Add Github Action for R. (#5911)

* Fix lintr errors.
This commit is contained in:
Jiaming Yuan 2020-07-20 19:23:36 +08:00 committed by GitHub
parent b3d2e7644a
commit 8b1afce316
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
33 changed files with 589 additions and 544 deletions

52
.github/workflows/main.yml vendored Normal file
View File

@ -0,0 +1,52 @@
# This is a basic workflow to help you get started with Actions
name: XGoost-CI
# Controls when the action will run. Triggers the workflow on push or pull request
# events but only for the master branch
on: [push, pull_request]
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
test-with-R:
runs-on: ${{ matrix.config.os }}
name: Test R on OS ${{ matrix.config.os }}, R (${{ matrix.config.r }})
strategy:
fail-fast: false
matrix:
config:
- {os: windows-latest, r: 'release'}
env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
RSPM: ${{ matrix.config.rspm }}
steps:
- uses: actions/checkout@v2
with:
submodules: 'true'
- uses: r-lib/actions/setup-r@master
with:
r-version: ${{ matrix.config.r }}
- name: Install dependencies
shell: Rscript {0}
run: |
install.packages(c('XML','igraph'))
install.packages(c('data.table','magrittr','stringi','ggplot2','DiagrammeR','Ckmeans.1d.dp','vcd','testthat','lintr','knitr','rmarkdown'))
- name: Config R
run: |
mkdir build && cd build
cmake .. -DCMAKE_CONFIGURATION_TYPES="Release" -DR_LIB=ON
- name: Build R
run: |
cmake --build build --target install --config Release
- name: Test R
run: |
cd R-package
R.exe -q -e "library(testthat); setwd('tests'); source('testthat.R')"

View File

@ -62,11 +62,11 @@ cb.print.evaluation <- function(period = 1, showsd = TRUE) {
callback <- function(env = parent.frame()) {
if (length(env$bst_evaluation) == 0 ||
period == 0 ||
NVL(env$rank, 0) != 0 )
NVL(env$rank, 0) != 0)
return()
i <- env$iteration
if ((i-1) %% period == 0 ||
if ((i - 1) %% period == 0 ||
i == env$begin_iteration ||
i == env$end_iteration) {
stdev <- if (showsd) env$bst_evaluation_err else NULL
@ -115,7 +115,7 @@ cb.evaluation.log <- function() {
stop("bst_evaluation must have non-empty names")
mnames <<- gsub('-', '_', names(env$bst_evaluation))
if(!is.null(env$bst_evaluation_err))
if (!is.null(env$bst_evaluation_err))
mnames <<- c(paste0(mnames, '_mean'), paste0(mnames, '_std'))
}
@ -123,12 +123,12 @@ cb.evaluation.log <- function() {
env$evaluation_log <- as.data.table(t(simplify2array(env$evaluation_log)))
setnames(env$evaluation_log, c('iter', mnames))
if(!is.null(env$bst_evaluation_err)) {
if (!is.null(env$bst_evaluation_err)) {
# rearrange col order from _mean,_mean,...,_std,_std,...
# to be _mean,_std,_mean,_std,...
len <- length(mnames)
means <- mnames[seq_len(len/2)]
stds <- mnames[(len/2 + 1):len]
means <- mnames[seq_len(len / 2)]
stds <- mnames[(len / 2 + 1):len]
cnames <- numeric(len)
cnames[c(TRUE, FALSE)] <- means
cnames[c(FALSE, TRUE)] <- stds
@ -144,7 +144,7 @@ cb.evaluation.log <- function() {
return(finalizer(env))
ev <- env$bst_evaluation
if(!is.null(env$bst_evaluation_err))
if (!is.null(env$bst_evaluation_err))
ev <- c(ev, env$bst_evaluation_err)
env$evaluation_log <- c(env$evaluation_log,
list(c(iter = env$iteration, ev)))
@ -351,13 +351,13 @@ cb.early.stop <- function(stopping_rounds, maximize = FALSE,
finalizer <- function(env) {
if (!is.null(env$bst)) {
attr_best_score = as.numeric(xgb.attr(env$bst$handle, 'best_score'))
attr_best_score <- as.numeric(xgb.attr(env$bst$handle, 'best_score'))
if (best_score != attr_best_score)
stop("Inconsistent 'best_score' values between the closure state: ", best_score,
" and the xgb.attr: ", attr_best_score)
env$bst$best_iteration = best_iteration
env$bst$best_ntreelimit = best_ntreelimit
env$bst$best_score = best_score
env$bst$best_iteration <- best_iteration
env$bst$best_ntreelimit <- best_ntreelimit
env$bst$best_score <- best_score
} else {
env$basket$best_iteration <- best_iteration
env$basket$best_ntreelimit <- best_ntreelimit
@ -372,9 +372,9 @@ cb.early.stop <- function(stopping_rounds, maximize = FALSE,
return(finalizer(env))
i <- env$iteration
score = env$bst_evaluation[metric_idx]
score <- env$bst_evaluation[metric_idx]
if (( maximize && score > best_score) ||
if ((maximize && score > best_score) ||
(!maximize && score < best_score)) {
best_msg <<- format.eval.string(i, env$bst_evaluation, env$bst_evaluation_err)
@ -500,7 +500,7 @@ cb.cv.predict <- function(save_models = FALSE) {
for (fd in env$bst_folds) {
pr <- predict(fd$bst, fd$watchlist[[2]], ntreelimit = ntreelimit, reshape = TRUE)
if (is.matrix(pred)) {
pred[fd$index,] <- pr
pred[fd$index, ] <- pr
} else {
pred[fd$index] <- pr
}
@ -613,9 +613,7 @@ cb.gblinear.history <- function(sparse=FALSE) {
init <- function(env) {
if (!is.null(env$bst)) { # xgb.train:
coef_path <- list()
} else if (!is.null(env$bst_folds)) { # xgb.cv:
coef_path <- rep(list(), length(env$bst_folds))
} else stop("Parent frame has neither 'bst' nor 'bst_folds'")
}
@ -705,11 +703,11 @@ xgb.gblinear.history <- function(model, class_index = NULL) {
if (!is_cv) {
# extract num_class & num_feat from the internal model
dmp <- xgb.dump(model)
if(length(dmp) < 2 || dmp[2] != "bias:")
if (length(dmp) < 2 || dmp[2] != "bias:")
stop("It does not appear to be a gblinear model")
dmp <- dmp[-c(1,2)]
dmp <- dmp[-c(1, 2)]
n <- which(dmp == 'weight:')
if(length(n) != 1)
if (length(n) != 1)
stop("It does not appear to be a gblinear model")
num_class <- n - 1
num_feat <- (length(dmp) - 4) / num_class
@ -732,9 +730,9 @@ xgb.gblinear.history <- function(model, class_index = NULL) {
if (!is.null(class_index) && num_class > 1) {
coef_path <- if (is.list(coef_path)) {
lapply(coef_path,
function(x) x[, seq(1 + class_index, by=num_class, length.out=num_feat)])
function(x) x[, seq(1 + class_index, by = num_class, length.out = num_feat)])
} else {
coef_path <- coef_path[, seq(1 + class_index, by=num_class, length.out=num_feat)]
coef_path <- coef_path[, seq(1 + class_index, by = num_class, length.out = num_feat)]
}
}
coef_path

View File

@ -69,23 +69,23 @@ check.booster.params <- function(params, ...) {
if (!is.null(params[['monotone_constraints']]) &&
typeof(params[['monotone_constraints']]) != "character") {
vec2str = paste(params[['monotone_constraints']], collapse = ',')
vec2str = paste0('(', vec2str, ')')
params[['monotone_constraints']] = vec2str
vec2str <- paste(params[['monotone_constraints']], collapse = ',')
vec2str <- paste0('(', vec2str, ')')
params[['monotone_constraints']] <- vec2str
}
# interaction constraints parser (convert from list of column indices to string)
if (!is.null(params[['interaction_constraints']]) &&
typeof(params[['interaction_constraints']]) != "character"){
# check input class
if (!identical(class(params[['interaction_constraints']]),'list')) stop('interaction_constraints should be class list')
if (!all(unique(sapply(params[['interaction_constraints']], class)) %in% c('numeric','integer'))) {
if (!identical(class(params[['interaction_constraints']]), 'list')) stop('interaction_constraints should be class list')
if (!all(unique(sapply(params[['interaction_constraints']], class)) %in% c('numeric', 'integer'))) {
stop('interaction_constraints should be a list of numeric/integer vectors')
}
# recast parameter as string
interaction_constraints <- sapply(params[['interaction_constraints']], function(x) paste0('[', paste(x, collapse=','), ']'))
params[['interaction_constraints']] <- paste0('[', paste(interaction_constraints, collapse=','), ']')
interaction_constraints <- sapply(params[['interaction_constraints']], function(x) paste0('[', paste(x, collapse = ','), ']'))
params[['interaction_constraints']] <- paste0('[', paste(interaction_constraints, collapse = ','), ']')
}
return(params)
}
@ -167,8 +167,8 @@ xgb.iter.eval <- function(booster_handle, watchlist, iter, feval = NULL) {
if (is.null(feval)) {
msg <- .Call(XGBoosterEvalOneIter_R, booster_handle, as.integer(iter), watchlist, as.list(evnames))
msg <- stri_split_regex(msg, '(\\s+|:|\\s+)')[[1]][-1]
res <- as.numeric(msg[c(FALSE,TRUE)]) # even indices are the values
names(res) <- msg[c(TRUE,FALSE)] # odds are the names
res <- as.numeric(msg[c(FALSE, TRUE)]) # even indices are the values
names(res) <- msg[c(TRUE, FALSE)] # odds are the names
} else {
res <- sapply(seq_along(watchlist), function(j) {
w <- watchlist[[j]]
@ -315,8 +315,8 @@ depr_par_lut <- matrix(c(
'with.stats', 'with_stats',
'numberOfClusters', 'n_clusters',
'features.keep', 'features_keep',
'plot.height','plot_height',
'plot.width','plot_width',
'plot.height', 'plot_height',
'plot.width', 'plot_width',
'n_first_tree', 'trees',
'dummy', 'DUMMY'
), ncol = 2, byrow = TRUE)
@ -329,20 +329,20 @@ colnames(depr_par_lut) <- c('old', 'new')
check.deprecation <- function(..., env = parent.frame()) {
pars <- list(...)
# exact and partial matches
all_match <- pmatch(names(pars), depr_par_lut[,1])
all_match <- pmatch(names(pars), depr_par_lut[, 1])
# indices of matched pars' names
idx_pars <- which(!is.na(all_match))
if (length(idx_pars) == 0) return()
# indices of matched LUT rows
idx_lut <- all_match[idx_pars]
# which of idx_lut were the exact matches?
ex_match <- depr_par_lut[idx_lut,1] %in% names(pars)
ex_match <- depr_par_lut[idx_lut, 1] %in% names(pars)
for (i in seq_along(idx_pars)) {
pars_par <- names(pars)[idx_pars[i]]
old_par <- depr_par_lut[idx_lut[i], 1]
new_par <- depr_par_lut[idx_lut[i], 2]
if (!ex_match[i]) {
warning("'", pars_par, "' was partially matched to '", old_par,"'")
warning("'", pars_par, "' was partially matched to '", old_par, "'")
}
.Deprecated(new_par, old = old_par, package = 'xgboost')
if (new_par != 'NULL') {

View File

@ -1,6 +1,7 @@
# Construct an internal xgboost Booster and return a handle to it.
# internal utility function
xgb.Booster.handle <- function(params = list(), cachelist = list(), modelfile = NULL) {
xgb.Booster.handle <- function(params = list(), cachelist = list(),
modelfile = NULL) {
if (typeof(cachelist) != "list" ||
!all(vapply(cachelist, inherits, logical(1), what = 'xgb.DMatrix'))) {
stop("cachelist must be a list of xgb.DMatrix objects")
@ -62,8 +63,8 @@ is.null.handle <- function(handle) {
return(FALSE)
}
# Return a verified to be valid handle out of either xgb.Booster.handle or xgb.Booster
# internal utility function
# Return a verified to be valid handle out of either xgb.Booster.handle or
# xgb.Booster internal utility function
xgb.get.handle <- function(object) {
if (inherits(object, "xgb.Booster")) {
handle <- object$handle
@ -369,8 +370,8 @@ predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FA
matrix(ret, nrow = n_row, byrow = TRUE, dimnames = list(NULL, cnames))
} else {
arr <- array(ret, c(n_col1, n_group, n_row),
dimnames = list(cnames, NULL, NULL)) %>% aperm(c(2,3,1)) # [group, row, col]
lapply(seq_len(n_group), function(g) arr[g,,])
dimnames = list(cnames, NULL, NULL)) %>% aperm(c(2, 3, 1)) # [group, row, col]
lapply(seq_len(n_group), function(g) arr[g, , ])
}
} else if (predinteraction) {
n_col1 <- ncol(newdata) + 1
@ -379,11 +380,11 @@ predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FA
ret <- if (n_ret == n_row) {
matrix(ret, ncol = 1, dimnames = list(NULL, cnames))
} else if (n_group == 1) {
array(ret, c(n_col1, n_col1, n_row), dimnames = list(cnames, cnames, NULL)) %>% aperm(c(3,1,2))
array(ret, c(n_col1, n_col1, n_row), dimnames = list(cnames, cnames, NULL)) %>% aperm(c(3, 1, 2))
} else {
arr <- array(ret, c(n_col1, n_col1, n_group, n_row),
dimnames = list(cnames, cnames, NULL, NULL)) %>% aperm(c(3,4,1,2)) # [group, row, col1, col2]
lapply(seq_len(n_group), function(g) arr[g,,,])
dimnames = list(cnames, cnames, NULL, NULL)) %>% aperm(c(3, 4, 1, 2)) # [group, row, col1, col2]
lapply(seq_len(n_group), function(g) arr[g, , , ])
}
} else if (reshape && npred_per_case > 1) {
ret <- matrix(ret, nrow = n_row, byrow = TRUE)
@ -656,7 +657,7 @@ print.xgb.Booster <- function(x, verbose = FALSE, ...) {
if (!is.null(x$params)) {
cat('params (as set within xgb.train):\n')
cat( ' ',
cat(' ',
paste(names(x$params),
paste0('"', unlist(x$params), '"'),
sep = ' = ', collapse = ', '), '\n', sep = '')
@ -669,9 +670,9 @@ print.xgb.Booster <- function(x, verbose = FALSE, ...) {
if (length(attrs) > 0) {
cat('xgb.attributes:\n')
if (verbose) {
cat( paste(paste0(' ',names(attrs)),
paste0('"', unlist(attrs), '"'),
sep = ' = ', collapse = '\n'), '\n', sep = '')
cat(paste(paste0(' ', names(attrs)),
paste0('"', unlist(attrs), '"'),
sep = ' = ', collapse = '\n'), '\n', sep = '')
} else {
cat(' ', paste(names(attrs), collapse = ', '), '\n', sep = '')
}
@ -693,7 +694,7 @@ print.xgb.Booster <- function(x, verbose = FALSE, ...) {
#cat('ntree: ', xgb.ntree(x), '\n', sep='')
for (n in setdiff(names(x), c('handle', 'raw', 'call', 'params', 'callbacks',
'evaluation_log','niter','feature_names'))) {
'evaluation_log', 'niter', 'feature_names'))) {
if (is.atomic(x[[n]])) {
cat(n, ':', x[[n]], '\n', sep = ' ')
} else {

