Fix dask API sphinx docstrings (#4507)
* Fix dask API sphinx docstrings * Update GPU docs page
This commit is contained in:
parent
3f7e5d9c47
commit
972f693eaf
@ -67,11 +67,6 @@ The experimental parameter ``single_precision_histogram`` can be set to True to
|
|||||||
|
|
||||||
The device ordinal can be selected using the ``gpu_id`` parameter, which defaults to 0.
|
The device ordinal can be selected using the ``gpu_id`` parameter, which defaults to 0.
|
||||||
|
|
||||||
Multiple GPUs can be used with the ``gpu_hist`` tree method using the ``n_gpus`` parameter. which defaults to 1. If this is set to -1 all available GPUs will be used. If ``gpu_id`` is specified as non-zero, the selected gpu devices will be from ``gpu_id`` to ``gpu_id+n_gpus``, please note that ``gpu_id+n_gpus`` must be less than or equal to the number of available GPUs on your system. As with GPU vs. CPU, multi-GPU will not always be faster than a single GPU due to PCI bus bandwidth that can limit performance.
|
|
||||||
|
|
||||||
.. note:: Enabling multi-GPU training
|
|
||||||
|
|
||||||
Default installation may not enable multi-GPU training. To use multiple GPUs, make sure to read :ref:`build_gpu_support`.
|
|
||||||
|
|
||||||
The GPU algorithms currently work with CLI, Python and R packages. See :doc:`/build` for details.
|
The GPU algorithms currently work with CLI, Python and R packages. See :doc:`/build` for details.
|
||||||
|
|
||||||
@ -82,6 +77,24 @@ The GPU algorithms currently work with CLI, Python and R packages. See :doc:`/bu
|
|||||||
param['max_bin'] = 16
|
param['max_bin'] = 16
|
||||||
param['tree_method'] = 'gpu_hist'
|
param['tree_method'] = 'gpu_hist'
|
||||||
|
|
||||||
|
|
||||||
|
Single Node Multi-GPU
|
||||||
|
=====================
|
||||||
|
Multiple GPUs can be used with the ``gpu_hist`` tree method using the ``n_gpus`` parameter. which defaults to 1. If this is set to -1 all available GPUs will be used. If ``gpu_id`` is specified as non-zero, the selected gpu devices will be from ``gpu_id`` to ``gpu_id+n_gpus``, please note that ``gpu_id+n_gpus`` must be less than or equal to the number of available GPUs on your system. As with GPU vs. CPU, multi-GPU will not always be faster than a single GPU due to PCI bus bandwidth that can limit performance.
|
||||||
|
|
||||||
|
.. note:: Enabling multi-GPU training
|
||||||
|
|
||||||
|
Default installation may not enable multi-GPU training. To use multiple GPUs, make sure to read :ref:`build_gpu_support`.
|
||||||
|
XGBoost supports multi-GPU training on a single machine via specifying the `n_gpus' parameter.
|
||||||
|
|
||||||
|
|
||||||
|
Multi-node Multi-GPU Training
|
||||||
|
=============================
|
||||||
|
XGBoost supports fully distributed GPU training using `Dask
|
||||||
|
<https://dask.org/>`_. See Python documentation :ref:`dask_api` and worked examples `here
|
||||||
|
<https://github.com/dmlc/xgboost/tree/master/demo/dask>`_.
|
||||||
|
|
||||||
|
|
||||||
Objective functions
|
Objective functions
|
||||||
===================
|
===================
|
||||||
Most of the objective functions implemented in XGBoost can be run on GPU. Following table shows current support status.
|
Most of the objective functions implemented in XGBoost can be run on GPU. Following table shows current support status.
|
||||||
@ -209,6 +222,7 @@ References
|
|||||||
Contributors
|
Contributors
|
||||||
=======
|
=======
|
||||||
Many thanks to the following contributors (alphabetical order):
|
Many thanks to the following contributors (alphabetical order):
|
||||||
|
|
||||||
* Andrey Adinets
|
* Andrey Adinets
|
||||||
* Jiaming Yuan
|
* Jiaming Yuan
|
||||||
* Jonathan C. McKinney
|
* Jonathan C. McKinney
|
||||||
|
|||||||
@ -74,6 +74,8 @@ Callback API
|
|||||||
|
|
||||||
.. autofunction:: xgboost.callback.early_stop
|
.. autofunction:: xgboost.callback.early_stop
|
||||||
|
|
||||||
|
.. _dask_api:
|
||||||
|
|
||||||
Dask API
|
Dask API
|
||||||
--------
|
--------
|
||||||
.. automodule:: xgboost.dask
|
.. automodule:: xgboost.dask
|
||||||
@ -83,3 +85,4 @@ Dask API
|
|||||||
.. autofunction:: xgboost.dask.create_worker_dmatrix
|
.. autofunction:: xgboost.dask.create_worker_dmatrix
|
||||||
|
|
||||||
.. autofunction:: xgboost.dask.get_local_data
|
.. autofunction:: xgboost.dask.get_local_data
|
||||||
|
|
||||||
|
|||||||
@ -43,6 +43,7 @@ def _start_tracker(n_workers):
|
|||||||
def get_local_data(data):
|
def get_local_data(data):
|
||||||
"""
|
"""
|
||||||
Unpacks a distributed data object to get the rows local to this worker
|
Unpacks a distributed data object to get the rows local to this worker
|
||||||
|
|
||||||
:param data: A distributed dask data object
|
:param data: A distributed dask data object
|
||||||
:return: Local data partition e.g. numpy or pandas
|
:return: Local data partition e.g. numpy or pandas
|
||||||
"""
|
"""
|
||||||
@ -107,6 +108,7 @@ def run(client, func, *args):
|
|||||||
dask by default, unless the user overrides the nthread parameter.
|
dask by default, unless the user overrides the nthread parameter.
|
||||||
|
|
||||||
Note: Windows platforms are not officially supported. Contributions are welcome here.
|
Note: Windows platforms are not officially supported. Contributions are welcome here.
|
||||||
|
|
||||||
:param client: Dask client representing the cluster
|
:param client: Dask client representing the cluster
|
||||||
:param func: Python function to be executed by each worker. Typically contains xgboost
|
:param func: Python function to be executed by each worker. Typically contains xgboost
|
||||||
training code.
|
training code.
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user