Avoid warning from NVCC. (#10757)
This commit is contained in:
parent
5cc7c735e5
commit
98ac153265
@ -1,5 +1,5 @@
|
|||||||
/**
|
/**
|
||||||
* Copyright 2021-2023 by XGBoost Contributors
|
* Copyright 2021-2024, XGBoost Contributors
|
||||||
*/
|
*/
|
||||||
#include "../test_evaluate_splits.h"
|
#include "../test_evaluate_splits.h"
|
||||||
|
|
||||||
@ -10,13 +10,15 @@
|
|||||||
#include <xgboost/logging.h> // for CHECK_EQ
|
#include <xgboost/logging.h> // for CHECK_EQ
|
||||||
#include <xgboost/tree_model.h> // for RegTree, RTreeNodeStat
|
#include <xgboost/tree_model.h> // for RegTree, RTreeNodeStat
|
||||||
|
|
||||||
#include <memory> // for make_shared, shared_ptr, addressof
|
#include <memory> // for make_shared, shared_ptr, addressof
|
||||||
|
#include <numeric> // for iota
|
||||||
|
#include <tuple> // for make_tuple
|
||||||
|
|
||||||
#include "../../../../src/common/hist_util.h" // for HistCollection, HistogramCuts
|
#include "../../../../src/common/hist_util.h" // for HistCollection, HistogramCuts
|
||||||
#include "../../../../src/common/random.h" // for ColumnSampler
|
#include "../../../../src/common/random.h" // for ColumnSampler
|
||||||
#include "../../../../src/common/row_set.h" // for RowSetCollection
|
#include "../../../../src/common/row_set.h" // for RowSetCollection
|
||||||
#include "../../../../src/data/gradient_index.h" // for GHistIndexMatrix
|
#include "../../../../src/data/gradient_index.h" // for GHistIndexMatrix
|
||||||
#include "../../../../src/tree/hist/evaluate_splits.h" // for HistEvaluator
|
#include "../../../../src/tree/hist/evaluate_splits.h" // for HistEvaluator, TreeEvaluator
|
||||||
#include "../../../../src/tree/hist/expand_entry.h" // for CPUExpandEntry
|
#include "../../../../src/tree/hist/expand_entry.h" // for CPUExpandEntry
|
||||||
#include "../../../../src/tree/hist/hist_cache.h" // for BoundedHistCollection
|
#include "../../../../src/tree/hist/hist_cache.h" // for BoundedHistCollection
|
||||||
#include "../../../../src/tree/hist/param.h" // for HistMakerTrainParam
|
#include "../../../../src/tree/hist/param.h" // for HistMakerTrainParam
|
||||||
@ -24,6 +26,74 @@
|
|||||||
#include "../../helpers.h" // for RandomDataGenerator, AllThreadsFo...
|
#include "../../helpers.h" // for RandomDataGenerator, AllThreadsFo...
|
||||||
|
|
||||||
namespace xgboost::tree {
|
namespace xgboost::tree {
|
||||||
|
void TestPartitionBasedSplit::SetUp() {
|
||||||
|
param_.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
|
||||||
|
sorted_idx_.resize(n_bins_);
|
||||||
|
std::iota(sorted_idx_.begin(), sorted_idx_.end(), 0);
|
||||||
|
|
||||||
|
info_.num_col_ = 1;
|
||||||
|
|
||||||
|
cuts_.cut_ptrs_.Resize(2);
|
||||||
|
cuts_.SetCategorical(true, n_bins_);
|
||||||
|
auto &h_cuts = cuts_.cut_ptrs_.HostVector();
|
||||||
|
h_cuts[0] = 0;
|
||||||
|
h_cuts[1] = n_bins_;
|
||||||
|
auto &h_vals = cuts_.cut_values_.HostVector();
|
||||||
|
h_vals.resize(n_bins_);
|
||||||
|
std::iota(h_vals.begin(), h_vals.end(), 0.0);
|
||||||
|
|
||||||
|
cuts_.min_vals_.Resize(1);
|
||||||
|
|
||||||
|
Context ctx;
|
||||||
|
HistMakerTrainParam hist_param;
|
||||||
|
hist_.Reset(cuts_.TotalBins(), hist_param.MaxCachedHistNodes(ctx.Device()));
|
||||||
|
hist_.AllocateHistograms({0});
|
||||||
|
auto node_hist = hist_[0];
|
||||||
|
|
||||||
|
SimpleLCG lcg;
|
||||||
|
SimpleRealUniformDistribution<double> grad_dist{-4.0, 4.0};
|
||||||
|
