[PySpark] fix raw_prediction_col parameter and minor cleanup (#8067)
This commit is contained in:
parent
0ce80b7bcf
commit
91bb9e2cb3
@ -88,7 +88,7 @@ _pyspark_param_alias_map = {
|
||||
"features_col": "featuresCol",
|
||||
"label_col": "labelCol",
|
||||
"weight_col": "weightCol",
|
||||
"raw_prediction_ol": "rawPredictionCol",
|
||||
"raw_prediction_col": "rawPredictionCol",
|
||||
"prediction_col": "predictionCol",
|
||||
"probability_col": "probabilityCol",
|
||||
"validation_indicator_col": "validationIndicatorCol",
|
||||
|
||||
@ -33,15 +33,15 @@ class SparkXGBRegressor(_SparkXGBEstimator):
|
||||
callbacks:
|
||||
The export and import of the callback functions are at best effort.
|
||||
For details, see :py:attr:`xgboost.spark.SparkXGBRegressor.callbacks` param doc.
|
||||
validationIndicatorCol
|
||||
validation_indicator_col
|
||||
For params related to `xgboost.XGBRegressor` training
|
||||
with evaluation dataset's supervision, set
|
||||
:py:attr:`xgboost.spark.SparkXGBRegressor.validationIndicatorCol`
|
||||
:py:attr:`xgboost.spark.SparkXGBRegressor.validation_indicator_col`
|
||||
parameter instead of setting the `eval_set` parameter in `xgboost.XGBRegressor`
|
||||
fit method.
|
||||
weightCol:
|
||||
weight_col:
|
||||
To specify the weight of the training and validation dataset, set
|
||||
:py:attr:`xgboost.spark.SparkXGBRegressor.weightCol` parameter instead of setting
|
||||
:py:attr:`xgboost.spark.SparkXGBRegressor.weight_col` parameter instead of setting
|
||||
`sample_weight` and `sample_weight_eval_set` parameter in `xgboost.XGBRegressor`
|
||||
fit method.
|
||||
xgb_model:
|
||||
@ -121,7 +121,7 @@ class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPrediction
|
||||
another param called `base_margin_col`. see doc below for more details.
|
||||
|
||||
SparkXGBClassifier doesn't support setting `output_margin`, but we can get output margin
|
||||
from the raw prediction column. See `rawPredictionCol` param doc below for more details.
|
||||
from the raw prediction column. See `raw_prediction_col` param doc below for more details.
|
||||
|
||||
SparkXGBClassifier doesn't support `validate_features` and `output_margin` param.
|
||||
|
||||
@ -130,19 +130,19 @@ class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPrediction
|
||||
callbacks:
|
||||
The export and import of the callback functions are at best effort. For
|
||||
details, see :py:attr:`xgboost.spark.SparkXGBClassifier.callbacks` param doc.
|
||||
rawPredictionCol:
|
||||
raw_prediction_col:
|
||||
The `output_margin=True` is implicitly supported by the
|
||||
`rawPredictionCol` output column, which is always returned with the predicted margin
|
||||
values.
|
||||
validationIndicatorCol:
|
||||
validation_indicator_col:
|
||||
For params related to `xgboost.XGBClassifier` training with
|
||||
evaluation dataset's supervision,
|
||||
set :py:attr:`xgboost.spark.SparkXGBClassifier.validationIndicatorCol`
|
||||
set :py:attr:`xgboost.spark.SparkXGBClassifier.validation_indicator_col`
|
||||
parameter instead of setting the `eval_set` parameter in `xgboost.XGBClassifier`
|
||||
fit method.
|
||||
weightCol:
|
||||
weight_col:
|
||||
To specify the weight of the training and validation dataset, set
|
||||
:py:attr:`xgboost.spark.SparkXGBClassifier.weightCol` parameter instead of setting
|
||||
:py:attr:`xgboost.spark.SparkXGBClassifier.weight_col` parameter instead of setting
|
||||
`sample_weight` and `sample_weight_eval_set` parameter in `xgboost.XGBClassifier`
|
||||
fit method.
|
||||
xgb_model:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user