCC. (#10757)
This commit is contained in:
parent
5cc7c735e5
commit
98ac153265
@ -1,5 +1,5 @@
|
||||
/**
|
||||
* Copyright 2021-2023 by XGBoost Contributors
|
||||
* Copyright 2021-2024, XGBoost Contributors
|
||||
*/
|
||||
#include "../test_evaluate_splits.h"
|
||||
|
||||
@ -11,12 +11,14 @@
|
||||
#include <xgboost/tree_model.h> // for RegTree, RTreeNodeStat
|
||||
|
||||
#include <memory> // for make_shared, shared_ptr, addressof
|
||||
#include <numeric> // for iota
|
||||
#include <tuple> // for make_tuple
|
||||
|
||||
#include "../../../../src/common/hist_util.h" // for HistCollection, HistogramCuts
|
||||
#include "../../../../src/common/random.h" // for ColumnSampler
|
||||
#include "../../../../src/common/row_set.h" // for RowSetCollection
|
||||
#include "../../../../src/data/gradient_index.h" // for GHistIndexMatrix
|
||||
#include "../../../../src/tree/hist/evaluate_splits.h" // for HistEvaluator
|
||||
#include "../../../../src/tree/hist/evaluate_splits.h" // for HistEvaluator, TreeEvaluator
|
||||
#include "../../../../src/tree/hist/expand_entry.h" // for CPUExpandEntry
|
||||
#include "../../../../src/tree/hist/hist_cache.h" // for BoundedHistCollection
|
||||
#include "../../../../src/tree/hist/param.h" // for HistMakerTrainParam
|
||||
@ -24,6 +26,74 @@
|
||||
#include "../../helpers.h" // for RandomDataGenerator, AllThreadsFo...
|
||||
|
||||
namespace xgboost::tree {
|
||||
void TestPartitionBasedSplit::SetUp() {
|
||||
param_.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
|
||||
sorted_idx_.resize(n_bins_);
|
||||
std::iota(sorted_idx_.begin(), sorted_idx_.end(), 0);
|
||||
|
||||
info_.num_col_ = 1;
|
||||
|
||||
cuts_.cut_ptrs_.Resize(2);
|
||||
cuts_.SetCategorical(true, n_bins_);
|
||||
auto &h_cuts = cuts_.cut_ptrs_.HostVector();
|
||||
h_cuts[0] = 0;
|
||||
h_cuts[1] = n_bins_;
|
||||
auto &h_vals = cuts_.cut_values_.HostVector();
|
||||
h_vals.resize(n_bins_);
|
||||
std::iota(h_vals.begin(), h_vals.end(), 0.0);
|
||||
|
||||
cuts_.min_vals_.Resize(1);
|
||||
|
||||
Context ctx;
|
||||
HistMakerTrainParam hist_param;
|
||||
hist_.Reset(cuts_.TotalBins(), hist_param.MaxCachedHistNodes(ctx.Device()));
|
||||
hist_.AllocateHistograms({0});
|
||||
auto node_hist = hist_[0];
|
||||
|
||||
SimpleLCG lcg;
|
||||
SimpleRealUniformDistribution<double> grad_dist{-4.0, 4.0};
|
||||
SimpleRealUniformDistribution<double> hess_dist{0.0, 4.0};
|
||||
|
||||
for (auto &e : node_hist) {
|
||||
e = GradientPairPrecise{grad_dist(&lcg), hess_dist(&lcg)};
|
||||
total_gpair_ += e;
|
||||
}
|
||||
|
||||
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow hist,
|
||||
GradientPairPrecise parent_sum) {
|
||||
int32_t best_thresh = -1;
|
||||
float best_score{-std::numeric_limits<float>::infinity()};
|
||||
TreeEvaluator evaluator{param_, static_cast<bst_feature_t>(n_feat), DeviceOrd::CPU()};
|
||||
auto tree_evaluator = evaluator.GetEvaluator<TrainParam>();
|
||||
GradientPairPrecise left_sum;
|
||||
auto parent_gain = tree_evaluator.CalcGain(0, param_, GradStats{total_gpair_});
|
||||
for (size_t i = 0; i < hist.size() - 1; ++i) {
|
||||
left_sum += hist[i];
|
||||
auto right_sum = parent_sum - left_sum;
|
||||
auto gain =
|
||||
tree_evaluator.CalcSplitGain(param_, 0, 0, GradStats{left_sum}, GradStats{right_sum}) -
|
||||
parent_gain;
|
||||
if (gain > best_score) {
|
||||
best_score = gain;
|
||||
best_thresh = i;
|
||||
}
|
||||
}
|
||||
return std::make_tuple(best_thresh, best_score);
|
||||
};
|
||||
|
||||
// enumerate all possible partitions to find the optimal split
|
||||
do {
|
||||
std::vector<GradientPairPrecise> sorted_hist(node_hist.size());
|
||||
for (size_t i = 0; i < sorted_hist.size(); ++i) {
|
||||
sorted_hist[i] = node_hist[sorted_idx_[i]];
|
||||
}
|
||||
auto [thresh, score] = enumerate({sorted_hist}, total_gpair_);
|
||||
if (score > best_score_) {
|
||||
best_score_ = score;
|
||||
}
|
||||
} while (std::next_permutation(sorted_idx_.begin(), sorted_idx_.end()));
|
||||
}
|
||||
|
||||
void TestEvaluateSplits(bool force_read_by_column) {
|
||||
Context ctx;
|
||||
ctx.nthread = 4;
|
||||
|
||||
@ -12,20 +12,15 @@
|
||||
#include <cstddef> // for size_t
|
||||
#include <cstdint> // for int32_t, uint64_t, uint32_t
|
||||
#include <limits> // for numeric_limits
|
||||
#include <numeric> // for iota
|
||||
#include <tuple> // for make_tuple, tie, tuple
|
||||
#include <vector> // for vector
|
||||
|
||||
#include "../../../src/common/hist_util.h" // for HistogramCuts, HistCollection, GHistRow
|
||||
#include "../../../src/tree/hist/hist_cache.h" // for HistogramCollection
|
||||
#include "../../../src/tree/hist/param.h" // for HistMakerTrainParam
|
||||
#include "../../../src/tree/param.h" // for TrainParam, GradStats
|
||||
#include "../../../src/tree/split_evaluator.h" // for TreeEvaluator
|
||||
#include "../helpers.h" // for SimpleLCG, SimpleRealUniformDistribution
|
||||
|
||||
namespace xgboost::tree {
|
||||
/**
|
||||
* \brief Enumerate all possible partitions for categorical split.