View File

@ -322,7 +322,7 @@ slice.xgb.DMatrix <- function(object, idxset, ...) {
for (i in seq_along(ind)) {
obj_attr <- attr(object, nms[i])
if (NCOL(obj_attr) > 1) {
attr(ret, nms[i]) <- obj_attr[idxset,]
attr(ret, nms[i]) <- obj_attr[idxset, ]
} else {
attr(ret, nms[i]) <- obj_attr[idxset]
}
@ -360,9 +360,9 @@ slice.xgb.DMatrix <- function(object, idxset, ...) {
print.xgb.DMatrix <- function(x, verbose = FALSE, ...) {
cat('xgb.DMatrix dim:', nrow(x), 'x', ncol(x), ' info: ')
infos <- c()
if(length(getinfo(x, 'label')) > 0) infos <- 'label'
if(length(getinfo(x, 'weight')) > 0) infos <- c(infos, 'weight')
if(length(getinfo(x, 'base_margin')) > 0) infos <- c(infos, 'base_margin')
if (length(getinfo(x, 'label')) > 0) infos <- 'label'
if (length(getinfo(x, 'weight')) > 0) infos <- c(infos, 'weight')
if (length(getinfo(x, 'base_margin')) > 0) infos <- c(infos, 'base_margin')
if (length(infos) == 0) infos <- 'NA'
cat(infos)
cnames <- colnames(x)

View File

@ -1,10 +1,10 @@
#' Save xgb.DMatrix object to binary file
#'
#'
#' Save xgb.DMatrix object to binary file
#'
#'
#' @param dmatrix the \code{xgb.DMatrix} object
#' @param fname the name of the file to write.
#'
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' train <- agaricus.train
@ -18,7 +18,7 @@ xgb.DMatrix.save <- function(dmatrix, fname) {
stop("fname must be character")
if (!inherits(dmatrix, "xgb.DMatrix"))
stop("dmatrix must be xgb.DMatrix")
.Call(XGDMatrixSaveBinary_R, dmatrix, fname[1], 0L)
return(TRUE)
}

View File

@ -1,50 +1,50 @@
#' Create new features from a previously learned model
#'
#'
#' May improve the learning by adding new features to the training data based on the decision trees from a previously learned model.
#'
#'
#' @param model decision tree boosting model learned on the original data
#' @param data original data (usually provided as a \code{dgCMatrix} matrix)
#' @param ... currently not used
#'
#'
#' @return \code{dgCMatrix} matrix including both the original data and the new features.
#'
#' @details
#' @details
#' This is the function inspired from the paragraph 3.1 of the paper:
#'
#'
#' \strong{Practical Lessons from Predicting Clicks on Ads at Facebook}
#'
#' \emph{(Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yan, xin Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers,
#'
#' \emph{(Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yan, xin Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers,
#' Joaquin Quinonero Candela)}
#'
#'
#' International Workshop on Data Mining for Online Advertising (ADKDD) - August 24, 2014
#'
#'
#' \url{https://research.fb.com/publications/practical-lessons-from-predicting-clicks-on-ads-at-facebook/}.
#'
#'
#' Extract explaining the method:
#'
#'
#' "We found that boosted decision trees are a powerful and very
#' convenient way to implement non-linear and tuple transformations
#' of the kind we just described. We treat each individual
#' tree as a categorical feature that takes as value the
#' index of the leaf an instance ends up falling in. We use
#' 1-of-K coding of this type of features.
#'
#' For example, consider the boosted tree model in Figure 1 with 2 subtrees,
#' index of the leaf an instance ends up falling in. We use
#' 1-of-K coding of this type of features.
#'
#' For example, consider the boosted tree model in Figure 1 with 2 subtrees,
#' where the first subtree has 3 leafs and the second 2 leafs. If an
#' instance ends up in leaf 2 in the first subtree and leaf 1 in
#' second subtree, the overall input to the linear classifier will
#' be the binary vector \code{[0, 1, 0, 1, 0]}, where the first 3 entries
#' correspond to the leaves of the first subtree and last 2 to
#' those of the second subtree.
#'
#'
#' [...]
#'
#'
#' We can understand boosted decision tree
#' based transformation as a supervised feature encoding that
#' converts a real-valued vector into a compact binary-valued
#' vector. A traversal from root node to a leaf node represents
#' a rule on certain features."
#'
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
@ -55,33 +55,33 @@
#' nrounds = 4
#'
#' bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2)
#'
#'
#' # Model accuracy without new features
#' accuracy.before <- sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label) /
#' length(agaricus.test$label)
#'
#'
#' # Convert previous features to one hot encoding
#' new.features.train <- xgb.create.features(model = bst, agaricus.train$data)
#' new.features.test <- xgb.create.features(model = bst, agaricus.test$data)
#'
#'
#' # learning with new features
#' new.dtrain <- xgb.DMatrix(data = new.features.train, label = agaricus.train$label)
#' new.dtest <- xgb.DMatrix(data = new.features.test, label = agaricus.test$label)
#' watchlist <- list(train = new.dtrain)
#' bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2)
#'
#'
#' # Model accuracy with new features
#' accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) /
#' length(agaricus.test$label)
#'
#'
#' # Here the accuracy was already good and is now perfect.
#' cat(paste("The accuracy was", accuracy.before, "before adding leaf features and it is now",
#' accuracy.after, "!\n"))
#'
#'
#' @export
xgb.create.features <- function(model, data, ...){
check.deprecation(...)
pred_with_leaf <- predict(model, data, predleaf = TRUE)
cols <- lapply(as.data.frame(pred_with_leaf), factor)
cbind(data, sparse.model.matrix( ~ . -1, cols))
cbind(data, sparse.model.matrix(~ . -1, cols)) # nolint
}

View File

@ -2,7 +2,7 @@
#'
#' The cross validation function of xgboost
#'
#' @param params the list of parameters. The complete list of parameters is
#' @param params the list of parameters. The complete list of parameters is
#' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
#' is a shorter summary:
#' \itemize{
@ -137,20 +137,20 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing =
# stop("Either 'eval_metric' or 'feval' must be provided for CV")
# Check the labels
if ( (inherits(data, 'xgb.DMatrix') && is.null(getinfo(data, 'label'))) ||
(!inherits(data, 'xgb.DMatrix') && is.null(label))) {
if ((inherits(data, 'xgb.DMatrix') && is.null(getinfo(data, 'label'))) ||
(!inherits(data, 'xgb.DMatrix') && is.null(label))) {
stop("Labels must be provided for CV either through xgb.DMatrix, or through 'label=' when 'data' is matrix")
} else if (inherits(data, 'xgb.DMatrix')) {
if (!is.null(label))
warning("xgb.cv: label will be ignored, since data is of type xgb.DMatrix")
cv_label = getinfo(data, 'label')
cv_label <- getinfo(data, 'label')
} else {
cv_label = label
cv_label <- label
}
# CV folds
if(!is.null(folds)) {
if(!is.list(folds) || length(folds) < 2)
if (!is.null(folds)) {
if (!is.list(folds) || length(folds) < 2)
stop("'folds' must be a list with 2 or more elements that are vectors of indices for each CV-fold")
nfold <- length(folds)
} else {
@ -165,7 +165,7 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing =
# verbosity & evaluation printing callback:
params <- c(params, list(silent = 1))
print_every_n <- max( as.integer(print_every_n), 1L)
print_every_n <- max(as.integer(print_every_n), 1L)
if (!has.callbacks(callbacks, 'cb.print.evaluation') && verbose) {
callbacks <- add.cb(callbacks, cb.print.evaluation(print_every_n, showsd = showsd))
}
@ -196,20 +196,20 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing =
bst_folds <- lapply(seq_along(folds), function(k) {
dtest <- slice(dall, folds[[k]])
# code originally contributed by @RolandASc on stackoverflow
if(is.null(train_folds))
if (is.null(train_folds))
dtrain <- slice(dall, unlist(folds[-k]))
else
dtrain <- slice(dall, train_folds[[k]])
handle <- xgb.Booster.handle(params, list(dtrain, dtest))
list(dtrain = dtrain, bst = handle, watchlist = list(train = dtrain, test=dtest), index = folds[[k]])
list(dtrain = dtrain, bst = handle, watchlist = list(train = dtrain, test = dtest), index = folds[[k]])
})
rm(dall)
# a "basket" to collect some results from callbacks
basket <- list()
# extract parameters that can affect the relationship b/w #trees and #iterations
num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1)
num_parallel_tree <- max(as.numeric(NVL(params[['num_parallel_tree']], 1)), 1)
num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1) # nolint
num_parallel_tree <- max(as.numeric(NVL(params[['num_parallel_tree']], 1)), 1) # nolint
# those are fixed for CV (no training continuation)
begin_iteration <- 1
@ -226,7 +226,7 @@ xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing =
})
msg <- simplify2array(msg)
bst_evaluation <- rowMeans(msg)
bst_evaluation_err <- sqrt(rowMeans(msg^2) - bst_evaluation^2)
bst_evaluation_err <- sqrt(rowMeans(msg^2) - bst_evaluation^2) # nolint
for (f in cb$post_iter) f()
@ -285,10 +285,10 @@ print.xgb.cv.synchronous <- function(x, verbose = FALSE, ...) {
}
if (!is.null(x$params)) {
cat('params (as set within xgb.cv):\n')
cat( ' ',
paste(names(x$params),
paste0('"', unlist(x$params), '"'),
sep = ' = ', collapse = ', '), '\n', sep = '')
cat(' ',
paste(names(x$params),
paste0('"', unlist(x$params), '"'),
sep = ' = ', collapse = ', '), '\n', sep = '')
}
if (!is.null(x$callbacks) && length(x$callbacks) > 0) {
cat('callbacks:\n')

View File

@ -1,15 +1,15 @@
#' Dump an xgboost model in text format.
#'
#'
#' Dump an xgboost model in text format.
#'
#'
#' @param model the model object.
#' @param fname the name of the text file where to save the model text dump.
#' @param fname the name of the text file where to save the model text dump.
#' If not provided or set to \code{NULL}, the model is returned as a \code{character} vector.
#' @param fmap feature map file representing feature types.
#' Detailed description could be found at
#' Detailed description could be found at
#' \url{https://github.com/dmlc/xgboost/wiki/Binary-Classification#dump-model}.
#' See demo/ for walkthrough example in R, and
#' \url{https://github.com/dmlc/xgboost/blob/master/demo/data/featmap.txt}
#' \url{https://github.com/dmlc/xgboost/blob/master/demo/data/featmap.txt}
#' for example Format.
#' @param with_stats whether to dump some additional statistics about the splits.
#' When this option is on, the model dump contains two additional values:
@ -27,18 +27,18 @@
#' data(agaricus.test, package='xgboost')
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
#' # save the model in file 'xgb.model.dump'
#' dump_path = file.path(tempdir(), 'model.dump')
#' xgb.dump(bst, dump_path, with_stats = TRUE)
#'
#'
#' # print the model without saving it to a file
#' print(xgb.dump(bst, with_stats = TRUE))
#'
#'
#' # print in JSON format:
#' cat(xgb.dump(bst, with_stats = TRUE, dump_format='json'))
#'
#'
#' @export
xgb.dump <- function(model, fname = NULL, fmap = "", with_stats=FALSE,
dump_format = c("text", "json"), ...) {
@ -50,19 +50,19 @@ xgb.dump <- function(model, fname = NULL, fmap = "", with_stats=FALSE,
stop("fname: argument must be a character string (when provided)")
if (!(is.null(fmap) || is.character(fmap)))
stop("fmap: argument must be a character string (when provided)")
model <- xgb.Booster.complete(model)
model_dump <- .Call(XGBoosterDumpModel_R, model$handle, NVL(fmap, "")[1], as.integer(with_stats),
as.character(dump_format))
if (is.null(fname))
if (is.null(fname))
model_dump <- stri_replace_all_regex(model_dump, '\t', '')
if (dump_format == "text")
model_dump <- unlist(stri_split_regex(model_dump, '\n'))
model_dump <- grep('^\\s*$', model_dump, invert = TRUE, value = TRUE)
if (is.null(fname)) {
return(model_dump)
} else {

View File

@ -3,9 +3,9 @@
#' @rdname xgb.plot.importance
#' @export
xgb.ggplot.importance <- function(importance_matrix = NULL, top_n = NULL, measure = NULL,
xgb.ggplot.importance <- function(importance_matrix = NULL, top_n = NULL, measure = NULL,
rel_to_first = FALSE, n_clusters = c(1:10), ...) {
importance_matrix <- xgb.plot.importance(importance_matrix, top_n = top_n, measure = measure,
rel_to_first = rel_to_first, plot = FALSE, ...)
if (!requireNamespace("ggplot2", quietly = TRUE)) {
@ -14,21 +14,21 @@ xgb.ggplot.importance <- function(importance_matrix = NULL, top_n = NULL, measur
if (!requireNamespace("Ckmeans.1d.dp", quietly = TRUE)) {
stop("Ckmeans.1d.dp package is required", call. = FALSE)
}
clusters <- suppressWarnings(
Ckmeans.1d.dp::Ckmeans.1d.dp(importance_matrix$Importance, n_clusters)
)
importance_matrix[, Cluster := as.character(clusters$cluster)]
plot <-
ggplot2::ggplot(importance_matrix,
ggplot2::ggplot(importance_matrix,
ggplot2::aes(x = factor(Feature, levels = rev(Feature)), y = Importance, width = 0.5),
environment = environment()) +
ggplot2::geom_bar(ggplot2::aes(fill = Cluster), stat = "identity", position = "identity") +
ggplot2::coord_flip() +
ggplot2::xlab("Features") +
ggplot2::ggtitle("Feature importance") +
ggplot2::theme(plot.title = ggplot2::element_text(lineheight = .9, face = "bold"),
environment = environment()) +
ggplot2::geom_bar(ggplot2::aes(fill = Cluster), stat = "identity", position = "identity") +
ggplot2::coord_flip() +
ggplot2::xlab("Features") +
ggplot2::ggtitle("Feature importance") +
ggplot2::theme(plot.title = ggplot2::element_text(lineheight = .9, face = "bold"),
panel.grid.major.y = ggplot2::element_blank())
return(plot)
}
@ -42,7 +42,7 @@ xgb.ggplot.deepness <- function(model = NULL, which = c("2x1", "max.depth", "med
stop("ggplot2 package is required for plotting the graph deepness.", call. = FALSE)
which <- match.arg(which)
dt_depths <- xgb.plot.deepness(model = model, plot = FALSE)
dt_summaries <- dt_depths[, .(.N, Cover = mean(Cover)), Depth]
setkey(dt_summaries, 'Depth')
@ -60,30 +60,30 @@ xgb.ggplot.deepness <- function(model = NULL, which = c("2x1", "max.depth", "med
axis.ticks = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank()
)
p2 <-
p2 <-
ggplot2::ggplot(dt_summaries) +
ggplot2::geom_bar(ggplot2::aes(x = Depth, y = Cover), stat = "Identity") +
ggplot2::geom_bar(ggplot2::aes(x = Depth, y = Cover), stat = "Identity") +
ggplot2::xlab("Leaf depth") +
ggplot2::ylab("Weighted cover")
multiplot(p1, p2, cols = 1)
return(invisible(list(p1, p2)))
} else if (which == "max.depth") {
p <-
ggplot2::ggplot(dt_depths[, max(Depth), Tree]) +
ggplot2::geom_jitter(ggplot2::aes(x = Tree, y = V1),
height = 0.15, alpha=0.4, size=3, stroke=0) +
height = 0.15, alpha = 0.4, size = 3, stroke = 0) +
ggplot2::xlab("tree #") +
ggplot2::ylab("Max tree leaf depth")
return(p)
} else if (which == "med.depth") {
p <-
ggplot2::ggplot(dt_depths[, median(as.numeric(Depth)), Tree]) +
ggplot2::geom_jitter(ggplot2::aes(x = Tree, y = V1),
height = 0.15, alpha=0.4, size=3, stroke=0) +
height = 0.15, alpha = 0.4, size = 3, stroke = 0) +
ggplot2::xlab("tree #") +
ggplot2::ylab("Median tree leaf depth")
return(p)
@ -92,7 +92,7 @@ xgb.ggplot.deepness <- function(model = NULL, which = c("2x1", "max.depth", "med
p <-
ggplot2::ggplot(dt_depths[, median(abs(Weight)), Tree]) +
ggplot2::geom_point(ggplot2::aes(x = Tree, y = V1),
alpha=0.4, size=3, stroke=0) +
alpha = 0.4, size = 3, stroke = 0) +
ggplot2::xlab("tree #") +
ggplot2::ylab("Median absolute leaf weight")
return(p)
@ -105,11 +105,11 @@ xgb.ggplot.deepness <- function(model = NULL, which = c("2x1", "max.depth", "med
# internal utility function
multiplot <- function(..., cols = 1) {
plots <- list(...)
num_plots = length(plots)
num_plots <- length(plots)
layout <- matrix(seq(1, cols * ceiling(num_plots / cols)),
ncol = cols, nrow = ceiling(num_plots / cols))
if (num_plots == 1) {
print(plots[[1]])
} else {
@ -118,7 +118,7 @@ multiplot <- function(..., cols = 1) {
for (i in 1:num_plots) {
# Get the i,j matrix positions of the regions that contain this subplot
matchidx <- as.data.table(which(layout == i, arr.ind = TRUE))
print(
plots[[i]], vp = grid::viewport(
layout.pos.row = matchidx$row,