SimpleRealUniformDistribution<double> hess_dist{0.0, 4.0};
|
||||||
|
|
||||||
|
for (auto &e : node_hist) {
|
||||||
|
e = GradientPairPrecise{grad_dist(&lcg), hess_dist(&lcg)};
|
||||||
|
total_gpair_ += e;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow hist,
|
||||||
|
GradientPairPrecise parent_sum) {
|
||||||
|
int32_t best_thresh = -1;
|
||||||
|
float best_score{-std::numeric_limits<float>::infinity()};
|
||||||
|
TreeEvaluator evaluator{param_, static_cast<bst_feature_t>(n_feat), DeviceOrd::CPU()};
|
||||||
|
auto tree_evaluator = evaluator.GetEvaluator<TrainParam>();
|
||||||
|
GradientPairPrecise left_sum;
|
||||||
|
auto parent_gain = tree_evaluator.CalcGain(0, param_, GradStats{total_gpair_});
|
||||||
|
for (size_t i = 0; i < hist.size() - 1; ++i) {
|
||||||
|
left_sum += hist[i];
|
||||||
|
auto right_sum = parent_sum - left_sum;
|
||||||
|
auto gain =
|
||||||
|
tree_evaluator.CalcSplitGain(param_, 0, 0, GradStats{left_sum}, GradStats{right_sum}) -
|
||||||
|
parent_gain;
|
||||||
|
if (gain > best_score) {
|
||||||
|
best_score = gain;
|
||||||
|
best_thresh = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return std::make_tuple(best_thresh, best_score);
|
||||||
|
};
|
||||||
|
|
||||||
|
// enumerate all possible partitions to find the optimal split
|
||||||
|
do {
|
||||||
|
std::vector<GradientPairPrecise> sorted_hist(node_hist.size());
|
||||||
|
for (size_t i = 0; i < sorted_hist.size(); ++i) {
|
||||||
|
sorted_hist[i] = node_hist[sorted_idx_[i]];
|
||||||
|
}
|
||||||
|
auto [thresh, score] = enumerate({sorted_hist}, total_gpair_);
|
||||||
|
if (score > best_score_) {
|
||||||
|
best_score_ = score;
|
||||||
|
}
|
||||||
|
} while (std::next_permutation(sorted_idx_.begin(), sorted_idx_.end()));
|
||||||
|
}
|
||||||
|
|
||||||
void TestEvaluateSplits(bool force_read_by_column) {
|
void TestEvaluateSplits(bool force_read_by_column) {
|
||||||
Context ctx;
|
Context ctx;
|
||||||
ctx.nthread = 4;
|
ctx.nthread = 4;
|
||||||
|
|||||||
@ -12,20 +12,15 @@
|
|||||||
#include <cstddef> // for size_t
|
#include <cstddef> // for size_t
|
||||||
#include <cstdint> // for int32_t, uint64_t, uint32_t
|
#include <cstdint> // for int32_t, uint64_t, uint32_t
|
||||||
#include <limits> // for numeric_limits
|
#include <limits> // for numeric_limits
|
||||||
#include <numeric> // for iota
|
|
||||||
#include <tuple> // for make_tuple, tie, tuple
|
|
||||||
#include <vector> // for vector
|
#include <vector> // for vector
|
||||||
|
|
||||||
#include "../../../src/common/hist_util.h" // for HistogramCuts, HistCollection, GHistRow
|
#include "../../../src/common/hist_util.h" // for HistogramCuts, HistCollection, GHistRow
|
||||||
#include "../../../src/tree/hist/hist_cache.h" // for HistogramCollection
|
#include "../../../src/tree/hist/hist_cache.h" // for HistogramCollection
|
||||||
#include "../../../src/tree/hist/param.h" // for HistMakerTrainParam
|
|
||||||
#include "../../../src/tree/param.h" // for TrainParam, GradStats
|
#include "../../../src/tree/param.h" // for TrainParam, GradStats
|
||||||
#include "../../../src/tree/split_evaluator.h" // for TreeEvaluator
|
|
||||||
#include "../helpers.h" // for SimpleLCG, SimpleRealUniformDistribution
|
|
||||||
|
|
||||||
namespace xgboost::tree {
|
namespace xgboost::tree {
|
||||||
/**
|
/**
|
||||||
* \brief Enumerate all possible partitions for categorical split.
|
* @brief Enumerate all possible partitions for categorical split.
