Mitigate flaky tests. (#7749)

* Skip non-increasing test with external memory when subsample is used.
* Increase bin numbers for boost from prediction test. This mitigates the effect of
  non-deterministic partitioning.
This commit is contained in:
Jiaming Yuan 2022-03-28 21:20:50 +08:00 committed by GitHub
parent 39c5616af2
commit 8b3ecfca25
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 50 additions and 46 deletions

View File

@ -22,7 +22,7 @@ def test_gpu_single_batch() -> None:
strategies.integers(0, 13),
strategies.booleans(),
)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_gpu_data_iterator(
n_samples_per_batch: int, n_features: int, n_batches: int, subsample: bool
) -> None:

View File

@ -30,7 +30,7 @@ def train_result(param, dmat, num_rounds):
class TestGPULinear:
@given(parameter_strategy, strategies.integers(10, 50),
tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_gpu_coordinate(self, param, num_rounds, dataset):
assume(len(dataset.y) > 0)
param['updater'] = 'gpu_coord_descent'
@ -45,7 +45,7 @@ class TestGPULinear:
@given(parameter_strategy, strategies.integers(10, 50),
tm.dataset_strategy, strategies.floats(1e-5, 1.0),
strategies.floats(1e-5, 1.0))
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_gpu_coordinate_regularised(self, param, num_rounds, dataset, alpha, lambd):
assume(len(dataset.y) > 0)
param['updater'] = 'gpu_coord_descent'

View File

@ -247,7 +247,7 @@ class TestGPUPredict:
@given(strategies.integers(1, 10),
tm.dataset_strategy, shap_parameter_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_shap(self, num_rounds, dataset, param):
param.update({"predictor": "gpu_predictor", "gpu_id": 0})
param = dataset.set_params(param)
@ -261,7 +261,7 @@ class TestGPUPredict:
@given(strategies.integers(1, 10),
tm.dataset_strategy, shap_parameter_strategy)
@settings(deadline=None, max_examples=20)
@settings(deadline=None, max_examples=20, print_blob=True)
def test_shap_interactions(self, num_rounds, dataset, param):
param.update({"predictor": "gpu_predictor", "gpu_id": 0})
param = dataset.set_params(param)
@ -312,14 +312,14 @@ class TestGPUPredict:
np.testing.assert_equal(cpu_leaf, gpu_leaf)
@given(predict_parameter_strategy, tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_predict_leaf_gbtree(self, param, dataset):
param['booster'] = 'gbtree'
param['tree_method'] = 'gpu_hist'
self.run_predict_leaf_booster(param, 10, dataset)
@given(predict_parameter_strategy, tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_predict_leaf_dart(self, param, dataset):
param['booster'] = 'dart'
param['tree_method'] = 'gpu_hist'
@ -330,7 +330,7 @@ class TestGPUPredict:
@given(df=data_frames([column('x0', elements=strategies.integers(min_value=0, max_value=3)),
column('x1', elements=strategies.integers(min_value=0, max_value=5))],
index=range_indexes(min_size=20, max_size=50)))
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_predict_categorical_split(self, df):
from sklearn.metrics import mean_squared_error

View File

@ -46,7 +46,7 @@ class TestGPUUpdaters:
cputest = test_up.TestTreeMethod()
@given(parameter_strategy, strategies.integers(1, 20), tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_gpu_hist(self, param, num_rounds, dataset):
param["tree_method"] = "gpu_hist"
param = dataset.set_params(param)
@ -56,7 +56,7 @@ class TestGPUUpdaters:
@given(strategies.integers(10, 400), strategies.integers(3, 8),
strategies.integers(1, 2), strategies.integers(4, 7))
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical(self, rows, cols, rounds, cats):
self.cputest.run_categorical_basic(rows, cols, rounds, cats, "gpu_hist")
@ -76,7 +76,7 @@ class TestGPUUpdaters:
@pytest.mark.skipif(**tm.no_cupy())
@given(parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_gpu_hist_device_dmatrix(self, param, num_rounds, dataset):
# We cannot handle empty dataset yet
assume(len(dataset.y) > 0)
@ -88,7 +88,7 @@ class TestGPUUpdaters:
@given(parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_external_memory(self, param, num_rounds, dataset):
# We cannot handle empty dataset yet
assume(len(dataset.y) > 0)
@ -127,7 +127,7 @@ class TestGPUUpdaters:
@pytest.mark.mgpu
@given(tm.dataset_strategy, strategies.integers(0, 10))
@settings(deadline=None, max_examples=10)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_specified_gpu_id_gpu_update(self, dataset, gpu_id):
param = {'tree_method': 'gpu_hist', 'gpu_id': gpu_id}
param = dataset.set_params(param)