View File

@ -1,66 +1,66 @@
#' Importance of features in a model.
#'
#'
#' Creates a \code{data.table} of feature importances in a model.
#'
#'
#' @param feature_names character vector of feature names. If the model already
#' contains feature names, those would be used when \code{feature_names=NULL} (default value).
#' Non-null \code{feature_names} could be provided to override those in the model.
#' @param model object of class \code{xgb.Booster}.
#' @param trees (only for the gbtree booster) an integer vector of tree indices that should be included
#' into the importance calculation. If set to \code{NULL}, all trees of the model are parsed.
#' It could be useful, e.g., in multiclass classification to get feature importances
#' It could be useful, e.g., in multiclass classification to get feature importances
#' for each class separately. IMPORTANT: the tree index in xgboost models
#' is zero-based (e.g., use \code{trees = 0:4} for first 5 trees).
#' @param data deprecated.
#' @param label deprecated.
#' @param target deprecated.
#'
#' @details
#'
#' @details
#'
#' This function works for both linear and tree models.
#'
#' For linear models, the importance is the absolute magnitude of linear coefficients.
#' For that reason, in order to obtain a meaningful ranking by importance for a linear model,
#' the features need to be on the same scale (which you also would want to do when using either
#'
#' For linear models, the importance is the absolute magnitude of linear coefficients.
#' For that reason, in order to obtain a meaningful ranking by importance for a linear model,
#' the features need to be on the same scale (which you also would want to do when using either
#' L1 or L2 regularization).
#'
#'
#' @return
#'
#'
#' For a tree model, a \code{data.table} with the following columns:
#' \itemize{
#' \item \code{Features} names of the features used in the model;
#' \item \code{Gain} represents fractional contribution of each feature to the model based on
#' the total gain of this feature's splits. Higher percentage means a more important
#' the total gain of this feature's splits. Higher percentage means a more important
#' predictive feature.
#' \item \code{Cover} metric of the number of observation related to this feature;
#' \item \code{Frequency} percentage representing the relative number of times
#' a feature have been used in trees.
#' }
#'
#'
#' A linear model's importance \code{data.table} has the following columns:
#' \itemize{
#' \item \code{Features} names of the features used in the model;
#' \item \code{Weight} the linear coefficient of this feature;
#' \item \code{Class} (only for multiclass models) class label.
#' }
#'
#' If \code{feature_names} is not provided and \code{model} doesn't have \code{feature_names},
#'
#' If \code{feature_names} is not provided and \code{model} doesn't have \code{feature_names},
#' index of the features will be used instead. Because the index is extracted from the model dump
#' (based on C++ code), it starts at 0 (as in C/C++ or Python) instead of 1 (usual in R).
#'
#'
#' @examples
#'
#'
#' # binomial classification using gbtree:
#' data(agaricus.train, package='xgboost')
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
#' xgb.importance(model = bst)
#'
#'
#' # binomial classification using gblinear:
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, booster = "gblinear",
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, booster = "gblinear",
#' eta = 0.3, nthread = 1, nrounds = 20, objective = "binary:logistic")
#' xgb.importance(model = bst)
#'
#'
#' # multiclass classification using gbtree:
#' nclass <- 3
#' nrounds <- 10
@ -73,7 +73,7 @@
#' xgb.importance(model = mbst, trees = seq(from=0, by=nclass, length.out=nrounds))
#' xgb.importance(model = mbst, trees = seq(from=1, by=nclass, length.out=nrounds))
#' xgb.importance(model = mbst, trees = seq(from=2, by=nclass, length.out=nrounds))
#'
#'
#' # multiclass classification using gblinear:
#' mbst <- xgboost(data = scale(as.matrix(iris[, -5])), label = as.numeric(iris$Species) - 1,
#' booster = "gblinear", eta = 0.2, nthread = 1, nrounds = 15,
@ -83,33 +83,33 @@
#' @export
xgb.importance <- function(feature_names = NULL, model = NULL, trees = NULL,
data = NULL, label = NULL, target = NULL){
if (!(is.null(data) && is.null(label) && is.null(target)))
warning("xgb.importance: parameters 'data', 'label' and 'target' are deprecated")
if (!inherits(model, "xgb.Booster"))
stop("model: must be an object of class xgb.Booster")
if (is.null(feature_names) && !is.null(model$feature_names))
feature_names <- model$feature_names
if (!(is.null(feature_names) || is.character(feature_names)))
stop("feature_names: Has to be a character vector")
model_text_dump <- xgb.dump(model = model, with_stats = TRUE)
# linear model
if(model_text_dump[2] == "bias:"){
if (model_text_dump[2] == "bias:"){
weights <- which(model_text_dump == "weight:") %>%
{model_text_dump[(. + 1):length(model_text_dump)]} %>%
as.numeric
num_class <- NVL(model$params$num_class, 1)
if(is.null(feature_names))
if (is.null(feature_names))
feature_names <- seq(to = length(weights) / num_class) - 1
if (length(feature_names) * num_class != length(weights))
stop("feature_names length does not match the number of features used in the model")
result <- if (num_class == 1) {
data.table(Feature = feature_names, Weight = weights)[order(-abs(Weight))]
} else {
@ -117,18 +117,17 @@ xgb.importance <- function(feature_names = NULL, model = NULL, trees = NULL,
Weight = weights,
Class = seq_len(num_class) - 1)[order(Class, -abs(Weight))]
}
} else {
# tree model
result <- xgb.model.dt.tree(feature_names = feature_names,
text = model_text_dump,
trees = trees)[
Feature != "Leaf", .(Gain = sum(Quality),
Cover = sum(Cover),
Frequency = .N), by = Feature][
,`:=`(Gain = Gain / sum(Gain),
Cover = Cover / sum(Cover),
Frequency = Frequency / sum(Frequency))][
order(Gain, decreasing = TRUE)]
} else { # tree model
result <- xgb.model.dt.tree(feature_names = feature_names,
text = model_text_dump,
trees = trees)[
Feature != "Leaf", .(Gain = sum(Quality),
Cover = sum(Cover),
Frequency = .N), by = Feature][
, `:=`(Gain = Gain / sum(Gain),
Cover = Cover / sum(Cover),
Frequency = Frequency / sum(Frequency))][
order(Gain, decreasing = TRUE)]
}
result
}

View File

@ -1,12 +1,12 @@
#' Parse a boosted tree model text dump
#'
#'
#' Parse a boosted tree model text dump into a \code{data.table} structure.
#'
#'
#' @param feature_names character vector of feature names. If the model already
#' contains feature names, those would be used when \code{feature_names=NULL} (default value).
#' Non-null \code{feature_names} could be provided to override those in the model.
#' @param model object of class \code{xgb.Booster}
#' @param text \code{character} vector previously generated by the \code{xgb.dump}
#' @param text \code{character} vector previously generated by the \code{xgb.dump}
#' function (where parameter \code{with_stats = TRUE} should have been set).
#' \code{text} takes precedence over \code{model}.
#' @param trees an integer vector of tree indices that should be parsed.
@ -18,11 +18,11 @@
#' represented as integers (when FALSE) or as "Tree-Node" character strings (when FALSE).
#' @param ... currently not used.
#'
#' @return
#' @return
#' A \code{data.table} with detailed information about model trees' nodes.
#'
#' The columns of the \code{data.table} are:
#'
#'
#' \itemize{
#' \item \code{Tree}: integer ID of a tree in a model (zero-based index)
#' \item \code{Node}: integer ID of a node in a tree (zero-based index)
@ -36,79 +36,79 @@
#' \item \code{Quality}: either the split gain (change in loss) or the leaf value
#' \item \code{Cover}: metric related to the number of observation either seen by a split
#' or collected by a leaf during training.
#' }
#'
#' }
#'
#' When \code{use_int_id=FALSE}, columns "Yes", "No", and "Missing" point to model-wide node identifiers
#' in the "ID" column. When \code{use_int_id=TRUE}, those columns point to node identifiers from
#' in the "ID" column. When \code{use_int_id=TRUE}, those columns point to node identifiers from
#' the corresponding trees in the "Node" column.
#'
#'
#' @examples
#' # Basic use:
#'
#'
#' data(agaricus.train, package='xgboost')
#'
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
#'
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#'
#'
#' (dt <- xgb.model.dt.tree(colnames(agaricus.train$data), bst))
#'
#' # This bst model already has feature_names stored with it, so those would be used when
#'
#' # This bst model already has feature_names stored with it, so those would be used when
#' # feature_names is not set:
#' (dt <- xgb.model.dt.tree(model = bst))
#'
#'
#' # How to match feature names of splits that are following a current 'Yes' branch:
#'
#'
#' merge(dt, dt[, .(ID, Y.Feature=Feature)], by.x='Yes', by.y='ID', all.x=TRUE)[order(Tree,Node)]
#'
#'
#' @export
xgb.model.dt.tree <- function(feature_names = NULL, model = NULL, text = NULL,
trees = NULL, use_int_id = FALSE, ...){
check.deprecation(...)
if (!inherits(model, "xgb.Booster") && !is.character(text)) {
stop("Either 'model' must be an object of class xgb.Booster\n",
" or 'text' must be a character vector with the result of xgb.dump\n",
" (or NULL if 'model' was provided).")
}
if (is.null(feature_names) && !is.null(model) && !is.null(model$feature_names))
feature_names <- model$feature_names
if (!(is.null(feature_names) || is.character(feature_names))) {
stop("feature_names: must be a character vector")
}
if (!(is.null(trees) || is.numeric(trees))) {
stop("trees: must be a vector of integers.")
}
if (is.null(text)){
text <- xgb.dump(model = model, with_stats = TRUE)
}
if (length(text) < 2 ||
sum(stri_detect_regex(text, 'yes=(\\d+),no=(\\d+)')) < 1) {
stop("Non-tree model detected! This function can only be used with tree models.")
}
position <- which(!is.na(stri_match_first_regex(text, "booster")))
add.tree.id <- function(node, tree) if (use_int_id) node else paste(tree, node, sep = "-")
anynumber_regex <- "[-+]?[0-9]*\\.?[0-9]+([eE][-+]?[0-9]+)?"
td <- data.table(t = text)
td[position, Tree := 1L]
td[, Tree := cumsum(ifelse(is.na(Tree), 0L, Tree)) - 1L]
if (is.null(trees)) {
trees <- 0:max(td$Tree)
} else {
trees <- trees[trees >= 0 & trees <= max(td$Tree)]
}
td <- td[Tree %in% trees & !grepl('^booster', t)]
td[, Node := stri_match_first_regex(t, "(\\d+):")[,2] %>% as.integer ]
td[, Node := stri_match_first_regex(t, "(\\d+):")[, 2] %>% as.integer]
if (!use_int_id) td[, ID := add.tree.id(Node, Tree)]
td[, isLeaf := !is.na(stri_match_first_regex(t, "leaf"))]
@ -116,29 +116,29 @@ xgb.model.dt.tree <- function(feature_names = NULL, model = NULL, text = NULL,
branch_rx <- paste0("f(\\d+)<(", anynumber_regex, ")\\] yes=(\\d+),no=(\\d+),missing=(\\d+),",
"gain=(", anynumber_regex, "),cover=(", anynumber_regex, ")")
branch_cols <- c("Feature", "Split", "Yes", "No", "Missing", "Quality", "Cover")
td[isLeaf == FALSE,
td[isLeaf == FALSE,
(branch_cols) := {
# skip some indices with spurious capture groups from anynumber_regex
xtr <- stri_match_first_regex(t, branch_rx)[, c(2,3,5,6,7,8,10), drop = FALSE]
xtr <- stri_match_first_regex(t, branch_rx)[, c(2, 3, 5, 6, 7, 8, 10), drop = FALSE]
xtr[, 3:5] <- add.tree.id(xtr[, 3:5], Tree)
lapply(seq_len(ncol(xtr)), function(i) xtr[,i])
lapply(seq_len(ncol(xtr)), function(i) xtr[, i])
}]
# assign feature_names when available
if (!is.null(feature_names)) {
if (length(feature_names) <= max(as.numeric(td$Feature), na.rm = TRUE))
stop("feature_names has less elements than there are features used in the model")
td[isLeaf == FALSE, Feature := feature_names[as.numeric(Feature) + 1] ]
td[isLeaf == FALSE, Feature := feature_names[as.numeric(Feature) + 1]]
}
# parse leaf lines
leaf_rx <- paste0("leaf=(", anynumber_regex, "),cover=(", anynumber_regex, ")")
leaf_cols <- c("Feature", "Quality", "Cover")
td[isLeaf == TRUE,
(leaf_cols) := {
xtr <- stri_match_first_regex(t, leaf_rx)[, c(2,4)]
c("Leaf", lapply(seq_len(ncol(xtr)), function(i) xtr[,i]))
xtr <- stri_match_first_regex(t, leaf_rx)[, c(2, 4)]
c("Leaf", lapply(seq_len(ncol(xtr)), function(i) xtr[, i]))
}]
# convert some columns to numeric
numeric_cols <- c("Split", "Quality", "Cover")
td[, (numeric_cols) := lapply(.SD, as.numeric), .SDcols = numeric_cols]
@ -146,14 +146,14 @@ xgb.model.dt.tree <- function(feature_names = NULL, model = NULL, text = NULL,
int_cols <- c("Yes", "No", "Missing")
td[, (int_cols) := lapply(.SD, as.integer), .SDcols = int_cols]
}
td[, t := NULL]
td[, isLeaf := NULL]
td[order(Tree, Node)]
}
# Avoid error messages during CRAN check.
# The reason is that these variables are never declared
# They are mainly column names inferred by Data.table...
globalVariables(c("Tree", "Node", "ID", "Feature", "t", "isLeaf",".SD", ".SDcols"))
globalVariables(c("Tree", "Node", "ID", "Feature", "t", "isLeaf", ".SD", ".SDcols"))

