Lint fix on infix operators
This commit is contained in:
parent
d7fce99564
commit
8bae715994
@ -34,8 +34,8 @@ setMethod("slice", signature = "xgb.DMatrix",
|
|||||||
attr_list <- attributes(object)
|
attr_list <- attributes(object)
|
||||||
nr <- xgb.numrow(object)
|
nr <- xgb.numrow(object)
|
||||||
len <- sapply(attr_list,length)
|
len <- sapply(attr_list,length)
|
||||||
ind <- which(len==nr)
|
ind <- which(len == nr)
|
||||||
if (length(ind)>0) {
|
if (length(ind) > 0) {
|
||||||
nms <- names(attr_list)[ind]
|
nms <- names(attr_list)[ind]
|
||||||
for (i in 1:length(ind)) {
|
for (i in 1:length(ind)) {
|
||||||
attr(ret,nms[i]) <- attr(object,nms[i])[idxset]
|
attr(ret,nms[i]) <- attr(object,nms[i])[idxset]
|
||||||
|
|||||||
@ -15,14 +15,14 @@ xgb.setinfo <- function(dmat, name, info) {
|
|||||||
stop("xgb.setinfo: first argument dtrain must be xgb.DMatrix")
|
stop("xgb.setinfo: first argument dtrain must be xgb.DMatrix")
|
||||||
}
|
}
|
||||||
if (name == "label") {
|
if (name == "label") {
|
||||||
if (length(info)!=xgb.numrow(dmat))
|
if (length(info) != xgb.numrow(dmat))
|
||||||
stop("The length of labels must equal to the number of rows in the input data")
|
stop("The length of labels must equal to the number of rows in the input data")
|
||||||
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info),
|
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info),
|
||||||
PACKAGE = "xgboost")
|
PACKAGE = "xgboost")
|
||||||
return(TRUE)
|
return(TRUE)
|
||||||
}
|
}
|
||||||
if (name == "weight") {
|
if (name == "weight") {
|
||||||
if (length(info)!=xgb.numrow(dmat))
|
if (length(info) != xgb.numrow(dmat))
|
||||||
stop("The length of weights must equal to the number of rows in the input data")
|
stop("The length of weights must equal to the number of rows in the input data")
|
||||||
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info),
|
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info),
|
||||||
PACKAGE = "xgboost")
|
PACKAGE = "xgboost")
|
||||||
@ -36,7 +36,7 @@ xgb.setinfo <- function(dmat, name, info) {
|
|||||||
return(TRUE)
|
return(TRUE)
|
||||||
}
|
}
|
||||||
if (name == "group") {
|
if (name == "group") {
|
||||||
if (sum(info)!=xgb.numrow(dmat))
|
if (sum(info) != xgb.numrow(dmat))
|
||||||
stop("The sum of groups must equal to the number of rows in the input data")
|
stop("The sum of groups must equal to the number of rows in the input data")
|
||||||
.Call("XGDMatrixSetInfo_R", dmat, name, as.integer(info),
|
.Call("XGDMatrixSetInfo_R", dmat, name, as.integer(info),
|
||||||
PACKAGE = "xgboost")
|
PACKAGE = "xgboost")
|
||||||
@ -251,7 +251,7 @@ xgb.cv.mknfold <- function(dall, nfold, param, stratified, folds) {
|
|||||||
# make simple non-stratified folds
|
# make simple non-stratified folds
|
||||||
kstep <- length(randidx) %/% nfold
|
kstep <- length(randidx) %/% nfold
|
||||||
folds <- list()
|
folds <- list()
|
||||||
for (i in 1:(nfold-1)) {
|
for (i in 1:(nfold - 1)) {
|
||||||
folds[[i]] <- randidx[1:kstep]
|
folds[[i]] <- randidx[1:kstep]
|
||||||
randidx <- setdiff(randidx, folds[[i]])
|
randidx <- setdiff(randidx, folds[[i]])
|
||||||
}
|
}
|
||||||
@ -310,7 +310,7 @@ xgb.createFolds <- function(y, k = 10)
|
|||||||
## At most, we will use quantiles. If the sample
|
## At most, we will use quantiles. If the sample
|
||||||
## is too small, we just do regular unstratified
|
## is too small, we just do regular unstratified
|
||||||
## CV
|
## CV
|
||||||
cuts <- floor(length(y)/k)
