early stopping for CV (python)
This commit is contained in:
parent
190e58a8c6
commit
95cc900b1f
@ -292,8 +292,8 @@ def aggcv(rlist, show_stdv=True, show_progress=None, as_pandas=True):
|
||||
|
||||
|
||||
def cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(),
|
||||
obj=None, feval=None, fpreproc=None, as_pandas=True,
|
||||
show_progress=None, show_stdv=True, seed=0):
|
||||
obj=None, feval=None, maximize=False, early_stopping_rounds=None,
|
||||
fpreproc=None, as_pandas=True, show_progress=None, show_stdv=True, seed=0):
|
||||
# pylint: disable = invalid-name
|
||||
"""Cross-validation with given paramaters.
|
||||
|
||||
@ -313,6 +313,12 @@ def cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(),
|
||||
Custom objective function.
|
||||
feval : function
|
||||
Custom evaluation function.
|
||||
maximize : bool
|
||||
Whether to maximize feval.
|
||||
early_stopping_rounds: int
|
||||
Activates early stopping. CV error needs to decrease at least
|
||||
every <early_stopping_rounds> round(s) to continue.
|
||||
Last entry in evaluation history is the one from best iteration.
|
||||
fpreproc : function
|
||||
Preprocessing function that takes (dtrain, dtest, param) and returns
|
||||
transformed versions of those.
|
||||
@ -332,6 +338,28 @@ def cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(),
|
||||
-------
|
||||
evaluation history : list(string)
|
||||
"""
|
||||
if early_stopping_rounds is not None:
|
||||
if len(metrics) > 1:
|
||||
raise ValueError('Check your params.'\
|
||||
'Early stopping works with single eval metric only.')
|
||||
|
||||
sys.stderr.write("Will train until cv error hasn't decreased in {} rounds.\n".format(\
|
||||
early_stopping_rounds))
|
||||
|
||||
maximize_score = False
|
||||
if len(metrics) == 1:
|
||||
maximize_metrics = ('auc', 'map', 'ndcg')
|
||||
if any(metrics[0].startswith(x) for x in maximize_metrics):
|
||||
maximize_score = True
|
||||
if feval is not None:
|
||||
maximize_score = maximize
|
||||
|
||||
if maximize_score:
|
||||
best_score = 0.0
|
||||
else:
|
||||
best_score = float('inf')
|
||||
|
||||
best_score_i = 0
|
||||
results = []
|
||||
cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc)
|
||||
for i in range(num_boost_round):
|
||||
@ -342,6 +370,17 @@ def cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(),
|
||||
as_pandas=as_pandas)
|
||||
results.append(res)
|
||||
|
||||
if early_stopping_rounds is not None:
|
||||
score = res[0]
|
||||
if (maximize_score and score > best_score) or \
|
||||
(not maximize_score and score < best_score):
|
||||
best_score = score
|
||||
best_score_i = i
|
||||
elif i - best_score_i >= early_stopping_rounds:
|
||||
sys.stderr.write("Stopping. Best iteration: {}\n".format(best_score_i))
|
||||
results = results[:best_score_i+1]
|
||||
break
|
||||
|
||||
if as_pandas:
|
||||
try:
|
||||
import pandas as pd
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user