diff --git a/tests/benchmark/benchmark_tree.py b/tests/benchmark/benchmark_tree.py index 4bde8fc68..b055b4ee6 100644 --- a/tests/benchmark/benchmark_tree.py +++ b/tests/benchmark/benchmark_tree.py @@ -5,8 +5,6 @@ import ast import time import numpy as np -from sklearn.datasets import make_classification -from sklearn.model_selection import train_test_split import xgboost as xgb RNG = np.random.RandomState(1994) @@ -28,20 +26,27 @@ def run_benchmark(args): print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns)) print("{}/{} test/train split".format(args.test_size, 1.0 - args.test_size)) tmp = time.time() - X, y = make_classification(args.rows, n_features=args.columns, n_redundant=0, - n_informative=args.columns, n_repeated=0, random_state=7) - if args.sparsity < 1.0: + X = RNG.rand(args.rows, args.columns) + y = RNG.randint(0, 2, args.rows) + if 0.0 < args.sparsity < 1.0: X = np.array([[np.nan if RNG.uniform(0, 1) < args.sparsity else x for x in x_row] for x_row in X]) - X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=args.test_size, - random_state=7) + train_rows = int(args.rows * (1.0 - args.test_size)) + test_rows = int(args.rows * args.test_size) + X_train = X[:train_rows, :] + X_test = X[-test_rows:, :] + y_train = y[:train_rows] + y_test = y[-test_rows:] print("Generate Time: %s seconds" % (str(time.time() - tmp))) + del X, y + tmp = time.time() print("DMatrix Start") - dtrain = xgb.DMatrix(X_train, y_train) + dtrain = xgb.DMatrix(X_train, y_train, nthread=-1) dtest = xgb.DMatrix(X_test, y_test, nthread=-1) print("DMatrix Time: %s seconds" % (str(time.time() - tmp))) + del X_train, y_train, X_test, y_test dtest.save_binary('dtest.dm') dtrain.save_binary('dtrain.dm')