|
cuts <- floor(length(y) / k)
|
||||||
if(cuts < 2) cuts <- 2
|
if(cuts < 2) cuts <- 2
|
||||||
if(cuts > 5) cuts <- 5
|
if(cuts > 5) cuts <- 5
|
||||||
y <- cut(y,
|
y <- cut(y,
|
||||||
|
|||||||
@ -130,7 +130,7 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing =
|
|||||||
# if (!is.null(params$eval_metric) && !is.null(feval))
|
# if (!is.null(params$eval_metric) && !is.null(feval))
|
||||||
# stop("xgb.cv: cannot assign two different evaluation metrics")
|
# stop("xgb.cv: cannot assign two different evaluation metrics")
|
||||||
if (!is.null(params$eval_metric))
|
if (!is.null(params$eval_metric))
|
||||||
if (class(params$eval_metric)=='function') {
|
if (class(params$eval_metric) == 'function') {
|
||||||
feval <- params$eval_metric
|
feval <- params$eval_metric
|
||||||
params[['eval_metric']] <- NULL
|
params[['eval_metric']] <- NULL
|
||||||
}
|
}
|
||||||
@ -158,7 +158,7 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing =
|
|||||||
bestInd <- 0
|
bestInd <- 0
|
||||||
earlyStopflag <- FALSE
|
earlyStopflag <- FALSE
|
||||||
|
|
||||||
if (length(metrics)>1)
|
if (length(metrics) > 1)
|
||||||
warning('Only the first metric is used for early stopping process.')
|
warning('Only the first metric is used for early stopping process.')
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -187,19 +187,19 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing =
|
|||||||
ret <- xgb.cv.aggcv(msg, showsd)
|
ret <- xgb.cv.aggcv(msg, showsd)
|
||||||
history <- c(history, ret)
|
history <- c(history, ret)
|
||||||
if(verbose)
|
if(verbose)
|
||||||
if (0 == (i-1L)%%print.every.n)
|
if (0 == (i - 1L) %% print.every.n)
|
||||||
cat(ret, "\n", sep="")
|
cat(ret, "\n", sep="")
|
||||||
|
|
||||||
# early_Stopping
|
# early_Stopping
|
||||||
if (!is.null(early.stop.round)){
|
if (!is.null(early.stop.round)){
|
||||||
score <- strsplit(ret,'\\s+')[[1]][1+length(metrics)+2]
|
score <- strsplit(ret,'\\s+')[[1]][1 + length(metrics) + 2]
|
||||||
score <- strsplit(score,'\\+|:')[[1]][[2]]
|
score <- strsplit(score,'\\+|:')[[1]][[2]]
|
||||||
score <- as.numeric(score)
|
score <- as.numeric(score)
|
||||||
if ((maximize && score > bestScore) || (!maximize && score < bestScore)) {
|
if ((maximize && score > bestScore) || (!maximize && score < bestScore)) {
|
||||||
bestScore <- score
|
bestScore <- score
|
||||||
bestInd <- i
|
bestInd <- i
|
||||||
} else {
|
} else {
|
||||||
if (i-bestInd >= early.stop.round) {
|
if (i - bestInd >= early.stop.round) {
|
||||||
earlyStopflag <- TRUE
|
earlyStopflag <- TRUE
|
||||||
cat('Stopping. Best iteration:',bestInd)
|
cat('Stopping. Best iteration:',bestInd)
|
||||||
break
|
break
|
||||||
|
|||||||
@ -79,7 +79,7 @@ xgb.importance <- function(feature_names = NULL, filename_dump = NULL, model = N
|
|||||||
stop("model: Has to be an object of class xgb.Booster model generaged by the xgb.train function.")
|
stop("model: Has to be an object of class xgb.Booster model generaged by the xgb.train function.")
|
||||||
}
|
}
|
||||||
|
|
||||||
if((is.null(data) & !is.null(label)) |(!is.null(data) & is.null(label))) {
|
if((is.null(data) & !is.null(label)) | (!is.null(data) & is.null(label))) {
|
||||||
stop("data/label: Provide the two arguments if you want co-occurence computation or none of them if you are not interested but not one of them only.")
|
stop("data/label: Provide the two arguments if you want co-occurence computation or none of them if you are not interested but not one of them only.")