View File

@ -27,7 +27,7 @@ from test_with_dask import run_empty_dmatrix_reg # noqa
from test_with_dask import run_empty_dmatrix_auc # noqa
from test_with_dask import run_auc # noqa
from test_with_dask import run_boost_from_prediction # noqa
from test_with_dask import run_boost_from_prediction_multi_clasas # noqa
from test_with_dask import run_boost_from_prediction_multi_class # noqa
from test_with_dask import run_dask_classifier # noqa
from test_with_dask import run_empty_dmatrix_cls # noqa
from test_with_dask import _get_client_workers # noqa
@ -216,7 +216,7 @@ def test_boost_from_prediction(local_cuda_cluster: LocalCUDACluster) -> None:
X_, y_ = load_digits(return_X_y=True)
X = dd.from_array(X_, chunksize=100).map_partitions(cudf.from_pandas)
y = dd.from_array(y_, chunksize=100).map_partitions(cudf.from_pandas)
run_boost_from_prediction_multi_clasas(X, y, "gpu_hist", client)
run_boost_from_prediction_multi_class(X, y, "gpu_hist", client)
class TestDistributedGPU:
@ -231,7 +231,7 @@ class TestDistributedGPU:
num_rounds=strategies.integers(1, 20),
dataset=tm.dataset_strategy,
)
@settings(deadline=duration(seconds=120), suppress_health_check=suppress)
@settings(deadline=duration(seconds=120), suppress_health_check=suppress, print_blob=True)
@pytest.mark.skipif(**tm.no_cupy())
@pytest.mark.parametrize(
"local_cuda_cluster", [{"n_workers": 2}], indirect=["local_cuda_cluster"]

View File

@ -108,6 +108,7 @@ def run_data_iterator(
evals_result=results_from_it,
verbose_eval=False,
)
if not subsample:
assert non_increasing(results_from_it["Train"]["rmse"])
X, y = it.as_arrays()
@ -125,6 +126,7 @@ def run_data_iterator(
verbose_eval=False,
)
arr_predt = from_arrays.predict(Xy)
if not subsample:
assert non_increasing(results_from_arrays["Train"]["rmse"])
rtol = 1e-2
@ -146,7 +148,7 @@ def run_data_iterator(
strategies.integers(0, 13),
strategies.booleans(),
)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_data_iterator(
n_samples_per_batch: int,
n_features: int,

View File

@ -26,7 +26,7 @@ def train_result(param, dmat, num_rounds):
class TestLinear:
@given(parameter_strategy, strategies.integers(10, 50),
tm.dataset_strategy, coord_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_coordinate(self, param, num_rounds, dataset, coord_param):
param['updater'] = 'coord_descent'
param.update(coord_param)
@ -41,7 +41,7 @@ class TestLinear:
@given(parameter_strategy, strategies.integers(10, 50),
tm.dataset_strategy, coord_strategy, strategies.floats(1e-5, 1.0),
strategies.floats(1e-5, 1.0))
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_coordinate_regularised(self, param, num_rounds, dataset, coord_param, alpha, lambd):
param['updater'] = 'coord_descent'
param['alpha'] = alpha
@ -54,7 +54,7 @@ class TestLinear:
@given(parameter_strategy, strategies.integers(10, 50),
tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_shotgun(self, param, num_rounds, dataset):
param['updater'] = 'shotgun'
param = dataset.set_params(param)
@ -71,7 +71,7 @@ class TestLinear:
@given(parameter_strategy, strategies.integers(10, 50),
tm.dataset_strategy, strategies.floats(1e-5, 1.0),
strategies.floats(1e-5, 1.0))
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_shotgun_regularised(self, param, num_rounds, dataset, alpha, lambd):
param['updater'] = 'shotgun'
param['alpha'] = alpha

View File

@ -38,7 +38,7 @@ def train_result(param, dmat, num_rounds):
class TestTreeMethod:
@given(exact_parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_exact(self, param, num_rounds, dataset):
param['tree_method'] = 'exact'
param = dataset.set_params(param)
@ -51,7 +51,7 @@ class TestTreeMethod:
strategies.integers(1, 20),
tm.dataset_strategy,
)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_approx(self, param, hist_param, num_rounds, dataset):
param["tree_method"] = "approx"
param = dataset.set_params(param)
@ -86,7 +86,7 @@ class TestTreeMethod:
@given(exact_parameter_strategy, hist_parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
def test_hist(self, param, hist_param, num_rounds, dataset):
param['tree_method'] = 'hist'
param = dataset.set_params(param)
@ -241,7 +241,7 @@ class TestTreeMethod:
@given(strategies.integers(10, 400), strategies.integers(3, 8),
strategies.integers(1, 2), strategies.integers(4, 7))
@settings(deadline=None)
@settings(deadline=None, print_blob=True)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical(self, rows, cols, rounds, cats):
self.run_categorical_basic(rows, cols, rounds, cats, "approx")