View File

@ -2,48 +2,48 @@
#'
#' Visualizes distributions related to depth of tree leafs.
#' \code{xgb.plot.deepness} uses base R graphics, while \code{xgb.ggplot.deepness} uses the ggplot backend.
#'
#'
#' @param model either an \code{xgb.Booster} model generated by the \code{xgb.train} function
#' or a data.table result of the \code{xgb.model.dt.tree} function.
#' @param plot (base R barplot) whether a barplot should be produced.
#' @param plot (base R barplot) whether a barplot should be produced.
#' If FALSE, only a data.table is returned.
#' @param which which distribution to plot (see details).
#' @param ... other parameters passed to \code{barplot} or \code{plot}.
#'
#'
#' @details
#'
#'
#' When \code{which="2x1"}, two distributions with respect to the leaf depth
#' are plotted on top of each other:
#' \itemize{
#' \item the distribution of the number of leafs in a tree model at a certain depth;
#' \item the distribution of average weighted number of observations ("cover")
#' \item the distribution of average weighted number of observations ("cover")
#' ending up in leafs at certain depth.
#' }
#' Those could be helpful in determining sensible ranges of the \code{max_depth}
#' Those could be helpful in determining sensible ranges of the \code{max_depth}
#' and \code{min_child_weight} parameters.
#'
#'
#' When \code{which="max.depth"} or \code{which="med.depth"}, plots of either maximum or median depth
#' per tree with respect to tree number are created. And \code{which="med.weight"} allows to see how
#' a tree's median absolute leaf weight changes through the iterations.
#'
#' This function was inspired by the blog post
#' \url{https://github.com/aysent/random-forest-leaf-visualization}.
#'
#'
#' @return
#'
#'
#' Other than producing plots (when \code{plot=TRUE}), the \code{xgb.plot.deepness} function
#' silently returns a processed data.table where each row corresponds to a terminal leaf in a tree model,
#' and contains information about leaf's depth, cover, and weight (which is used in calculating predictions).
#'
#'
#' The \code{xgb.ggplot.deepness} silently returns either a list of two ggplot graphs when \code{which="2x1"}
#' or a single ggplot graph for the other \code{which} options.
#'
#' @seealso
#'
#' @seealso
#'
#' \code{\link{xgb.train}}, \code{\link{xgb.model.dt.tree}}.
#'
#'
#' @examples
#'
#'
#' data(agaricus.train, package='xgboost')
#'
#' # Change max_depth to a higher number to get a more significant result
@ -53,16 +53,16 @@
#'
#' xgb.plot.deepness(bst)
#' xgb.ggplot.deepness(bst)
#'
#'
#' xgb.plot.deepness(bst, which='max.depth', pch=16, col=rgb(0,0,1,0.3), cex=2)
#'
#'
#' xgb.plot.deepness(bst, which='med.weight', pch=16, col=rgb(0,0,1,0.3), cex=2)
#'
#' @rdname xgb.plot.deepness
#' @export
xgb.plot.deepness <- function(model = NULL, which = c("2x1", "max.depth", "med.depth", "med.weight"),
plot = TRUE, ...) {
if (!(inherits(model, "xgb.Booster") || is.data.table(model)))
stop("model: Has to be either an xgb.Booster model generaged by the xgb.train function\n",
"or a data.table result of the xgb.importance function")
@ -71,32 +71,32 @@ xgb.plot.deepness <- function(model = NULL, which = c("2x1", "max.depth", "med.d
stop("igraph package is required for plotting the graph deepness.", call. = FALSE)
which <- match.arg(which)
dt_tree <- model
if (inherits(model, "xgb.Booster"))
dt_tree <- xgb.model.dt.tree(model = model)
if (!all(c("Feature", "Tree", "ID", "Yes", "No", "Cover") %in% colnames(dt_tree)))
stop("Model tree columns are not as expected!\n",
" Note that this function works only for tree models.")
dt_depths <- merge(get.leaf.depth(dt_tree), dt_tree[, .(ID, Cover, Weight = Quality)], by = "ID")
setkeyv(dt_depths, c("Tree", "ID"))
# count by depth levels, and also calculate average cover at a depth
dt_summaries <- dt_depths[, .(.N, Cover = mean(Cover)), Depth]
setkey(dt_summaries, "Depth")
if (plot) {
if (which == "2x1") {
op <- par(no.readonly = TRUE)
par(mfrow = c(2,1),
oma = c(3,1,3,1) + 0.1,
mar = c(1,4,1,0) + 0.1)
par(mfrow = c(2, 1),
oma = c(3, 1, 3, 1) + 0.1,
mar = c(1, 4, 1, 0) + 0.1)
dt_summaries[, barplot(N, border = NA, ylab = 'Number of leafs', ...)]
dt_summaries[, barplot(Cover, border = NA, ylab = "Weighted cover", names.arg = Depth, ...)]
title("Model complexity", xlab = "Leaf depth", outer = TRUE, line = 1)
par(op)
} else if (which == "max.depth") {
@ -123,14 +123,14 @@ get.leaf.depth <- function(dt_tree) {
dt_tree[Feature != "Leaf", .(ID, To = No, Tree)]
))
# whether "To" is a leaf:
dt_edges <-
dt_edges <-
merge(dt_edges,
dt_tree[Feature == "Leaf", .(ID, Leaf = TRUE)],
all.x = TRUE, by.x = "To", by.y = "ID")
dt_edges[is.na(Leaf), Leaf := FALSE]
dt_edges[, {
graph <- igraph::graph_from_data_frame(.SD[,.(ID, To)])
graph <- igraph::graph_from_data_frame(.SD[, .(ID, To)])
# min(ID) in a tree is a root node
paths_tmp <- igraph::shortest_paths(graph, from = min(ID), to = To[Leaf == TRUE])
# list of paths to each leaf in a tree

View File

@ -92,10 +92,10 @@ xgb.plot.importance <- function(importance_matrix = NULL, top_n = NULL, measure
importance_matrix <- head(importance_matrix, top_n)
}
if (rel_to_first) {
importance_matrix[, Importance := Importance/max(abs(Importance))]
importance_matrix[, Importance := Importance / max(abs(Importance))]
}
if (is.null(cex)) {
cex <- 2.5/log2(1 + nrow(importance_matrix))
cex <- 2.5 / log2(1 + nrow(importance_matrix))
}
if (plot) {

View File

@ -9,7 +9,7 @@
#' @param plot_height height in pixels of the graph to produce
#' @param render a logical flag for whether the graph should be rendered (see Value).
#' @param ... currently not used
#'
#'
#' @details
#'
#' This function tries to capture the complexity of a gradient boosted tree model
@ -72,53 +72,53 @@ xgb.plot.multi.trees <- function(model, feature_names = NULL, features_keep = 5,
precedent.nodes <- root.nodes
while(tree.matrix[,sum(is.na(abs.node.position))] > 0) {
while (tree.matrix[, sum(is.na(abs.node.position))] > 0) {
yes.row.nodes <- tree.matrix[abs.node.position %in% precedent.nodes & !is.na(Yes)]
no.row.nodes <- tree.matrix[abs.node.position %in% precedent.nodes & !is.na(No)]
yes.nodes.abs.pos <- yes.row.nodes[, abs.node.position] %>% paste0("_0")
no.nodes.abs.pos <- no.row.nodes[, abs.node.position] %>% paste0("_1")
tree.matrix[ID %in% yes.row.nodes[, Yes], abs.node.position := yes.nodes.abs.pos]
tree.matrix[ID %in% no.row.nodes[, No], abs.node.position := no.nodes.abs.pos]
precedent.nodes <- c(yes.nodes.abs.pos, no.nodes.abs.pos)
}
tree.matrix[!is.na(Yes), Yes := paste0(abs.node.position, "_0")]
tree.matrix[!is.na(No), No := paste0(abs.node.position, "_1")]
remove.tree <- . %>% stri_replace_first_regex(pattern = "^\\d+-", replacement = "")
tree.matrix[,`:=`(abs.node.position = remove.tree(abs.node.position),
Yes = remove.tree(Yes),
No = remove.tree(No))]
tree.matrix[, `:=`(abs.node.position = remove.tree(abs.node.position),
Yes = remove.tree(Yes),
No = remove.tree(No))]
nodes.dt <- tree.matrix[
, .(Quality = sum(Quality))
, by = .(abs.node.position, Feature)
][, .(Text = paste0(Feature[1:min(length(Feature), features_keep)],
" (",
format(Quality[1:min(length(Quality), features_keep)], digits=5),
format(Quality[1:min(length(Quality), features_keep)], digits = 5),
")") %>%
paste0(collapse = "\n"))
, by = abs.node.position]
edges.dt <- tree.matrix[Feature != "Leaf", .(abs.node.position, Yes)] %>%
list(tree.matrix[Feature != "Leaf",.(abs.node.position, No)]) %>%
list(tree.matrix[Feature != "Leaf", .(abs.node.position, No)]) %>%
rbindlist() %>%
setnames(c("From", "To")) %>%
.[, .N, .(From, To)] %>%
.[, N:=NULL]
.[, N := NULL]
nodes <- DiagrammeR::create_node_df(
n = nrow(nodes.dt),
label = nodes.dt[,Text]
label = nodes.dt[, Text]
)
edges <- DiagrammeR::create_edge_df(
from = match(edges.dt[,From], nodes.dt[,abs.node.position]),
to = match(edges.dt[,To], nodes.dt[,abs.node.position]),
from = match(edges.dt[, From], nodes.dt[, abs.node.position]),
to = match(edges.dt[, To], nodes.dt[, abs.node.position]),
rel = "leading_to")
graph <- DiagrammeR::create_graph(
nodes_df = nodes,
edges_df = edges,

View File

@ -125,12 +125,12 @@ xgb.plot.shap <- function(data, shap_contrib = NULL, features = NULL, top_n = 1,
nsample <- if (is.null(subsample)) min(100000, nrow(data)) else as.integer(subsample * nrow(data))
idx <- sample(1:nrow(data), nsample)
data <- data[idx,]
data <- data[idx, ]
if (is.null(shap_contrib)) {
shap_contrib <- predict(model, data, predcontrib = TRUE, approxcontrib = approxcontrib)
} else {
shap_contrib <- shap_contrib[idx,]
shap_contrib <- shap_contrib[idx, ]
}
which <- match.arg(which)
@ -168,8 +168,8 @@ xgb.plot.shap <- function(data, shap_contrib = NULL, features = NULL, top_n = 1,
if (plot && which == "1d") {
op <- par(mfrow = c(ceiling(length(features) / n_col), n_col),
oma = c(0,0,0,0) + 0.2,
mar = c(3.5,3.5,0,0) + 0.1,
oma = c(0, 0, 0, 0) + 0.2,
mar = c(3.5, 3.5, 0, 0) + 0.1,
mgp = c(1.7, 0.6, 0))
for (f in cols) {
ord <- order(data[, f])
@ -192,7 +192,7 @@ xgb.plot.shap <- function(data, shap_contrib = NULL, features = NULL, top_n = 1,
grid()
if (plot_loess) {
# compress x to 3 digits, and mean-aggredate y
zz <- data.table(x = signif(x, 3), y)[, .(.N, y=mean(y)), x]
zz <- data.table(x = signif(x, 3), y)[, .(.N, y = mean(y)), x]
if (nrow(zz) <= 5) {
lines(zz$x, zz$y, col = col_loess)
} else {

View File

@ -1,7 +1,7 @@
#' Plot a boosted tree model
#'
#' Read a tree model text dump and plot the model.
#'
#'
#' Read a tree model text dump and plot the model.
#'
#' @param feature_names names of each feature as a \code{character} vector.
#' @param model produced by the \code{xgb.train} function.
#' @param trees an integer vector of tree indices that should be visualized.
@ -14,10 +14,10 @@
#' @param show_node_id a logical flag for whether to show node id's in the graph.
#' @param ... currently not used.
#'
#' @details
#'
#' @details
#'
#' The content of each node is organised that way:
#'
#'
#' \itemize{
#' \item Feature name.
#' \item \code{Cover}: The sum of second order gradient of training data classified to the leaf.
@ -27,21 +27,21 @@
#' \item \code{Gain} (for split nodes): the information gain metric of a split
#' (corresponds to the importance of the node in the model).
#' \item \code{Value} (for leafs): the margin value that the leaf may contribute to prediction.
#' }
#' }
#' The tree root nodes also indicate the Tree index (0-based).
#'
#'
#' The "Yes" branches are marked by the "< split_value" label.
#' The branches that also used for missing values are marked as bold
#' (as in "carrying extra capacity").
#'
#'
#' This function uses \href{http://www.graphviz.org/}{GraphViz} as a backend of DiagrammeR.
#'
#'
#' @return
#'
#'
#' When \code{render = TRUE}:
#' returns a rendered graph object which is an \code{htmlwidget} of class \code{grViz}.
#' Similar to ggplot objects, it needs to be printed to see it when not running from command line.
#'
#'
#' When \code{render = FALSE}:
#' silently returns a graph object which is of DiagrammeR's class \code{dgr_graph}.
#' This could be useful if one wants to modify some of the graph attributes
@ -49,23 +49,23 @@
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#'
#'
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 3,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' # plot all the trees
#' xgb.plot.tree(model = bst)
#' # plot only the first tree and display the node ID:
#' xgb.plot.tree(model = bst, trees = 0, show_node_id = TRUE)
#'
#'
#' \dontrun{
#' # Below is an example of how to save this plot to a file.
#' # Below is an example of how to save this plot to a file.
#' # Note that for `export_graph` to work, the DiagrammeRsvg and rsvg packages must also be installed.
#' library(DiagrammeR)
#' gr <- xgb.plot.tree(model=bst, trees=0:1, render=FALSE)
#' export_graph(gr, 'tree.pdf', width=1500, height=1900)
#' export_graph(gr, 'tree.png', width=1500, height=1900)
#' }
#'
#'
#' @export
xgb.plot.tree <- function(feature_names = NULL, model = NULL, trees = NULL, plot_width = NULL, plot_height = NULL,
render = TRUE, show_node_id = FALSE, ...){
@ -77,18 +77,18 @@ xgb.plot.tree <- function(feature_names = NULL, model = NULL, trees = NULL, plot
if (!requireNamespace("DiagrammeR", quietly = TRUE)) {
stop("DiagrammeR package is required for xgb.plot.tree", call. = FALSE)
}
dt <- xgb.model.dt.tree(feature_names = feature_names, model = model, trees = trees)
dt[, label:= paste0(Feature, "\nCover: ", Cover, ifelse(Feature == "Leaf", "\nValue: ", "\nGain: "), Quality)]
dt[, label := paste0(Feature, "\nCover: ", Cover, ifelse(Feature == "Leaf", "\nValue: ", "\nGain: "), Quality)]
if (show_node_id)
dt[, label := paste0(ID, ": ", label)]
dt[Node == 0, label := paste0("Tree ", Tree, "\n", label)]
dt[, shape:= "rectangle"][Feature == "Leaf", shape:= "oval"]
dt[, filledcolor:= "Beige"][Feature == "Leaf", filledcolor:= "Khaki"]
dt[, shape := "rectangle"][Feature == "Leaf", shape := "oval"]
dt[, filledcolor := "Beige"][Feature == "Leaf", filledcolor := "Khaki"]
# in order to draw the first tree on top:
dt <- dt[order(-Tree)]
nodes <- DiagrammeR::create_node_df(
n = nrow(dt),
ID = dt$ID,
@ -97,7 +97,7 @@ xgb.plot.tree <- function(feature_names = NULL, model = NULL, trees = NULL, plot
shape = dt$shape,
data = dt$Feature,
fontcolor = "black")
edges <- DiagrammeR::create_edge_df(
from = match(dt[Feature != "Leaf", c(ID)] %>% rep(2), dt$ID),
to = match(dt[Feature != "Leaf", c(Yes, No)], dt$ID),
@ -126,9 +126,9 @@ xgb.plot.tree <- function(feature_names = NULL, model = NULL, trees = NULL, plot
attr_type = "edge",
attr = c("color", "arrowsize", "arrowhead", "fontname"),
value = c("DimGray", "1.5", "vee", "Helvetica"))
if (!render) return(invisible(graph))
DiagrammeR::render_graph(graph, width = plot_width, height = plot_height)
}