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -110,7 +110,7 @@ xgb.importance <- function(feature_names = NULL, filename_dump = NULL, model = N
|
|||||||
d <- data[, result[,Feature], drop=FALSE] < as.numeric(result[,Split])
|
d <- data[, result[,Feature], drop=FALSE] < as.numeric(result[,Split])
|
||||||
apply(c & d, 2, . %>% target %>% sum) -> vec
|
apply(c & d, 2, . %>% target %>% sum) -> vec
|
||||||
|
|
||||||
result <- result[, "RealCover":= as.numeric(vec), with = F][, "RealCover %" := RealCover / sum(label)][,MissingNo:=NULL]
|
result <- result[, "RealCover" := as.numeric(vec), with = F][, "RealCover %" := RealCover / sum(label)][,MissingNo := NULL]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
result
|
result
|
||||||
@ -119,13 +119,13 @@ xgb.importance <- function(feature_names = NULL, filename_dump = NULL, model = N
|
|||||||
treeDump <- function(feature_names, text, keepDetail){
|
treeDump <- function(feature_names, text, keepDetail){
|
||||||
if(keepDetail) groupBy <- c("Feature", "Split", "MissingNo") else groupBy <- "Feature"
|
if(keepDetail) groupBy <- c("Feature", "Split", "MissingNo") else groupBy <- "Feature"
|
||||||
|
|
||||||
result <- xgb.model.dt.tree(feature_names = feature_names, text = text)[,"MissingNo":= Missing == No ][Feature!="Leaf",.(Gain = sum(Quality), Cover = sum(Cover), Frequence = .N), by = groupBy, with = T][,`:=`(Gain = Gain/sum(Gain), Cover = Cover/sum(Cover), Frequence = Frequence/sum(Frequence))][order(Gain, decreasing = T)]
|
result <- xgb.model.dt.tree(feature_names = feature_names, text = text)[,"MissingNo" := Missing == No ][Feature != "Leaf",.(Gain = sum(Quality), Cover = sum(Cover), Frequence = .N), by = groupBy, with = T][,`:=`(Gain = Gain / sum(Gain), Cover = Cover / sum(Cover), Frequence = Frequence / sum(Frequence))][order(Gain, decreasing = T)]
|
||||||
|
|
||||||
result
|
result
|
||||||
}
|
}
|
||||||
|
|
||||||
linearDump <- function(feature_names, text){
|
linearDump <- function(feature_names, text){
|
||||||
which(text == "weight:") %>% {a <- .+1; text[a:length(text)]} %>% as.numeric %>% data.table(Feature = feature_names, Weight = .)
|
which(text == "weight:") %>% {a <- . + 1; text[a:length(text)]} %>% as.numeric %>% data.table(Feature = feature_names, Weight = .)
|
||||||
}
|
}
|
||||||
|
|
||||||
# Avoid error messages during CRAN check.
|
# Avoid error messages during CRAN check.
|
||||||
|
|||||||
@ -86,7 +86,7 @@ xgb.model.dt.tree <- function(feature_names = NULL, filename_dump = NULL, model
|
|||||||
text <- readLines(filename_dump) %>% str_trim(side = "both")
|
text <- readLines(filename_dump) %>% str_trim(side = "both")
|
||||||
}
|
}
|
||||||
|
|
||||||
position <- str_match(text, "booster") %>% is.na %>% not %>% which %>% c(length(text)+1)
|
position <- str_match(text, "booster") %>% is.na %>% not %>% which %>% c(length(text) + 1)
|
||||||
|
|
||||||
extract <- function(x, pattern) str_extract(x, pattern) %>% str_split("=") %>% lapply(function(x) x[2] %>% as.numeric) %>% unlist
|
extract <- function(x, pattern) str_extract(x, pattern) %>% str_split("=") %>% lapply(function(x) x[2] %>% as.numeric) %>% unlist
|
||||||
|
|
||||||
@ -96,15 +96,15 @@ xgb.model.dt.tree <- function(feature_names = NULL, filename_dump = NULL, model
|
|||||||
|
|
||||||
allTrees <- data.table()
|
allTrees <- data.table()
|
||||||
|
|
||||||
anynumber_regex<-"[-+]?[0-9]*\\.?[0-9]+([eE][-+]?[0-9]+)?"
|
anynumber_regex <- "[-+]?[0-9]*\\.?[0-9]+([eE][-+]?[0-9]+)?"
|
||||||
for(i in 1:n_round){
|
for(i in 1:n_round){
|
||||||
|
|
||||||
tree <- text[(position[i]+1):(position[i+1]-1)]
|
tree <- text[(position[i] + 1):(position[i + 1] - 1)]
|
||||||
|
|
||||||
# avoid tree made of a leaf only (no split)
|
# avoid tree made of a leaf only (no split)
|
||||||
if(length(tree) <2) next
|
if(length(tree) < 2) next
|
||||||
|
|
||||||
treeID <- i-1
|
treeID <- i - 1
|
||||||
|
|
||||||
notLeaf <- str_match(tree, "leaf") %>% is.na
|
notLeaf <- str_match(tree, "leaf") %>% is.na
|
||||||
leaf <- notLeaf %>% not %>% tree[.]
|
leaf <- notLeaf %>% not %>% tree[.]
|
||||||
@ -128,7 +128,7 @@ xgb.model.dt.tree <- function(feature_names = NULL, filename_dump = NULL, model
|
|||||||
qualityLeaf <- extract(leaf, paste0("leaf=",anynumber_regex))
|
qualityLeaf <- extract(leaf, paste0("leaf=",anynumber_regex))
|
||||||
coverBranch <- extract(branch, "cover=\\d*\\.*\\d*")
|
coverBranch <- extract(branch, "cover=\\d*\\.*\\d*")
|
||||||
coverLeaf <- extract(leaf, "cover=\\d*\\.*\\d*")
|
coverLeaf <- extract(leaf, "cover=\\d*\\.*\\d*")
|
||||||
dt <- data.table(ID = c(idBranch, idLeaf), Feature = c(featureBranch, featureLeaf), Split = c(splitBranch, splitLeaf), Yes = c(yesBranch, yesLeaf), No = c(noBranch, noLeaf), Missing = c(missingBranch, missingLeaf), Quality = c(qualityBranch, qualityLeaf), Cover = c(coverBranch, coverLeaf))[order(ID)][,Tree:=treeID]
|
dt <- data.table(ID = c(idBranch, idLeaf), Feature = c(featureBranch, featureLeaf), Split = c(splitBranch, splitLeaf), Yes = c(yesBranch, yesLeaf), No = c(noBranch, noLeaf), Missing = c(missingBranch, missingLeaf), Quality = c(qualityBranch, qualityLeaf), Cover = c(coverBranch, coverLeaf))[order(ID)][,Tree := treeID]
|
||||||
|
|
||||||
allTrees <- rbindlist(list(allTrees, dt), use.names = T, fill = F)
|
allTrees <- rbindlist(list(allTrees, dt), use.names = T, fill = F)
|
||||||
}
|
}
|
||||||
|
|||||||
@ -44,9 +44,9 @@ xgb.plot.importance <- function(importance_matrix = NULL, numberOfClusters = c(1
|
|||||||
importance_matrix <- importance_matrix[, .(Gain = sum(Gain)), by = Feature]
|
importance_matrix <- importance_matrix[, .(Gain = sum(Gain)), by = Feature]
|
||||||
|
|
||||||
clusters <- suppressWarnings(Ckmeans.1d.dp::Ckmeans.1d.dp(importance_matrix[,Gain], numberOfClusters))
|
clusters <- suppressWarnings(Ckmeans.1d.dp::Ckmeans.1d.dp(importance_matrix[,Gain], numberOfClusters))
|
||||||
importance_matrix[,"Cluster":=clusters$cluster %>% as.character]
|
importance_matrix[,"Cluster" := clusters$cluster %>% as.character]
|
||||||
|
|
||||||