|
||||||
*/
|
*/
|
||||||
class TestPartitionBasedSplit : public ::testing::Test {
|
class TestPartitionBasedSplit : public ::testing::Test {
|
||||||
protected:
|
protected:
|
||||||
@ -38,73 +33,7 @@ class TestPartitionBasedSplit : public ::testing::Test {
|
|||||||
BoundedHistCollection hist_;
|
BoundedHistCollection hist_;
|
||||||
GradientPairPrecise total_gpair_;
|
GradientPairPrecise total_gpair_;
|
||||||
|
|
||||||
void SetUp() override {
|
void SetUp() override;
|
||||||
param_.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
|
|
||||||
sorted_idx_.resize(n_bins_);
|
|
||||||
std::iota(sorted_idx_.begin(), sorted_idx_.end(), 0);
|
|
||||||
|
|
||||||
info_.num_col_ = 1;
|
|
||||||
|
|
||||||
cuts_.cut_ptrs_.Resize(2);
|
|
||||||
cuts_.SetCategorical(true, n_bins_);
|
|
||||||
auto &h_cuts = cuts_.cut_ptrs_.HostVector();
|
|
||||||
h_cuts[0] = 0;
|
|
||||||
h_cuts[1] = n_bins_;
|
|
||||||
auto &h_vals = cuts_.cut_values_.HostVector();
|
|
||||||
h_vals.resize(n_bins_);
|
|
||||||
std::iota(h_vals.begin(), h_vals.end(), 0.0);
|
|
||||||
|
|
||||||
cuts_.min_vals_.Resize(1);
|
|
||||||
|
|
||||||
Context ctx;
|
|
||||||
HistMakerTrainParam hist_param;
|
|
||||||
hist_.Reset(cuts_.TotalBins(), hist_param.MaxCachedHistNodes(ctx.Device()));
|
|
||||||
hist_.AllocateHistograms({0});
|
|
||||||
auto node_hist = hist_[0];
|
|
||||||
|
|
||||||
SimpleLCG lcg;
|
|
||||||
SimpleRealUniformDistribution<double> grad_dist{-4.0, 4.0};
|
|
||||||
SimpleRealUniformDistribution<double> hess_dist{0.0, 4.0};
|
|
||||||
|
|
||||||
for (auto &e : node_hist) {
|
|
||||||
e = GradientPairPrecise{grad_dist(&lcg), hess_dist(&lcg)};
|
|
||||||
total_gpair_ += e;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow hist,
|
|
||||||
GradientPairPrecise parent_sum) {
|
|
||||||
int32_t best_thresh = -1;
|
|
||||||
float best_score{-std::numeric_limits<float>::infinity()};
|
|
||||||
TreeEvaluator evaluator{param_, static_cast<bst_feature_t>(n_feat), DeviceOrd::CPU()};
|
|
||||||
auto tree_evaluator = evaluator.GetEvaluator<TrainParam>();
|
|
||||||
GradientPairPrecise left_sum;
|
|
||||||
auto parent_gain = tree_evaluator.CalcGain(0, param_, GradStats{total_gpair_});
|
|
||||||
for (size_t i = 0; i < hist.size() - 1; ++i) {
|
|
||||||
left_sum += hist[i];
|
|
||||||
auto right_sum = parent_sum - left_sum;
|
|
||||||
auto gain =
|
|
||||||
tree_evaluator.CalcSplitGain(param_, 0, 0, GradStats{left_sum}, GradStats{right_sum}) -
|
|
||||||
parent_gain;
|
|
||||||
if (gain > best_score) {
|
|
||||||
best_score = gain;
|
|
||||||
best_thresh = i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return std::make_tuple(best_thresh, best_score);
|
|
||||||
};
|
|
||||||
|
|
||||||
// enumerate all possible partitions to find the optimal split
|
|
||||||
do {
|
|
||||||
std::vector<GradientPairPrecise> sorted_hist(node_hist.size());
|
|
||||||
for (size_t i = 0; i < sorted_hist.size(); ++i) {
|
|
||||||
sorted_hist[i] = node_hist[sorted_idx_[i]];
|
|
||||||
}
|
|
||||||
auto [thresh, score] = enumerate({sorted_hist}, total_gpair_);
|
|
||||||
if (score > best_score_) {
|
|
||||||
best_score_ = score;
|
|
||||||
}
|
|
||||||
} while (std::next_permutation(sorted_idx_.begin(), sorted_idx_.end()));
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
inline auto MakeCutsForTest(std::vector<float> values, std::vector<uint32_t> ptrs,
|
inline auto MakeCutsForTest(std::vector<float> values, std::vector<uint32_t> ptrs,
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user