|
||||
* @brief Enumerate all possible partitions for categorical split.
|
||||
*/
|
||||
class TestPartitionBasedSplit : public ::testing::Test {
|
||||
protected:
|
||||
@ -38,73 +33,7 @@ class TestPartitionBasedSplit : public ::testing::Test {
|
||||
BoundedHistCollection hist_;
|
||||
GradientPairPrecise total_gpair_;
|
||||
|
||||
void SetUp() override {
|
||||
param_.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
|
||||
sorted_idx_.resize(n_bins_);
|
||||
std::iota(sorted_idx_.begin(), sorted_idx_.end(), 0);
|
||||
|
||||
info_.num_col_ = 1;
|
||||
|
||||
cuts_.cut_ptrs_.Resize(2);
|
||||
cuts_.SetCategorical(true, n_bins_);
|
||||
auto &h_cuts = cuts_.cut_ptrs_.HostVector();
|
||||
h_cuts[0] = 0;
|
||||
h_cuts[1] = n_bins_;
|
||||
auto &h_vals = cuts_.cut_values_.HostVector();
|
||||
h_vals.resize(n_bins_);
|
||||
std::iota(h_vals.begin(), h_vals.end(), 0.0);
|
||||
|
||||
cuts_.min_vals_.Resize(1);
|
||||
|
||||
Context ctx;
|
||||
HistMakerTrainParam hist_param;
|
||||
hist_.Reset(cuts_.TotalBins(), hist_param.MaxCachedHistNodes(ctx.Device()));
|
||||
hist_.AllocateHistograms({0});
|
||||
auto node_hist = hist_[0];
|
||||
|
||||
SimpleLCG lcg;
|
||||
SimpleRealUniformDistribution<double> grad_dist{-4.0, 4.0};
|
||||
SimpleRealUniformDistribution<double> hess_dist{0.0, 4.0};
|
||||
|
||||
for (auto &e : node_hist) {
|
||||
e = GradientPairPrecise{grad_dist(&lcg), hess_dist(&lcg)};
|
||||
total_gpair_ += e;
|
||||
}
|
||||
|
||||
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow hist,
|
||||
GradientPairPrecise parent_sum) {
|
||||
int32_t best_thresh = -1;
|
||||
float best_score{-std::numeric_limits<float>::infinity()};
|
||||
TreeEvaluator evaluator{param_, static_cast<bst_feature_t>(n_feat), DeviceOrd::CPU()};
|
||||
auto tree_evaluator = evaluator.GetEvaluator<TrainParam>();
|
||||
GradientPairPrecise left_sum;
|
||||
auto parent_gain = tree_evaluator.CalcGain(0, param_, GradStats{total_gpair_});
|
||||
for (size_t i = 0; i < hist.size() - 1; ++i) {
|
||||
left_sum += hist[i];
|
||||
auto right_sum = parent_sum - left_sum;
|
||||
auto gain =
|
||||
tree_evaluator.CalcSplitGain(param_, 0, 0, GradStats{left_sum}, GradStats{right_sum}) -
|
||||
parent_gain;
|
||||
if (gain > best_score) {
|
||||
best_score = gain;
|
||||
best_thresh = i;
|
||||
}
|
||||
}
|
||||
return std::make_tuple(best_thresh, best_score);
|
||||
};
|
||||
|
||||
// enumerate all possible partitions to find the optimal split
|
||||
do {
|
||||
std::vector<GradientPairPrecise> sorted_hist(node_hist.size());
|
||||
for (size_t i = 0; i < sorted_hist.size(); ++i) {
|
||||
sorted_hist[i] = node_hist[sorted_idx_[i]];
|
||||
}
|
||||
auto [thresh, score] = enumerate({sorted_hist}, total_gpair_);
|
||||
if (score > best_score_) {
|
||||
best_score_ = score;
|
||||
}
|
||||
} while (std::next_permutation(sorted_idx_.begin(), sorted_idx_.end()));
|
||||
}
|
||||
void SetUp() override;
|
||||
};
|
||||
|
||||
inline auto MakeCutsForTest(std::vector<float> values, std::vector<uint32_t> ptrs,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user