added unittest for training continuation
This commit is contained in:
parent
b894f7c9d6
commit
8e1adddc2b
52
tests/python/test_training_continuation.py
Normal file
52
tests/python/test_training_continuation.py
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
import xgboost as xgb
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.cross_validation import KFold, train_test_split
|
||||||
|
from sklearn.metrics import mean_squared_error
|
||||||
|
from sklearn.grid_search import GridSearchCV
|
||||||
|
from sklearn.datasets import load_iris, load_digits, load_boston
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
rng = np.random.RandomState(1337)
|
||||||
|
|
||||||
|
class TestTrainingContinuation(unittest.TestCase):
|
||||||
|
|
||||||
|
xgb_params = {
|
||||||
|
'colsample_bytree': 0.7,
|
||||||
|
'silent': 1,
|
||||||
|
'nthread': 1,
|
||||||
|
}
|
||||||
|
|
||||||
|
def test_training_continuation(self):
|
||||||
|
digits = load_digits(2)
|
||||||
|
X = digits['data']
|
||||||
|
y = digits['target']
|
||||||
|
|
||||||
|
dtrain = xgb.DMatrix(X,label=y)
|
||||||
|
|
||||||
|
gbdt_01 = xgb.train(self.xgb_params, dtrain, num_boost_round=10)
|
||||||
|
ntrees_01 = len(gbdt_01.get_dump())
|
||||||
|
assert ntrees_01 == 10
|
||||||
|
|
||||||
|
gbdt_02 = xgb.train(self.xgb_params, dtrain, num_boost_round=0)
|
||||||
|
gbdt_02.save_model('xgb_tc.model')
|
||||||
|
|
||||||
|
gbdt_02a = xgb.train(self.xgb_params, dtrain, num_boost_round=10, xgb_model=gbdt_02)
|
||||||
|
gbdt_02b = xgb.train(self.xgb_params, dtrain, num_boost_round=10, xgb_model="xgb_tc.model")
|
||||||
|
ntrees_02a = len(gbdt_02a.get_dump())
|
||||||
|
ntrees_02b = len(gbdt_02b.get_dump())
|
||||||
|
assert ntrees_02a == 10
|
||||||
|
assert ntrees_02b == 10
|
||||||
|
assert mean_squared_error(y, gbdt_01.predict(dtrain)) == mean_squared_error(y, gbdt_02a.predict(dtrain))
|
||||||
|
assert mean_squared_error(y, gbdt_01.predict(dtrain)) == mean_squared_error(y, gbdt_02b.predict(dtrain))
|
||||||
|
|
||||||
|
gbdt_03 = xgb.train(self.xgb_params, dtrain, num_boost_round=3)
|
||||||
|
gbdt_03.save_model('xgb_tc.model')
|
||||||
|
|
||||||
|
gbdt_03a = xgb.train(self.xgb_params, dtrain, num_boost_round=7, xgb_model=gbdt_03)
|
||||||
|
gbdt_03b = xgb.train(self.xgb_params, dtrain, num_boost_round=7, xgb_model="xgb_tc.model")
|
||||||
|
ntrees_03a = len(gbdt_03a.get_dump())
|
||||||
|
ntrees_03b = len(gbdt_03b.get_dump())
|
||||||
|
assert ntrees_03a == 10
|
||||||
|
assert ntrees_03b == 10
|
||||||
|
assert mean_squared_error(y, gbdt_03a.predict(dtrain)) == mean_squared_error(y, gbdt_03b.predict(dtrain))
|
||||||
|
|
||||||
Loading…
x
Reference in New Issue
Block a user