plot <- ggplot2::ggplot(importance_matrix, ggplot2::aes(x=stats::reorder(Feature, Gain), y = Gain, width= 0.05), environment = environment())+ ggplot2::geom_bar(ggplot2::aes(fill=Cluster), stat="identity", position="identity") + ggplot2::coord_flip() + ggplot2::xlab("Features") + ggplot2::ylab("Gain") + ggplot2::ggtitle("Feature importance") + ggplot2::theme(plot.title = ggplot2::element_text(lineheight=.9, face="bold"), panel.grid.major.y = ggplot2::element_blank() )
|
plot <- ggplot2::ggplot(importance_matrix, ggplot2::aes(x=stats::reorder(Feature, Gain), y = Gain, width= 0.05), environment = environment()) + ggplot2::geom_bar(ggplot2::aes(fill=Cluster), stat="identity", position="identity") + ggplot2::coord_flip() + ggplot2::xlab("Features") + ggplot2::ylab("Gain") + ggplot2::ggtitle("Feature importance") + ggplot2::theme(plot.title = ggplot2::element_text(lineheight=.9, face="bold"), panel.grid.major.y = ggplot2::element_blank() )
|
||||||
|
|
||||||
return(plot)
|
return(plot)
|
||||||
}
|
}
|
||||||
|
|||||||
@ -151,14 +151,14 @@ xgb.train <- function(params=list(), data, nrounds, watchlist = list(),
|
|||||||
if (!is.null(params$objective) && !is.null(obj))
|
if (!is.null(params$objective) && !is.null(obj))
|
||||||
stop("xgb.train: cannot assign two different objectives")
|
stop("xgb.train: cannot assign two different objectives")
|
||||||
if (!is.null(params$objective))
|
if (!is.null(params$objective))
|
||||||
if (class(params$objective)=='function') {
|
if (class(params$objective) == 'function') {
|
||||||
obj <- params$objective
|
obj <- params$objective
|
||||||
params$objective <- NULL
|
params$objective <- NULL
|
||||||
}
|
}
|
||||||
if (!is.null(params$eval_metric) && !is.null(feval))
|
if (!is.null(params$eval_metric) && !is.null(feval))
|
||||||
stop("xgb.train: cannot assign two different evaluation metrics")
|
stop("xgb.train: cannot assign two different evaluation metrics")
|
||||||
if (!is.null(params$eval_metric))
|
if (!is.null(params$eval_metric))
|
||||||
if (class(params$eval_metric)=='function') {
|
if (class(params$eval_metric) == 'function') {
|
||||||
feval <- params$eval_metric
|
feval <- params$eval_metric
|
||||||
params$eval_metric <- NULL
|
params$eval_metric <- NULL
|
||||||
}
|
}
|
||||||
@ -188,7 +188,7 @@ xgb.train <- function(params=list(), data, nrounds, watchlist = list(),
|
|||||||
bestInd <- 0
|
bestInd <- 0
|
||||||
earlyStopflag <- FALSE
|
earlyStopflag <- FALSE
|
||||||
|
|
||||||
if (length(watchlist)>1)
|
if (length(watchlist) > 1)
|
||||||
warning('Only the first data set in watchlist is used for early stopping process.')
|
warning('Only the first data set in watchlist is used for early stopping process.')
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -200,17 +200,17 @@ xgb.train <- function(params=list(), data, nrounds, watchlist = list(),
|
|||||||
succ <- xgb.iter.update(bst$handle, dtrain, i - 1, obj)
|
succ <- xgb.iter.update(bst$handle, dtrain, i - 1, obj)
|
||||||
if (length(watchlist) != 0) {
|
if (length(watchlist) != 0) {
|
||||||
msg <- xgb.iter.eval(bst$handle, watchlist, i - 1, feval)
|
msg <- xgb.iter.eval(bst$handle, watchlist, i - 1, feval)
|
||||||
if (0== ( (i-1) %% print.every.n))
|
if (0 == ( (i - 1) %% print.every.n))
|
||||||
cat(paste(msg, "\n", sep=""))
|
cat(paste(msg, "\n", sep = ""))
|
||||||
if (!is.null(early.stop.round))
|
if (!is.null(early.stop.round))
|
||||||
{
|
{
|
||||||
score <- strsplit(msg,':|\\s+')[[1]][3]
|
score <- strsplit(msg,':|\\s+')[[1]][3]
|
||||||
score <- as.numeric(score)
|
score <- as.numeric(score)
|
||||||
if ((maximize && score>bestScore) || (!maximize && score<bestScore)) {
|
if ((maximize && score > bestScore) || (!maximize && score < bestScore)) {
|
||||||
bestScore <- score
|
bestScore <- score
|
||||||
bestInd <- i
|
bestInd <- i
|
||||||
} else {
|
} else {
|
||||||
if (i-bestInd>=early.stop.round) {
|
if (i - bestInd >= early.stop.round) {
|
||||||
earlyStopflag <- TRUE
|
earlyStopflag <- TRUE
|
||||||
cat('Stopping. Best iteration:',bestInd)
|
cat('Stopping. Best iteration:',bestInd)
|
||||||
break
|
break
|
||||||
|
|||||||
@ -18,7 +18,7 @@ test_that("early stopping", {
|
|||||||
res <- xgb.cv(data = train$data, label = train$label, max.depth = 2, nfold = 5,
|
res <- xgb.cv(data = train$data, label = train$label, max.depth = 2, nfold = 5,
|
||||||
eta = 0.3, nthread = 2, nround = 20, objective = "binary:logistic",
|
eta = 0.3, nthread = 2, nround = 20, objective = "binary:logistic",
|
||||||
early.stop.round = 3, maximize = FALSE)
|
early.stop.round = 3, maximize = FALSE)
|
||||||
expect_true(nrow(res)<20)
|
expect_true(nrow(res) < 20)
|
||||||
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
eta = 0.3, nthread = 2, nround = 20, objective = "binary:logistic",
|
eta = 0.3, nthread = 2, nround = 20, objective = "binary:logistic",
|
||||||
early.stop.round = 3, maximize = FALSE)
|
early.stop.round = 3, maximize = FALSE)
|
||||||
|
|||||||
@ -13,14 +13,14 @@ test_that("custom objective works", {
|
|||||||
|
|
||||||
logregobj <- function(preds, dtrain) {
|
logregobj <- function(preds, dtrain) {
|
||||||
labels <- getinfo(dtrain, "label")
|
labels <- getinfo(dtrain, "label")
|
||||||
preds <- 1/(1 + exp(-preds))
|
preds <- 1 / (1 + exp(-preds))
|
||||||
grad <- preds - labels
|
grad <- preds - labels
|
||||||
hess <- preds * (1 - preds)
|
hess <- preds * (1 - preds)
|
||||||
return(list(grad = grad, hess = hess))
|
return(list(grad = grad, hess = hess))
|
||||||
}
|
}
|
||||||
evalerror <- function(preds, dtrain) {
|
evalerror <- function(preds, dtrain) {
|
||||||
labels <- getinfo(dtrain, "label")
|
labels <- getinfo(dtrain, "label")
|
||||||
err <- as.numeric(sum(labels != (preds > 0)))/length(labels)
|
err <- as.numeric(sum(labels != (preds > 0))) / length(labels)
|
||||||
return(list(metric = "error", value = err))
|
return(list(metric = "error", value = err))
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -34,13 +34,13 @@ test_that("custom objective works", {
|
|||||||
|
|
||||||
logregobjattr <- function(preds, dtrain) {
|
logregobjattr <- function(preds, dtrain) {
|
||||||
labels <- attr(dtrain, 'label')
|
labels <- attr(dtrain, 'label')
|
||||||
preds <- 1/(1 + exp(-preds))
|
preds <- 1 / (1 + exp(-preds))
|
||||||
grad <- preds - labels
|
grad <- preds - labels
|
||||||
hess <- preds * (1 - preds)
|
hess <- preds * (1 - preds)
|
||||||
return(list(grad = grad, hess = hess))
|
return(list(grad = grad, hess = hess))
|
||||||
}
|
}
|
||||||
param <- list(max.depth=2, eta=1, nthread = 2, silent=1,
|
param <- list(max.depth=2, eta=1, nthread = 2, silent = 1,
|
||||||
objective=logregobjattr, eval_metric=evalerror)
|
objective = logregobjattr, eval_metric = evalerror)
|
||||||
bst <- xgb.train(param, dtrain, num_round, watchlist)
|
bst <- xgb.train(param, dtrain, num_round, watchlist)
|
||||||
expect_equal(class(bst), "xgb.Booster")
|
expect_equal(class(bst), "xgb.Booster")
|
||||||
expect_equal(length(bst$raw), 1064)
|
expect_equal(length(bst$raw), 1064)
|
||||||
|
|||||||
@ -8,11 +8,11 @@ require(vcd)
|
|||||||
data(Arthritis)
|
data(Arthritis)
|
||||||
data(agaricus.train, package='xgboost')
|
data(agaricus.train, package='xgboost')
|
||||||
df <- data.table(Arthritis, keep.rownames = F)
|
df <- data.table(Arthritis, keep.rownames = F)
|
||||||
df[,AgeDiscret:= as.factor(round(Age/10,0))]
|
df[,AgeDiscret := as.factor(round(Age / 10,0))]
|
||||||
df[,AgeCat:= as.factor(ifelse(Age > 30, "Old", "Young"))]
|
df[,AgeCat := as.factor(ifelse(Age > 30, "Old", "Young"))]
|
||||||
df[,ID:=NULL]
|
df[,ID := NULL]
|
||||||
sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df)
|
sparse_matrix <- sparse.model.matrix(Improved ~ . -1, data = df)
|
||||||
output_vector <- df[,Y:=0][Improved == "Marked",Y:=1][,Y]
|
output_vector <- df[,Y := 0][Improved == "Marked",Y := 1][,Y]
|
||||||
bst <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 9,
|
bst <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 9,
|
||||||
eta = 1, nthread = 2, nround = 10,objective = "binary:logistic")
|
eta = 1, nthread = 2, nround = 10,objective = "binary:logistic")
|
||||||
|
|
||||||
|
|||||||
@ -23,5 +23,5 @@ test_that("Code Lint", {
|
|||||||
trailing_blank_lines_linter=lintr::trailing_blank_lines_linter,
|
trailing_blank_lines_linter=lintr::trailing_blank_lines_linter,
|
||||||
trailing_whitespace_linter=lintr::trailing_whitespace_linter
|
trailing_whitespace_linter=lintr::trailing_whitespace_linter
|
||||||
)
|
)
|
||||||
# lintr::expect_lint_free(linters=my_linters) # uncomment this if you want to check code quality
|
lintr::expect_lint_free(linters=my_linters) # uncomment this if you want to check code quality
|
||||||
})
|
})
|
||||||
|
|||||||
@ -4,10 +4,10 @@ require(xgboost)
|
|||||||
|
|
||||||
test_that("poisson regression works", {
|
test_that("poisson regression works", {
|
||||||
data(mtcars)
|
data(mtcars)
|
||||||
bst = xgboost(data=as.matrix(mtcars[,-11]),label=mtcars[,11],
|
bst <- xgboost(data = as.matrix(mtcars[,-11]),label = mtcars[,11],
|
||||||
objective='count:poisson',nrounds=5)
|
objective = 'count:poisson', nrounds=5)
|
||||||
expect_equal(class(bst), "xgb.Booster")
|
expect_equal(class(bst), "xgb.Booster")
|
||||||
pred = predict(bst,as.matrix(mtcars[,-11]))
|
pred <- predict(bst,as.matrix(mtcars[, -11]))
|
||||||
expect_equal(length(pred), 32)
|
expect_equal(length(pred), 32)
|
||||||
sqrt(mean((pred-mtcars[,11])^2))
|
sqrt(mean((pred - mtcars[,11]) ^ 2))
|
||||||
})
|
})
|
||||||
Loading…
x
Reference in New Issue
Block a user