View File

@ -1,29 +1,29 @@
#' Save xgboost model to binary file
#'
#'
#' Save xgboost model to a file in binary format.
#'
#'
#' @param model model object of \code{xgb.Booster} class.
#' @param fname name of the file to write.
#'
#' @details
#' This methods allows to save a model in an xgboost-internal binary format which is universal
#'
#' @details
#' This methods allows to save a model in an xgboost-internal binary format which is universal
#' among the various xgboost interfaces. In R, the saved model file could be read-in later
#' using either the \code{\link{xgb.load}} function or the \code{xgb_model} parameter
#' using either the \code{\link{xgb.load}} function or the \code{xgb_model} parameter
#' of \code{\link{xgb.train}}.
#'
#' Note: a model can also be saved as an R-object (e.g., by using \code{\link[base]{readRDS}}
#' or \code{\link[base]{save}}). However, it would then only be compatible with R, and
#'
#' Note: a model can also be saved as an R-object (e.g., by using \code{\link[base]{readRDS}}
#' or \code{\link[base]{save}}). However, it would then only be compatible with R, and
#' corresponding R-methods would need to be used to load it.
#'
#' @seealso
#' \code{\link{xgb.load}}, \code{\link{xgb.Booster.complete}}.
#'
#'
#' @seealso
#' \code{\link{xgb.load}}, \code{\link{xgb.Booster.complete}}.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' xgb.save(bst, 'xgb.model')
#' bst <- xgb.load('xgb.model')

View File

@ -3,7 +3,7 @@
#' \code{xgb.train} is an advanced interface for training an xgboost model.
#' The \code{xgboost} function is a simpler wrapper for \code{xgb.train}.
#'
#' @param params the list of parameters. The complete list of parameters is
#' @param params the list of parameters. The complete list of parameters is
#' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
#' is a shorter summary:
#'
@ -278,7 +278,7 @@ xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
# evaluation printing callback
params <- c(params)
print_every_n <- max( as.integer(print_every_n), 1L)
print_every_n <- max(as.integer(print_every_n), 1L)
if (!has.callbacks(callbacks, 'cb.print.evaluation') &&
verbose) {
callbacks <- add.cb(callbacks, cb.print.evaluation(print_every_n))
@ -328,12 +328,9 @@ xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
niter_init <- xgb.ntree(bst) %/% (num_parallel_tree * num_class)
}
}
if(is_update && nrounds > niter_init)
if (is_update && nrounds > niter_init)
stop("nrounds cannot be larger than ", niter_init, " (nrounds of xgb_model)")
# TODO: distributed code
rank <- 0
niter_skip <- ifelse(is_update, 0, niter_init)
begin_iteration <- niter_skip + 1
end_iteration <- niter_skip + nrounds
@ -345,7 +342,6 @@ xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
xgb.iter.update(bst$handle, dtrain, iteration - 1, obj)
bst_evaluation <- numeric(0)
if (length(watchlist) > 0)
bst_evaluation <- xgb.iter.eval(bst$handle, watchlist, iteration - 1, feval)
@ -360,7 +356,7 @@ xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
bst <- xgb.Booster.complete(bst, saveraw = TRUE)
# store the total number of boosting iterations
bst$niter = end_iteration
bst$niter <- end_iteration
# store the evaluation results
if (length(evaluation_log) > 0 &&

View File

@ -2,19 +2,19 @@ require(xgboost)
context("basic functions")
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
data(agaricus.train, package = 'xgboost')
data(agaricus.test, package = 'xgboost')
train <- agaricus.train
test <- agaricus.test
set.seed(1994)
# disable some tests for Win32
windows_flag = .Platform$OS.type == "windows" &&
windows_flag <- .Platform$OS.type == "windows" &&
.Machine$sizeof.pointer != 8
solaris_flag = (Sys.info()['sysname'] == "SunOS")
solaris_flag <- (Sys.info()['sysname'] == "SunOS")
test_that("train and predict binary classification", {
nrounds = 2
nrounds <- 2
expect_output(
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = nrounds, objective = "binary:logistic")
@ -30,24 +30,24 @@ test_that("train and predict binary classification", {
pred1 <- predict(bst, train$data, ntreelimit = 1)
expect_length(pred1, 6513)
err_pred1 <- sum((pred1 > 0.5) != train$label)/length(train$label)
err_pred1 <- sum((pred1 > 0.5) != train$label) / length(train$label)
err_log <- bst$evaluation_log[1, train_error]
expect_lt(abs(err_pred1 - err_log), 10e-6)
})
test_that("parameter validation works", {
p <- list(foo = "bar")
nrounds = 1
nrounds <- 1
set.seed(1994)
d <- cbind(
x1 = rnorm(10),
x2 = rnorm(10),
x3 = rnorm(10))
y <- d[,"x1"] + d[,"x2"]^2 +
ifelse(d[,"x3"] > .5, d[,"x3"]^2, 2^d[,"x3"]) +
y <- d[, "x1"] + d[, "x2"]^2 +
ifelse(d[, "x3"] > .5, d[, "x3"]^2, 2^d[, "x3"]) +
rnorm(10)
dtrain <- xgb.DMatrix(data=d, info = list(label=y))
dtrain <- xgb.DMatrix(data = d, info = list(label = y))
correct <- function() {
params <- list(max_depth = 2, booster = "dart",
@ -70,15 +70,15 @@ test_that("parameter validation works", {
test_that("dart prediction works", {
nrounds = 32
nrounds <- 32
set.seed(1994)
d <- cbind(
x1 = rnorm(100),
x2 = rnorm(100),
x3 = rnorm(100))
y <- d[,"x1"] + d[,"x2"]^2 +
ifelse(d[,"x3"] > .5, d[,"x3"]^2, 2^d[,"x3"]) +
y <- d[, "x1"] + d[, "x2"]^2 +
ifelse(d[, "x3"] > .5, d[, "x3"]^2, 2^d[, "x3"]) +
rnorm(100)
set.seed(1994)
@ -87,23 +87,23 @@ test_that("dart prediction works", {
eta = 1, nthread = 2, nrounds = nrounds, objective = "reg:squarederror")
pred_by_xgboost_0 <- predict(booster_by_xgboost, newdata = d, ntreelimit = 0)
pred_by_xgboost_1 <- predict(booster_by_xgboost, newdata = d, ntreelimit = nrounds)
expect_true(all(matrix(pred_by_xgboost_0, byrow=TRUE) == matrix(pred_by_xgboost_1, byrow=TRUE)))
expect_true(all(matrix(pred_by_xgboost_0, byrow = TRUE) == matrix(pred_by_xgboost_1, byrow = TRUE)))
pred_by_xgboost_2 <- predict(booster_by_xgboost, newdata = d, training = TRUE)
expect_false(all(matrix(pred_by_xgboost_0, byrow=TRUE) == matrix(pred_by_xgboost_2, byrow=TRUE)))
expect_false(all(matrix(pred_by_xgboost_0, byrow = TRUE) == matrix(pred_by_xgboost_2, byrow = TRUE)))
set.seed(1994)
dtrain <- xgb.DMatrix(data=d, info = list(label=y))
booster_by_train <- xgb.train( params = list(
booster = "dart",
max_depth = 2,
eta = 1,
rate_drop = 0.5,
one_drop = TRUE,
nthread = 1,
tree_method= "exact",
objective = "reg:squarederror"
),
dtrain <- xgb.DMatrix(data = d, info = list(label = y))
booster_by_train <- xgb.train(params = list(
booster = "dart",
max_depth = 2,
eta = 1,
rate_drop = 0.5,
one_drop = TRUE,
nthread = 1,
tree_method = "exact",
objective = "reg:squarederror"
),
data = dtrain,
nrounds = nrounds
)
@ -111,9 +111,9 @@ test_that("dart prediction works", {
pred_by_train_1 <- predict(booster_by_train, newdata = dtrain, ntreelimit = nrounds)
pred_by_train_2 <- predict(booster_by_train, newdata = dtrain, training = TRUE)
expect_true(all(matrix(pred_by_train_0, byrow=TRUE) == matrix(pred_by_xgboost_0, byrow=TRUE)))
expect_true(all(matrix(pred_by_train_1, byrow=TRUE) == matrix(pred_by_xgboost_1, byrow=TRUE)))
expect_true(all(matrix(pred_by_train_2, byrow=TRUE) == matrix(pred_by_xgboost_2, byrow=TRUE)))
expect_true(all(matrix(pred_by_train_0, byrow = TRUE) == matrix(pred_by_xgboost_0, byrow = TRUE)))
expect_true(all(matrix(pred_by_train_1, byrow = TRUE) == matrix(pred_by_xgboost_1, byrow = TRUE)))
expect_true(all(matrix(pred_by_train_2, byrow = TRUE) == matrix(pred_by_xgboost_2, byrow = TRUE)))
})
test_that("train and predict softprob", {
@ -122,7 +122,7 @@ test_that("train and predict softprob", {
expect_output(
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
max_depth = 3, eta = 0.5, nthread = 2, nrounds = 5,
objective = "multi:softprob", num_class=3)
objective = "multi:softprob", num_class = 3)
, "train-merror")
expect_false(is.null(bst$evaluation_log))
expect_lt(bst$evaluation_log[, min(train_merror)], 0.025)
@ -130,17 +130,17 @@ test_that("train and predict softprob", {
pred <- predict(bst, as.matrix(iris[, -5]))
expect_length(pred, nrow(iris) * 3)
# row sums add up to total probability of 1:
expect_equal(rowSums(matrix(pred, ncol=3, byrow=TRUE)), rep(1, nrow(iris)), tolerance = 1e-7)
expect_equal(rowSums(matrix(pred, ncol = 3, byrow = TRUE)), rep(1, nrow(iris)), tolerance = 1e-7)
# manually calculate error at the last iteration:
mpred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE)
expect_equal(as.numeric(t(mpred)), pred)
pred_labels <- max.col(mpred) - 1
err <- sum(pred_labels != lb)/length(lb)
err <- sum(pred_labels != lb) / length(lb)
expect_equal(bst$evaluation_log[5, train_merror], err, tolerance = 5e-6)
# manually calculate error at the 1st iteration:
mpred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE, ntreelimit = 1)
pred_labels <- max.col(mpred) - 1
err <- sum(pred_labels != lb)/length(lb)
err <- sum(pred_labels != lb) / length(lb)
expect_equal(bst$evaluation_log[1, train_merror], err, tolerance = 5e-6)
})
@ -150,7 +150,7 @@ test_that("train and predict softmax", {
expect_output(
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
max_depth = 3, eta = 0.5, nthread = 2, nrounds = 5,
objective = "multi:softmax", num_class=3)
objective = "multi:softmax", num_class = 3)
, "train-merror")
expect_false(is.null(bst$evaluation_log))
expect_lt(bst$evaluation_log[, min(train_merror)], 0.025)
@ -158,7 +158,7 @@ test_that("train and predict softmax", {
pred <- predict(bst, as.matrix(iris[, -5]))
expect_length(pred, nrow(iris))
err <- sum(pred != lb)/length(lb)
err <- sum(pred != lb) / length(lb)
expect_equal(bst$evaluation_log[5, train_merror], err, tolerance = 5e-6)
})
@ -173,12 +173,12 @@ test_that("train and predict RF", {
expect_equal(xgb.ntree(bst), 20)
pred <- predict(bst, train$data)
pred_err <- sum((pred > 0.5) != lb)/length(lb)
pred_err <- sum((pred > 0.5) != lb) / length(lb)
expect_lt(abs(bst$evaluation_log[1, train_error] - pred_err), 10e-6)
#expect_lt(pred_err, 0.03)
pred <- predict(bst, train$data, ntreelimit = 20)
pred_err_20 <- sum((pred > 0.5) != lb)/length(lb)
pred_err_20 <- sum((pred > 0.5) != lb) / length(lb)
expect_equal(pred_err_20, pred_err)
#pred <- predict(bst, train$data, ntreelimit = 1)
@ -193,19 +193,19 @@ test_that("train and predict RF with softprob", {
set.seed(11)
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,
max_depth = 3, eta = 0.9, nthread = 2, nrounds = nrounds,
objective = "multi:softprob", num_class=3, verbose = 0,
objective = "multi:softprob", num_class = 3, verbose = 0,
num_parallel_tree = 4, subsample = 0.5, colsample_bytree = 0.5)
expect_equal(bst$niter, 15)
expect_equal(xgb.ntree(bst), 15*3*4)
expect_equal(xgb.ntree(bst), 15 * 3 * 4)
# predict for all iterations:
pred <- predict(bst, as.matrix(iris[, -5]), reshape=TRUE)
pred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE)
expect_equal(dim(pred), c(nrow(iris), 3))
pred_labels <- max.col(pred) - 1
err <- sum(pred_labels != lb)/length(lb)
err <- sum(pred_labels != lb) / length(lb)
expect_equal(bst$evaluation_log[nrounds, train_merror], err, tolerance = 5e-6)
# predict for 7 iterations and adjust for 4 parallel trees per iteration
pred <- predict(bst, as.matrix(iris[, -5]), reshape=TRUE, ntreelimit = 7 * 4)
err <- sum((max.col(pred) - 1) != lb)/length(lb)
pred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE, ntreelimit = 7 * 4)
err <- sum((max.col(pred) - 1) != lb) / length(lb)
expect_equal(bst$evaluation_log[7, train_merror], err, tolerance = 5e-6)
})
@ -223,7 +223,7 @@ test_that("use of multiple eval metrics works", {
test_that("training continuation works", {
dtrain <- xgb.DMatrix(train$data, label = train$label)
watchlist = list(train=dtrain)
watchlist <- list(train = dtrain)
param <- list(objective = "binary:logistic", max_depth = 2, eta = 1, nthread = 2)
# for the reference, use 4 iterations at once:
@ -255,7 +255,7 @@ test_that("training continuation works", {
test_that("model serialization works", {
out_path <- "model_serialization"
dtrain <- xgb.DMatrix(train$data, label = train$label)
watchlist = list(train=dtrain)
watchlist <- list(train = dtrain)
param <- list(objective = "binary:logistic")
booster <- xgb.train(param, dtrain, nrounds = 4, watchlist)
raw <- xgb.serialize(booster)
@ -273,7 +273,7 @@ test_that("xgb.cv works", {
expect_output(
cv <- xgb.cv(data = train$data, label = train$label, max_depth = 2, nfold = 5,
eta = 1., nthread = 2, nrounds = 2, objective = "binary:logistic",
verbose=TRUE)
verbose = TRUE)
, "train-error:")
expect_is(cv, 'xgb.cv.synchronous')
expect_false(is.null(cv$evaluation_log))
@ -292,11 +292,11 @@ test_that("xgb.cv works with stratified folds", {
set.seed(314159)
cv <- xgb.cv(data = dtrain, max_depth = 2, nfold = 5,
eta = 1., nthread = 2, nrounds = 2, objective = "binary:logistic",
verbose=TRUE, stratified = FALSE)
verbose = TRUE, stratified = FALSE)
set.seed(314159)
cv2 <- xgb.cv(data = dtrain, max_depth = 2, nfold = 5,
eta = 1., nthread = 2, nrounds = 2, objective = "binary:logistic",
verbose=TRUE, stratified = TRUE)
verbose = TRUE, stratified = TRUE)
# Stratified folds should result in a different evaluation logs
expect_true(all(cv$evaluation_log[, test_error_mean] != cv2$evaluation_log[, test_error_mean]))
})
@ -319,7 +319,7 @@ test_that("train and predict with non-strict classes", {
expect_equal(pr0, pr)
# dense matrix-like input of non-matrix class with some inheritance
class(train_dense) <- c('pphmatrix','shmatrix')
class(train_dense) <- c('pphmatrix', 'shmatrix')
expect_true(is.matrix(train_dense))
expect_error(
bst <- xgboost(data = train_dense, label = train$label, max_depth = 2,
@ -337,15 +337,15 @@ test_that("train and predict with non-strict classes", {
test_that("max_delta_step works", {
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
watchlist <- list(train = dtrain)
param <- list(objective = "binary:logistic", eval_metric="logloss", max_depth = 2, nthread = 2, eta = 0.5)
nrounds = 5
param <- list(objective = "binary:logistic", eval_metric = "logloss", max_depth = 2, nthread = 2, eta = 0.5)
nrounds <- 5
# model with no restriction on max_delta_step
bst1 <- xgb.train(param, dtrain, nrounds, watchlist, verbose = 1)
# model with restricted max_delta_step
bst2 <- xgb.train(param, dtrain, nrounds, watchlist, verbose = 1, max_delta_step = 1)
# the no-restriction model is expected to have consistently lower loss during the initial interations
expect_true(all(bst1$evaluation_log$train_logloss < bst2$evaluation_log$train_logloss))
expect_lt(mean(bst1$evaluation_log$train_logloss)/mean(bst2$evaluation_log$train_logloss), 0.8)
expect_lt(mean(bst1$evaluation_log$train_logloss) / mean(bst2$evaluation_log$train_logloss), 0.8)
})
test_that("colsample_bytree works", {

View File

@ -5,8 +5,8 @@ require(data.table)
context("callbacks")
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
data(agaricus.train, package = 'xgboost')
data(agaricus.test, package = 'xgboost')
train <- agaricus.train
test <- agaricus.test
@ -21,24 +21,24 @@ ltrain <- add.noise(train$label, 0.2)
ltest <- add.noise(test$label, 0.2)
dtrain <- xgb.DMatrix(train$data, label = ltrain)
dtest <- xgb.DMatrix(test$data, label = ltest)
watchlist = list(train=dtrain, test=dtest)
watchlist <- list(train = dtrain, test = dtest)
err <- function(label, pr) sum((pr > 0.5) != label)/length(label)
err <- function(label, pr) sum((pr > 0.5) != label) / length(label)
param <- list(objective = "binary:logistic", max_depth = 2, nthread = 2)
test_that("cb.print.evaluation works as expected", {
bst_evaluation <- c('train-auc'=0.9, 'test-auc'=0.8)
bst_evaluation <- c('train-auc' = 0.9, 'test-auc' = 0.8)
bst_evaluation_err <- NULL
begin_iteration <- 1
end_iteration <- 7
f0 <- cb.print.evaluation(period=0)
f1 <- cb.print.evaluation(period=1)
f5 <- cb.print.evaluation(period=5)
f0 <- cb.print.evaluation(period = 0)
f1 <- cb.print.evaluation(period = 1)
f5 <- cb.print.evaluation(period = 5)
expect_false(is.null(attr(f1, 'call')))
expect_equal(attr(f1, 'name'), 'cb.print.evaluation')
@ -57,13 +57,13 @@ test_that("cb.print.evaluation works as expected", {
expect_output(f1(), "\\[7\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
expect_output(f5(), "\\[7\\]\ttrain-auc:0.900000\ttest-auc:0.800000")
bst_evaluation_err <- c('train-auc'=0.1, 'test-auc'=0.2)
bst_evaluation_err <- c('train-auc' = 0.1, 'test-auc' = 0.2)
expect_output(f1(), "\\[7\\]\ttrain-auc:0.900000\\+0.100000\ttest-auc:0.800000\\+0.200000")
})
test_that("cb.evaluation.log works as expected", {
bst_evaluation <- c('train-auc'=0.9, 'test-auc'=0.8)
bst_evaluation <- c('train-auc' = 0.9, 'test-auc' = 0.8)
bst_evaluation_err <- NULL
evaluation_log <- list()
@ -75,33 +75,33 @@ test_that("cb.evaluation.log works as expected", {
iteration <- 1
expect_silent(f())
expect_equal(evaluation_log,
list(c(iter=1, bst_evaluation)))
list(c(iter = 1, bst_evaluation)))
iteration <- 2
expect_silent(f())
expect_equal(evaluation_log,
list(c(iter=1, bst_evaluation), c(iter=2, bst_evaluation)))
list(c(iter = 1, bst_evaluation), c(iter = 2, bst_evaluation)))
expect_silent(f(finalize = TRUE))
expect_equal(evaluation_log,
data.table(iter=1:2, train_auc=c(0.9,0.9), test_auc=c(0.8,0.8)))
data.table(iter = 1:2, train_auc = c(0.9, 0.9), test_auc = c(0.8, 0.8)))
bst_evaluation_err <- c('train-auc'=0.1, 'test-auc'=0.2)
bst_evaluation_err <- c('train-auc' = 0.1, 'test-auc' = 0.2)
evaluation_log <- list()
f <- cb.evaluation.log()
iteration <- 1
expect_silent(f())
expect_equal(evaluation_log,
list(c(iter=1, c(bst_evaluation, bst_evaluation_err))))
list(c(iter = 1, c(bst_evaluation, bst_evaluation_err))))
iteration <- 2
expect_silent(f())
expect_equal(evaluation_log,
list(c(iter=1, c(bst_evaluation, bst_evaluation_err)),
c(iter=2, c(bst_evaluation, bst_evaluation_err))))
list(c(iter = 1, c(bst_evaluation, bst_evaluation_err)),
c(iter = 2, c(bst_evaluation, bst_evaluation_err))))
expect_silent(f(finalize = TRUE))
expect_equal(evaluation_log,
data.table(iter=1:2,
train_auc_mean=c(0.9,0.9), train_auc_std=c(0.1,0.1),
test_auc_mean=c(0.8,0.8), test_auc_std=c(0.2,0.2)))
data.table(iter = 1:2,
train_auc_mean = c(0.9, 0.9), train_auc_std = c(0.1, 0.1),
test_auc_mean = c(0.8, 0.8), test_auc_std = c(0.2, 0.2)))
})
@ -237,7 +237,7 @@ test_that("early stopping using a specific metric works", {
set.seed(11)
expect_output(
bst <- xgb.train(param, dtrain, nrounds = 20, watchlist, eta = 0.6,
eval_metric="logloss", eval_metric="auc",
eval_metric = "logloss", eval_metric = "auc",
callbacks = list(cb.early.stop(stopping_rounds = 3, maximize = FALSE,
metric_name = 'test_logloss')))
, "Stopping. Best iteration")
@ -267,12 +267,12 @@ test_that("early stopping xgb.cv works", {
test_that("prediction in xgb.cv works", {
set.seed(11)
nrounds = 4
nrounds <- 4
cv <- xgb.cv(param, dtrain, nfold = 5, eta = 0.5, nrounds = nrounds, prediction = TRUE, verbose = 0)
expect_false(is.null(cv$evaluation_log))
expect_false(is.null(cv$pred))
expect_length(cv$pred, nrow(train$data))
err_pred <- mean( sapply(cv$folds, function(f) mean(err(ltrain[f], cv$pred[f]))) )
err_pred <- mean(sapply(cv$folds, function(f) mean(err(ltrain[f], cv$pred[f]))))
err_log <- cv$evaluation_log[nrounds, test_error_mean]
expect_equal(err_pred, err_log, tolerance = 1e-6)
@ -308,7 +308,7 @@ test_that("prediction in early-stopping xgb.cv works", {
expect_false(is.null(cv$pred))
expect_length(cv$pred, nrow(train$data))
err_pred <- mean( sapply(cv$folds, function(f) mean(err(ltrain[f], cv$pred[f]))) )
err_pred <- mean(sapply(cv$folds, function(f) mean(err(ltrain[f], cv$pred[f]))))
err_log <- cv$evaluation_log[cv$best_iteration, test_error_mean]
expect_equal(err_pred, err_log, tolerance = 1e-6)
err_log_last <- cv$evaluation_log[cv$niter, test_error_mean]

View File

@ -4,8 +4,8 @@ require(xgboost)
set.seed(1994)
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
data(agaricus.train, package = 'xgboost')
data(agaricus.test, package = 'xgboost')
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
watchlist <- list(eval = dtest, train = dtrain)
@ -24,8 +24,8 @@ evalerror <- function(preds, dtrain) {
return(list(metric = "error", value = err))
}
param <- list(max_depth=2, eta=1, nthread = 2,
objective=logregobj, eval_metric=evalerror)
param <- list(max_depth = 2, eta = 1, nthread = 2,
objective = logregobj, eval_metric = evalerror)
num_round <- 2
test_that("custom objective works", {
@ -37,7 +37,7 @@ test_that("custom objective works", {
})
test_that("custom objective in CV works", {
cv <- xgb.cv(param, dtrain, num_round, nfold=10, verbose=FALSE)
cv <- xgb.cv(param, dtrain, num_round, nfold = 10, verbose = FALSE)
expect_false(is.null(cv$evaluation_log))
expect_equal(dim(cv$evaluation_log), c(2, 5))
expect_lt(cv$evaluation_log[num_round, test_error_mean], 0.03)
@ -54,14 +54,14 @@ test_that("custom objective using DMatrix attr works", {
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
param$objective = logregobjattr
param$objective <- logregobjattr
bst <- xgb.train(param, dtrain, num_round, watchlist)
expect_equal(class(bst), "xgb.Booster")
})
test_that("custom objective with multi-class works", {
data = as.matrix(iris[, -5])
label = as.numeric(iris$Species) - 1
data <- as.matrix(iris[, -5])
label <- as.numeric(iris$Species) - 1
dtrain <- xgb.DMatrix(data = data, label = label)
nclasses <- 3
@ -72,6 +72,6 @@ test_that("custom objective with multi-class works", {
hess <- rnorm(dim(as.matrix(preds))[1])
return (list(grad = grad, hess = hess))
}
param$objective = fake_softprob
bst <- xgb.train(param, dtrain, 1, num_class=nclasses)
param$objective <- fake_softprob
bst <- xgb.train(param, dtrain, 1, num_class = nclasses)
})

View File

@ -3,29 +3,29 @@ require(Matrix)
context("testing xgb.DMatrix functionality")
data(agaricus.test, package='xgboost')
test_data <- agaricus.test$data[1:100,]
data(agaricus.test, package = 'xgboost')
test_data <- agaricus.test$data[1:100, ]
test_label <- agaricus.test$label[1:100]
test_that("xgb.DMatrix: basic construction", {
# from sparse matrix
dtest1 <- xgb.DMatrix(test_data, label=test_label)
dtest1 <- xgb.DMatrix(test_data, label = test_label)
# from dense matrix
dtest2 <- xgb.DMatrix(as.matrix(test_data), label=test_label)
dtest2 <- xgb.DMatrix(as.matrix(test_data), label = test_label)
expect_equal(getinfo(dtest1, 'label'), getinfo(dtest2, 'label'))
expect_equal(dim(dtest1), dim(dtest2))
#from dense integer matrix
int_data <- as.matrix(test_data)
storage.mode(int_data) <- "integer"
dtest3 <- xgb.DMatrix(int_data, label=test_label)
dtest3 <- xgb.DMatrix(int_data, label = test_label)
expect_equal(dim(dtest1), dim(dtest3))
})
test_that("xgb.DMatrix: saving, loading", {
# save to a local file
dtest1 <- xgb.DMatrix(test_data, label=test_label)
dtest1 <- xgb.DMatrix(test_data, label = test_label)
tmp_file <- tempfile('xgb.DMatrix_')
expect_true(xgb.DMatrix.save(dtest1, tmp_file))
# read from a local file
@ -35,12 +35,12 @@ test_that("xgb.DMatrix: saving, loading", {
expect_equal(getinfo(dtest1, 'label'), getinfo(dtest3, 'label'))
# from a libsvm text file
tmp <- c("0 1:1 2:1","1 3:1","0 1:1")
tmp <- c("0 1:1 2:1", "1 3:1", "0 1:1")
tmp_file <- 'tmp.libsvm'
writeLines(tmp, tmp_file)
dtest4 <- xgb.DMatrix(tmp_file, silent = TRUE)
expect_equal(dim(dtest4), c(3, 4))
expect_equal(getinfo(dtest4, 'label'), c(0,1,0))
expect_equal(getinfo(dtest4, 'label'), c(0, 1, 0))
unlink(tmp_file)
})
@ -61,7 +61,7 @@ test_that("xgb.DMatrix: getinfo & setinfo", {
expect_true(setinfo(dtest, 'weight', test_label))
expect_true(setinfo(dtest, 'base_margin', test_label))
expect_true(setinfo(dtest, 'group', c(50,50)))
expect_true(setinfo(dtest, 'group', c(50, 50)))
expect_error(setinfo(dtest, 'group', test_label))
# providing character values will give a warning
@ -72,35 +72,35 @@ test_that("xgb.DMatrix: getinfo & setinfo", {
})
test_that("xgb.DMatrix: slice, dim", {
dtest <- xgb.DMatrix(test_data, label=test_label)
dtest <- xgb.DMatrix(test_data, label = test_label)
expect_equal(dim(dtest), dim(test_data))
dsub1 <- slice(dtest, 1:42)
expect_equal(nrow(dsub1), 42)
expect_equal(ncol(dsub1), ncol(test_data))
dsub2 <- dtest[1:42,]
dsub2 <- dtest[1:42, ]
expect_equal(dim(dtest), dim(test_data))
expect_equal(getinfo(dsub1, 'label'), getinfo(dsub2, 'label'))
})
test_that("xgb.DMatrix: slice, trailing empty rows", {
data(agaricus.train, package='xgboost')
data(agaricus.train, package = 'xgboost')
train_data <- agaricus.train$data
train_label <- agaricus.train$label
dtrain <- xgb.DMatrix(data=train_data, label=train_label)
dtrain <- xgb.DMatrix(data = train_data, label = train_label)
slice(dtrain, 6513L)
train_data[6513, ] <- 0
dtrain <- xgb.DMatrix(data=train_data, label=train_label)
dtrain <- xgb.DMatrix(data = train_data, label = train_label)
slice(dtrain, 6513L)
expect_equal(nrow(dtrain), 6513)
})
test_that("xgb.DMatrix: colnames", {
dtest <- xgb.DMatrix(test_data, label=test_label)
dtest <- xgb.DMatrix(test_data, label = test_label)
expect_equal(colnames(dtest), colnames(test_data))
expect_error( colnames(dtest) <- 'asdf')
expect_error(colnames(dtest) <- 'asdf')
new_names <- make.names(1:ncol(test_data))
expect_silent( colnames(dtest) <- new_names)
expect_silent(colnames(dtest) <- new_names)
expect_equal(colnames(dtest), new_names)
expect_silent(colnames(dtest) <- NULL)
expect_null(colnames(dtest))
@ -109,7 +109,7 @@ test_that("xgb.DMatrix: colnames", {
test_that("xgb.DMatrix: nrow is correct for a very sparse matrix", {
set.seed(123)
nr <- 1000
x <- rsparsematrix(nr, 100, density=0.0005)
x <- rsparsematrix(nr, 100, density = 0.0005)
# we want it very sparse, so that last rows are empty
expect_lt(max(x@i), nr)
dtest <- xgb.DMatrix(x)

View File

@ -3,8 +3,8 @@ require(xgboost)
context("Garbage Collection Safety Check")
test_that("train and prediction when gctorture is on", {
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
data(agaricus.train, package = 'xgboost')
data(agaricus.test, package = 'xgboost')
train <- agaricus.train
test <- agaricus.test
gctorture(TRUE)

View File

@ -3,8 +3,8 @@ context('Test generalized linear models')
require(xgboost)
test_that("gblinear works", {
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
data(agaricus.train, package = 'xgboost')
data(agaricus.test, package = 'xgboost')
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
@ -16,7 +16,7 @@ test_that("gblinear works", {
ERR_UL <- 0.005 # upper limit for the test set error
VERB <- 0 # chatterbox switch
param$updater = 'shotgun'
param$updater <- 'shotgun'
bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'shuffle')
ypred <- predict(bst, dtest)
expect_equal(length(getinfo(dtest, 'label')), 1611)
@ -29,7 +29,7 @@ test_that("gblinear works", {
expect_equal(dim(h), c(n, ncol(dtrain) + 1))
expect_is(h, "matrix")
param$updater = 'coord_descent'
param$updater <- 'coord_descent'
bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'cyclic')
expect_lt(bst$evaluation_log$eval_error[n], ERR_UL)

View File

@ -5,18 +5,18 @@ require(data.table)
require(Matrix)
require(vcd, quietly = TRUE)
float_tolerance = 5e-6
float_tolerance <- 5e-6
# disable some tests for 32-bit environment
flag_32bit = .Machine$sizeof.pointer != 8
flag_32bit <- .Machine$sizeof.pointer != 8
set.seed(1982)
data(Arthritis)
df <- data.table(Arthritis, keep.rownames = FALSE)
df[,AgeDiscret := as.factor(round(Age / 10,0))]
df[,AgeCat := as.factor(ifelse(Age > 30, "Old", "Young"))]
df[,ID := NULL]
sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df)
df[, AgeDiscret := as.factor(round(Age / 10, 0))]
df[, AgeCat := as.factor(ifelse(Age > 30, "Old", "Young"))]
df[, ID := NULL]
sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df) # nolint
label <- df[, ifelse(Improved == "Marked", 1, 0)]
# binary
@ -46,7 +46,7 @@ mbst.GLM <- xgboost(data = as.matrix(iris[, -5]), label = mlabel, verbose = 0,
test_that("xgb.dump works", {
if (!flag_32bit)
expect_length(xgb.dump(bst.Tree), 200)
dump_file = file.path(tempdir(), 'xgb.model.dump')
dump_file <- file.path(tempdir(), 'xgb.model.dump')
expect_true(xgb.dump(bst.Tree, dump_file, with_stats = TRUE))
expect_true(file.exists(dump_file))
expect_gt(file.size(dump_file), 8000)
@ -63,7 +63,7 @@ test_that("xgb.dump works for gblinear", {
# also make sure that it works properly for a sparse model where some coefficients
# are 0 from setting large L1 regularization:
bst.GLM.sp <- xgboost(data = sparse_matrix, label = label, eta = 1, nthread = 2, nrounds = 1,
alpha=2, objective = "binary:logistic", booster = "gblinear")
alpha = 2, objective = "binary:logistic", booster = "gblinear")
d.sp <- xgb.dump(bst.GLM.sp)
expect_length(d.sp, 14)
expect_gt(sum(d.sp == "0"), 0)
@ -110,9 +110,9 @@ test_that("predict feature contributions works", {
pred <- predict(bst.GLM, sparse_matrix, outputmargin = TRUE)
expect_lt(max(abs(rowSums(pred_contr) - pred)), 1e-5)
# manual calculation of linear terms
coefs <- xgb.dump(bst.GLM)[-c(1,2,4)] %>% as.numeric
coefs <- xgb.dump(bst.GLM)[-c(1, 2, 4)] %>% as.numeric
coefs <- c(coefs[-1], coefs[1]) # intercept must be the last
pred_contr_manual <- sweep(cbind(sparse_matrix, 1), 2, coefs, FUN="*")
pred_contr_manual <- sweep(cbind(sparse_matrix, 1), 2, coefs, FUN = "*")
expect_equal(as.numeric(pred_contr), as.numeric(pred_contr_manual),
tolerance = float_tolerance)
@ -130,13 +130,13 @@ test_that("predict feature contributions works", {
pred <- predict(mbst.GLM, as.matrix(iris[, -5]), outputmargin = TRUE, reshape = TRUE)
pred_contr <- predict(mbst.GLM, as.matrix(iris[, -5]), predcontrib = TRUE)
expect_length(pred_contr, 3)
coefs_all <- xgb.dump(mbst.GLM)[-c(1,2,6)] %>% as.numeric %>% matrix(ncol = 3, byrow = TRUE)
coefs_all <- xgb.dump(mbst.GLM)[-c(1, 2, 6)] %>% as.numeric %>% matrix(ncol = 3, byrow = TRUE)
for (g in seq_along(pred_contr)) {
expect_equal(colnames(pred_contr[[g]]), c(colnames(iris[, -5]), "BIAS"))
expect_lt(max(abs(rowSums(pred_contr[[g]]) - pred[, g])), float_tolerance)
# manual calculation of linear terms
coefs <- c(coefs_all[-1, g], coefs_all[1, g]) # intercept needs to be the last
pred_contr_manual <- sweep(as.matrix(cbind(iris[,-5], 1)), 2, coefs, FUN="*")
pred_contr_manual <- sweep(as.matrix(cbind(iris[, -5], 1)), 2, coefs, FUN = "*")
expect_equal(as.numeric(pred_contr[[g]]), as.numeric(pred_contr_manual),
tolerance = float_tolerance)
}
@ -147,8 +147,8 @@ test_that("SHAPs sum to predictions, with or without DART", {
x1 = rnorm(100),
x2 = rnorm(100),
x3 = rnorm(100))
y <- d[,"x1"] + d[,"x2"]^2 +
ifelse(d[,"x3"] > .5, d[,"x3"]^2, 2^d[,"x3"]) +
y <- d[, "x1"] + d[, "x2"]^2 +
ifelse(d[, "x3"] > .5, d[, "x3"]^2, 2^d[, "x3"]) +
rnorm(100)
nrounds <- 30
@ -170,19 +170,19 @@ test_that("SHAPs sum to predictions, with or without DART", {
pred <- pr()
shap <- pr(predcontrib = TRUE)
shapi <- pr(predinteraction = TRUE)
tol = 1e-5
tol <- 1e-5
expect_equal(rowSums(shap), pred, tol = tol)
expect_equal(apply(shapi, 1, sum), pred, tol = tol)
for (i in 1 : nrow(d))
for (f in list(rowSums, colSums))
expect_equal(f(shapi[i,,]), shap[i,], tol = tol)
expect_equal(f(shapi[i, , ]), shap[i, ], tol = tol)
}
})
test_that("xgb-attribute functionality", {
val <- "my attribute value"
list.val <- list(my_attr=val, a=123, b='ok')
list.val <- list(my_attr = val, a = 123, b = 'ok')
list.ch <- list.val[order(names(list.val))]
list.ch <- lapply(list.ch, as.character)
# note: iter is 0-index in xgb attributes
@ -208,9 +208,9 @@ test_that("xgb-attribute functionality", {
xgb.attr(bst, "my_attr") <- NULL
expect_null(xgb.attr(bst, "my_attr"))
expect_equal(xgb.attributes(bst), list.ch[c("a", "b", "niter")])
xgb.attributes(bst) <- list(a=NULL, b=NULL)
xgb.attributes(bst) <- list(a = NULL, b = NULL)
expect_equal(xgb.attributes(bst), list.default)
xgb.attributes(bst) <- list(niter=NULL)
xgb.attributes(bst) <- list(niter = NULL)
expect_null(xgb.attributes(bst))
})
@ -268,7 +268,7 @@ test_that("xgb.model.dt.tree works with and without feature names", {
bst.Tree.x$feature_names <- NULL
dt.tree.x <- xgb.model.dt.tree(model = bst.Tree.x)
expect_output(str(dt.tree.x), 'Feature.*\\"3\\"')
expect_equal(dt.tree[, -4, with=FALSE], dt.tree.x[, -4, with=FALSE])
expect_equal(dt.tree[, -4, with = FALSE], dt.tree.x[, -4, with = FALSE])
# using integer node ID instead of character
dt.tree.int <- xgb.model.dt.tree(model = bst.Tree, use_int_id = TRUE)
@ -295,7 +295,7 @@ test_that("xgb.importance works with and without feature names", {
bst.Tree.x <- bst.Tree
bst.Tree.x$feature_names <- NULL
importance.Tree.x <- xgb.importance(model = bst.Tree)
expect_equal(importance.Tree[, -1, with=FALSE], importance.Tree.x[, -1, with=FALSE],
expect_equal(importance.Tree[, -1, with = FALSE], importance.Tree.x[, -1, with = FALSE],
tolerance = float_tolerance)
imp2plot <- xgb.plot.importance(importance_matrix = importance.Tree)
@ -305,7 +305,7 @@ test_that("xgb.importance works with and without feature names", {
# for multiclass
imp.Tree <- xgb.importance(model = mbst.Tree)
expect_equal(dim(imp.Tree), c(4, 4))
xgb.importance(model = mbst.Tree, trees = seq(from=0, by=nclass, length.out=nrounds))
xgb.importance(model = mbst.Tree, trees = seq(from = 0, by = nclass, length.out = nrounds))
})
test_that("xgb.importance works with GLM model", {
@ -320,7 +320,7 @@ test_that("xgb.importance works with GLM model", {
# for multiclass
imp.GLM <- xgb.importance(model = mbst.GLM)
expect_equal(dim(imp.GLM), c(12, 3))
expect_equal(imp.GLM$Class, rep(0:2, each=4))
expect_equal(imp.GLM$Class, rep(0:2, each = 4))
})
test_that("xgb.model.dt.tree and xgb.importance work with a single split model", {

View File

@ -5,20 +5,20 @@ context("interaction constraints")
set.seed(1024)
x1 <- rnorm(1000, 1)
x2 <- rnorm(1000, 1)
x3 <- sample(c(1,2,3), size=1000, replace=TRUE)
y <- x1 + x2 + x3 + x1*x2*x3 + rnorm(1000, 0.001) + 3*sin(x1)
train <- matrix(c(x1,x2,x3), ncol = 3)
x3 <- sample(c(1, 2, 3), size = 1000, replace = TRUE)
y <- x1 + x2 + x3 + x1 * x2 * x3 + rnorm(1000, 0.001) + 3 * sin(x1)
train <- matrix(c(x1, x2, x3), ncol = 3)
test_that("interaction constraints for regression", {
# Fit a model that only allows interaction between x1 and x2
bst <- xgboost(data = train, label = y, max_depth = 3,
eta = 0.1, nthread = 2, nrounds = 100, verbose = 0,
interaction_constraints = list(c(0,1)))
interaction_constraints = list(c(0, 1)))
# Set all observations to have the same x3 values then increment
# by the same amount
preds <- lapply(c(1,2,3), function(x){
tmat <- matrix(c(x1,x2,rep(x,1000)), ncol=3)
preds <- lapply(c(1, 2, 3), function(x){
tmat <- matrix(c(x1, x2, rep(x, 1000)), ncol = 3)
return(predict(bst, tmat))
})
@ -40,16 +40,16 @@ test_that("interaction constraints scientific representation", {
rows <- 10
## When number exceeds 1e5, R paste function uses scientific representation.
## See: https://github.com/dmlc/xgboost/issues/5179
cols <- 1e5+10
cols <- 1e5 + 10
d <- matrix(rexp(rows, rate=.1), nrow=rows, ncol=cols)
d <- matrix(rexp(rows, rate = .1), nrow = rows, ncol = cols)
y <- rnorm(rows)
dtrain <- xgb.DMatrix(data=d, info = list(label=y))
dtrain <- xgb.DMatrix(data = d, info = list(label = y))
inc <- list(c(seq.int(from = 0, to = cols, by = 1)))
with_inc <- xgb.train(data=dtrain, tree_method='hist',
interaction_constraints=inc, nrounds=10)
without_inc <- xgb.train(data=dtrain, tree_method='hist', nrounds=10)
with_inc <- xgb.train(data = dtrain, tree_method = 'hist',
interaction_constraints = inc, nrounds = 10)
without_inc <- xgb.train(data = dtrain, tree_method = 'hist', nrounds = 10)
expect_equal(xgb.save.raw(with_inc), xgb.save.raw(without_inc))
})

View File

@ -9,9 +9,9 @@ test_that("predict feature interactions works", {
# simulate some binary data and a linear outcome with an interaction term
N <- 1000
P <- 5
X <- matrix(rbinom(N * P, 1, 0.5), ncol=P, dimnames = list(NULL, letters[1:P]))
X <- matrix(rbinom(N * P, 1, 0.5), ncol = P, dimnames = list(NULL, letters[1:P]))
# center the data (as contributions are computed WRT feature means)
X <- scale(X, scale=FALSE)
X <- scale(X, scale = FALSE)
# outcome without any interactions, without any noise:
f <- function(x) 2 * x[, 1] - 3 * x[, 2]
@ -23,14 +23,14 @@ test_that("predict feature interactions works", {
y <- f_int(X)
dm <- xgb.DMatrix(X, label = y)
param <- list(eta=0.1, max_depth=4, base_score=mean(y), lambda=0, nthread=2)
param <- list(eta = 0.1, max_depth = 4, base_score = mean(y), lambda = 0, nthread = 2)
b <- xgb.train(param, dm, 100)
pred = predict(b, dm, outputmargin=TRUE)
pred <- predict(b, dm, outputmargin = TRUE)
# SHAP contributions:
cont <- predict(b, dm, predcontrib=TRUE)
expect_equal(dim(cont), c(N, P+1))
cont <- predict(b, dm, predcontrib = TRUE)
expect_equal(dim(cont), c(N, P + 1))
# make sure for each row they add up to marginal predictions
max(abs(rowSums(cont) - pred)) %>% expect_lt(0.001)
# Hand-construct the 'ground truth' feature contributions:
@ -39,43 +39,43 @@ test_that("predict feature interactions works", {
-3. * X[, 2] + 1. * X[, 2] * X[, 3], # attribute a HALF of the interaction term to feature #2
1. * X[, 2] * X[, 3] # and another HALF of the interaction term to feature #3
)
gt_cont <- cbind(gt_cont, matrix(0, nrow=N, ncol=P + 1 - 3))
gt_cont <- cbind(gt_cont, matrix(0, nrow = N, ncol = P + 1 - 3))
# These should be relatively close:
expect_lt(max(abs(cont - gt_cont)), 0.05)
# SHAP interaction contributions:
intr <- predict(b, dm, predinteraction=TRUE)
expect_equal(dim(intr), c(N, P+1, P+1))
intr <- predict(b, dm, predinteraction = TRUE)
expect_equal(dim(intr), c(N, P + 1, P + 1))
# check assigned colnames
cn <- c(letters[1:P], "BIAS")
expect_equal(dimnames(intr), list(NULL, cn, cn))
# check the symmetry
max(abs(aperm(intr, c(1,3,2)) - intr)) %>% expect_lt(0.00001)
max(abs(aperm(intr, c(1, 3, 2)) - intr)) %>% expect_lt(0.00001)
# sums WRT columns must be close to feature contributions
max(abs(apply(intr, c(1,2), sum) - cont)) %>% expect_lt(0.00001)
max(abs(apply(intr, c(1, 2), sum) - cont)) %>% expect_lt(0.00001)
# diagonal terms for features 3,4,5 must be close to zero
Reduce(max, sapply(3:P, function(i) max(abs(intr[, i, i])))) %>% expect_lt(0.05)
# BIAS must have no interactions
max(abs(intr[, 1:P, P+1])) %>% expect_lt(0.00001)
max(abs(intr[, 1:P, P + 1])) %>% expect_lt(0.00001)
# interactions other than 2 x 3 must be close to zero
intr23 <- intr
intr23[,2,3] <- 0
Reduce(max, sapply(1:P, function(i) max(abs(intr23[, i, (i+1):(P+1)])))) %>% expect_lt(0.05)
intr23[, 2, 3] <- 0
Reduce(max, sapply(1:P, function(i) max(abs(intr23[, i, (i + 1):(P + 1)])))) %>% expect_lt(0.05)
# Construct the 'ground truth' contributions of interactions directly from the linear terms:
gt_intr <- array(0, c(N, P+1, P+1))
gt_intr[,2,3] <- 1. * X[, 2] * X[, 3] # attribute a HALF of the interaction term to each symmetric element
gt_intr[,3,2] <- gt_intr[, 2, 3]
gt_intr <- array(0, c(N, P + 1, P + 1))
gt_intr[, 2, 3] <- 1. * X[, 2] * X[, 3] # attribute a HALF of the interaction term to each symmetric element
gt_intr[, 3, 2] <- gt_intr[, 2, 3]
# merge-in the diagonal based on 'ground truth' feature contributions
intr_diag = gt_cont - apply(gt_intr, c(1,2), sum)
for(j in seq_len(P)) {
gt_intr[,j,j] = intr_diag[,j]
intr_diag <- gt_cont - apply(gt_intr, c(1, 2), sum)
for (j in seq_len(P)) {
gt_intr[, j, j] <- intr_diag[, j]
}
# These should be relatively close:
expect_lt(max(abs(intr - gt_intr)), 0.1)
@ -116,26 +116,26 @@ test_that("SHAP contribution values are not NAN", {
test_that("multiclass feature interactions work", {
dm <- xgb.DMatrix(as.matrix(iris[,-5]), label=as.numeric(iris$Species)-1)
param <- list(eta=0.1, max_depth=4, objective='multi:softprob', num_class=3)
dm <- xgb.DMatrix(as.matrix(iris[, -5]), label = as.numeric(iris$Species) - 1)
param <- list(eta = 0.1, max_depth = 4, objective = 'multi:softprob', num_class = 3)
b <- xgb.train(param, dm, 40)
pred = predict(b, dm, outputmargin=TRUE) %>% array(c(3, 150)) %>% t
pred <- predict(b, dm, outputmargin = TRUE) %>% array(c(3, 150)) %>% t
# SHAP contributions:
cont <- predict(b, dm, predcontrib=TRUE)
cont <- predict(b, dm, predcontrib = TRUE)
expect_length(cont, 3)
# rewrap them as a 3d array
cont <- unlist(cont) %>% array(c(150, 5, 3))
# make sure for each row they add up to marginal predictions
max(abs(apply(cont, c(1,3), sum) - pred)) %>% expect_lt(0.001)
max(abs(apply(cont, c(1, 3), sum) - pred)) %>% expect_lt(0.001)
# SHAP interaction contributions:
intr <- predict(b, dm, predinteraction=TRUE)
intr <- predict(b, dm, predinteraction = TRUE)
expect_length(intr, 3)
# rewrap them as a 4d array
intr <- unlist(intr) %>% array(c(150, 5, 5, 3)) %>% aperm(c(4, 1, 2, 3)) # [grp, row, col, col]
# check the symmetry
max(abs(aperm(intr, c(1,2,4,3)) - intr)) %>% expect_lt(0.00001)
max(abs(aperm(intr, c(1, 2, 4, 3)) - intr)) %>% expect_lt(0.00001)
# sums WRT columns must be close to feature contributions
max(abs(apply(intr, c(1,2,3), sum) - aperm(cont, c(3,1,2)))) %>% expect_lt(0.00001)
max(abs(apply(intr, c(1, 2, 3), sum) - aperm(cont, c(3, 1, 2)))) %>% expect_lt(0.00001)
})

View File

@ -2,25 +2,25 @@ context("Code is of high quality and lint free")
test_that("Code Lint", {
skip_on_cran()
my_linters <- list(
absolute_paths_linter=lintr::absolute_paths_linter,
assignment_linter=lintr::assignment_linter,
closed_curly_linter=lintr::closed_curly_linter,
commas_linter=lintr::commas_linter,
# commented_code_linter=lintr::commented_code_linter,
infix_spaces_linter=lintr::infix_spaces_linter,
line_length_linter=lintr::line_length_linter,
no_tab_linter=lintr::no_tab_linter,
object_usage_linter=lintr::object_usage_linter,
# snake_case_linter=lintr::snake_case_linter,
# multiple_dots_linter=lintr::multiple_dots_linter,
object_length_linter=lintr::object_length_linter,
open_curly_linter=lintr::open_curly_linter,
# single_quotes_linter=lintr::single_quotes_linter,
spaces_inside_linter=lintr::spaces_inside_linter,
spaces_left_parentheses_linter=lintr::spaces_left_parentheses_linter,
trailing_blank_lines_linter=lintr::trailing_blank_lines_linter,
trailing_whitespace_linter=lintr::trailing_whitespace_linter,
true_false=lintr::T_and_F_symbol_linter
absolute_paths_linter = lintr::absolute_paths_linter,
assignment_linter = lintr::assignment_linter,
closed_curly_linter = lintr::closed_curly_linter,
commas_linter = lintr::commas_linter,
# commented_code_linter = lintr::commented_code_linter,
infix_spaces_linter = lintr::infix_spaces_linter,
line_length_linter = lintr::line_length_linter,
no_tab_linter = lintr::no_tab_linter,
object_usage_linter = lintr::object_usage_linter,
# snake_case_linter = lintr::snake_case_linter,
# multiple_dots_linter = lintr::multiple_dots_linter,
object_length_linter = lintr::object_length_linter,
open_curly_linter = lintr::open_curly_linter,
# single_quotes_linter = lintr::single_quotes_linter,
spaces_inside_linter = lintr::spaces_inside_linter,
spaces_left_parentheses_linter = lintr::spaces_left_parentheses_linter,
trailing_blank_lines_linter = lintr::trailing_blank_lines_linter,
trailing_whitespace_linter = lintr::trailing_whitespace_linter,
true_false = lintr::T_and_F_symbol_linter
)
lintr::expect_lint_free(linters=my_linters) # uncomment this if you want to check code quality
lintr::expect_lint_free(linters = my_linters) # uncomment this if you want to check code quality
})

View File

@ -3,22 +3,21 @@ require(xgboost)
context("monotone constraints")
set.seed(1024)
x = rnorm(1000, 10)
y = -1*x + rnorm(1000, 0.001) + 3*sin(x)
train = matrix(x, ncol = 1)
x <- rnorm(1000, 10)
y <- -1 * x + rnorm(1000, 0.001) + 3 * sin(x)
train <- matrix(x, ncol = 1)
test_that("monotone constraints for regression", {
bst = xgboost(data = train, label = y, max_depth = 2,
eta = 0.1, nthread = 2, nrounds = 100, verbose = 0,
monotone_constraints = -1)
pred = predict(bst, train)
ind = order(train[,1])
pred.ord = pred[ind]
expect_true({
!any(diff(pred.ord) > 0)
}, "Monotone Contraint Satisfied")
bst <- xgboost(data = train, label = y, max_depth = 2,
eta = 0.1, nthread = 2, nrounds = 100, verbose = 0,
monotone_constraints = -1)
pred <- predict(bst, train)
ind <- order(train[, 1])
pred.ord <- pred[ind]
expect_true({
!any(diff(pred.ord) > 0)
}, "Monotone Contraint Satisfied")
})

View File

@ -2,8 +2,8 @@ context('Test model params and call are exposed to R')
require(xgboost)
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
data(agaricus.train, package = 'xgboost')
data(agaricus.test, package = 'xgboost')
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)

View File

@ -5,10 +5,10 @@ set.seed(1994)
test_that("poisson regression works", {
data(mtcars)
bst <- xgboost(data = as.matrix(mtcars[,-11]), label = mtcars[,11],
objective = 'count:poisson', nrounds=10, verbose=0)
bst <- xgboost(data = as.matrix(mtcars[, -11]), label = mtcars[, 11],
objective = 'count:poisson', nrounds = 10, verbose = 0)
expect_equal(class(bst), "xgb.Booster")
pred <- predict(bst, as.matrix(mtcars[, -11]))
expect_equal(length(pred), 32)
expect_lt(sqrt(mean( (pred - mtcars[,11])^2 )), 1.2)
expect_lt(sqrt(mean((pred - mtcars[, 11])^2)), 1.2)
})

View File

@ -9,23 +9,23 @@ dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
# Disable flaky tests for 32-bit Windows.
# See https://github.com/dmlc/xgboost/issues/3720
win32_flag = .Platform$OS.type == "windows" && .Machine$sizeof.pointer != 8
win32_flag <- .Platform$OS.type == "windows" && .Machine$sizeof.pointer != 8
test_that("updating the model works", {
watchlist = list(train = dtrain, test = dtest)
watchlist <- list(train = dtrain, test = dtest)
# no-subsampling
p1 <- list(objective = "binary:logistic", max_depth = 2, eta = 0.05, nthread = 2)
set.seed(11)
bst1 <- xgb.train(p1, dtrain, nrounds = 10, watchlist, verbose = 0)
tr1 <- xgb.model.dt.tree(model = bst1)
# with subsampling
p2 <- modifyList(p1, list(subsample = 0.1))
set.seed(11)
bst2 <- xgb.train(p2, dtrain, nrounds = 10, watchlist, verbose = 0)
tr2 <- xgb.model.dt.tree(model = bst2)
# the same no-subsampling boosting with an extra 'refresh' updater:
p1r <- modifyList(p1, list(updater = 'grow_colmaker,prune,refresh', refresh_leaf = FALSE))
set.seed(11)
@ -57,7 +57,7 @@ test_that("updating the model works", {
# all should be the same when no subsampling
expect_equal(bst1$evaluation_log, bst1u$evaluation_log)
expect_equal(tr1, tr1u, tolerance = 0.00001, check.attributes = FALSE)
# process type 'update' for model with subsampling, refreshing only the tree stats from training data:
p2u <- modifyList(p2, list(process_type = 'update', updater = 'refresh', refresh_leaf = FALSE))
bst2u <- xgb.train(p2u, dtrain, nrounds = 10, watchlist, verbose = 0, xgb_model = bst2)
@ -72,7 +72,7 @@ test_that("updating the model works", {
if (!win32_flag) {
expect_equal(tr2r, tr2u, tolerance = 0.00001, check.attributes = FALSE)
}
# process type 'update' for no-subsampling model, refreshing only the tree stats from TEST data:
p1ut <- modifyList(p1, list(process_type = 'update', updater = 'refresh', refresh_leaf = FALSE))
bst1ut <- xgb.train(p1ut, dtest, nrounds = 10, watchlist, verbose = 0, xgb_model = bst1)
@ -93,12 +93,12 @@ test_that("updating works for multiclass & multitree", {
set.seed(121)
bst0 <- xgb.train(p0, dtr, 5, watchlist, verbose = 0)
tr0 <- xgb.model.dt.tree(model = bst0)
# run update process for an original model with subsampling
p0u <- modifyList(p0, list(process_type='update', updater='refresh', refresh_leaf=FALSE))
p0u <- modifyList(p0, list(process_type = 'update', updater = 'refresh', refresh_leaf = FALSE))
bst0u <- xgb.train(p0u, dtr, nrounds = bst0$niter, watchlist, xgb_model = bst0, verbose = 0)
tr0u <- xgb.model.dt.tree(model = bst0u)
# should be the same evaluation but different gains and larger cover
expect_equal(bst0$evaluation_log, bst0u$evaluation_log)
expect_equal(tr0[Feature == 'Leaf']$Quality, tr0u[Feature == 'Leaf']$Quality)