View File

@ -337,14 +337,14 @@ def test_dask_predict_shape_infer(client: "Client") -> None:
assert prediction.shape[1] == 3
def run_boost_from_prediction_multi_clasas(
def run_boost_from_prediction_multi_class(
X: xgb.dask._DaskCollection,
y: xgb.dask._DaskCollection,
tree_method: str,
client: "Client"
client: "Client",
) -> None:
model_0 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method
learning_rate=0.3, n_estimators=4, tree_method=tree_method, max_bin=768
)
model_0.fit(X=X, y=y)
margin = xgb.dask.inplace_predict(
@ -352,18 +352,18 @@ def run_boost_from_prediction_multi_clasas(
)
model_1 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method
learning_rate=0.3, n_estimators=4, tree_method=tree_method, max_bin=768
)
model_1.fit(X=X, y=y, base_margin=margin)
predictions_1 = xgb.dask.predict(
client,
model_1.get_booster(),
xgb.dask.DaskDMatrix(client, X, base_margin=margin),
output_margin=True
output_margin=True,
)
model_2 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=8, tree_method=tree_method
learning_rate=0.3, n_estimators=8, tree_method=tree_method, max_bin=768
)
model_2.fit(X=X, y=y)
predictions_2 = xgb.dask.inplace_predict(
@ -382,26 +382,29 @@ def run_boost_from_prediction_multi_clasas(
def run_boost_from_prediction(
X: xgb.dask._DaskCollection, y: xgb.dask._DaskCollection, tree_method: str, client: "Client"
X: xgb.dask._DaskCollection,
y: xgb.dask._DaskCollection,
tree_method: str,
client: "Client",
) -> None:
X = client.persist(X)
y = client.persist(y)
model_0 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=4,
tree_method=tree_method)
learning_rate=0.3, n_estimators=4, tree_method=tree_method, max_bin=512
)
model_0.fit(X=X, y=y)
margin = model_0.predict(X, output_margin=True)
model_1 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=4,
tree_method=tree_method)
learning_rate=0.3, n_estimators=4, tree_method=tree_method, max_bin=512
)
model_1.fit(X=X, y=y, base_margin=margin)
predictions_1 = model_1.predict(X, base_margin=margin)
cls_2 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3, random_state=0, n_estimators=8,
tree_method=tree_method)
learning_rate=0.3, n_estimators=8, tree_method=tree_method, max_bin=512
)
cls_2.fit(X=X, y=y)
predictions_2 = cls_2.predict(X)
@ -415,8 +418,8 @@ def run_boost_from_prediction(
unmargined = xgb.dask.DaskXGBClassifier(n_estimators=4)
unmargined.fit(X=X, y=y, eval_set=[(X, y)], base_margin=margin)
margined_res = margined.evals_result()['validation_0']['logloss']
unmargined_res = unmargined.evals_result()['validation_0']['logloss']
margined_res = margined.evals_result()["validation_0"]["logloss"]
unmargined_res = unmargined.evals_result()["validation_0"]["logloss"]
assert len(margined_res) == len(unmargined_res)
for i in range(len(margined_res)):
@ -429,12 +432,11 @@ def test_boost_from_prediction(tree_method: str, client: "Client") -> None:
from sklearn.datasets import load_breast_cancer, load_digits
X_, y_ = load_breast_cancer(return_X_y=True)
X, y = dd.from_array(X_, chunksize=200), dd.from_array(y_, chunksize=200)
run_boost_from_prediction(X, y, tree_method, client)
X_, y_ = load_digits(return_X_y=True)
X, y = dd.from_array(X_, chunksize=100), dd.from_array(y_, chunksize=100)
run_boost_from_prediction_multi_clasas(X, y, tree_method, client)
run_boost_from_prediction_multi_class(X, y, tree_method, client)
def test_inplace_predict(client: "Client") -> None:
@ -1292,7 +1294,7 @@ class TestWithDask:
@given(params=hist_parameter_strategy,
dataset=tm.dataset_strategy)
@settings(deadline=None, suppress_health_check=suppress)
@settings(deadline=None, suppress_health_check=suppress, print_blob=True)
def test_hist(
self, params: Dict, dataset: tm.TestDataset, client: "Client"
) -> None:
@ -1301,7 +1303,7 @@ class TestWithDask:
@given(params=exact_parameter_strategy,
dataset=tm.dataset_strategy)
@settings(deadline=None, suppress_health_check=suppress)
@settings(deadline=None, suppress_health_check=suppress, print_blob=True)
def test_approx(
self, client: "Client", params: Dict, dataset: tm.TestDataset
) -> None: