[BLOCKING] [jvm-packages] add gpu_hist and enable gpu scheduling (#5171)
* [jvm-packages] add gpu_hist tree method * change updater hist to grow_quantile_histmaker * add gpu scheduling * pass correct parameters to xgboost library * remove debug info * add use.cuda for pom * add CI for gpu_hist for jvm * add gpu unit tests * use gpu node to build jvm * use nvidia-docker * Add CLI interface to create_jni.py using argparse Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
This commit is contained in:
parent
6347fa1c2e
commit
8943eb4314
42
Jenkinsfile
vendored
42
Jenkinsfile
vendored
@ -75,6 +75,7 @@ pipeline {
|
||||
'build-gpu-cuda10.1': { BuildCUDA(cuda_version: '10.1') },
|
||||
'build-gpu-cuda10.2': { BuildCUDA(cuda_version: '10.2') },
|
||||
'build-gpu-cuda11.0': { BuildCUDA(cuda_version: '11.0') },
|
||||
'build-jvm-packages-gpu-cuda10.0': { BuildJVMPackagesWithCUDA(spark_version: '3.0.0', cuda_version: '10.0') },
|
||||
'build-jvm-packages': { BuildJVMPackages(spark_version: '3.0.0') },
|
||||
'build-jvm-doc': { BuildJVMDoc() }
|
||||
])
|
||||
@ -94,6 +95,7 @@ pipeline {
|
||||
'test-python-mgpu-cuda10.2': { TestPythonGPU(host_cuda_version: '10.2', multi_gpu: true) },
|
||||
'test-cpp-gpu-cuda10.2': { TestCppGPU(artifact_cuda_version: '10.2', host_cuda_version: '10.2') },
|
||||
'test-cpp-gpu-cuda11.0': { TestCppGPU(artifact_cuda_version: '11.0', host_cuda_version: '11.0') },
|
||||
'test-jvm-jdk8-cuda10.0': { CrossTestJVMwithJDKGPU(artifact_cuda_version: '10.0', host_cuda_version: '10.0') },
|
||||
'test-jvm-jdk8': { CrossTestJVMwithJDK(jdk_version: '8', spark_version: '3.0.0') },
|
||||
'test-jvm-jdk11': { CrossTestJVMwithJDK(jdk_version: '11') },
|
||||
'test-jvm-jdk12': { CrossTestJVMwithJDK(jdk_version: '12') },
|
||||
@ -282,6 +284,28 @@ def BuildCUDA(args) {
|
||||
}
|
||||
}
|
||||
|
||||
def BuildJVMPackagesWithCUDA(args) {
|
||||
node('linux && gpu') {
|
||||
unstash name: 'srcs'
|
||||
echo "Build XGBoost4J-Spark with Spark ${args.spark_version}, CUDA ${args.cuda_version}"
|
||||
def container_type = "jvm_gpu_build"
|
||||
def docker_binary = "nvidia-docker"
|
||||
def docker_args = "--build-arg CUDA_VERSION=${args.cuda_version}"
|
||||
def arch_flag = ""
|
||||
if (env.BRANCH_NAME != 'master' && !(env.BRANCH_NAME.startsWith('release'))) {
|
||||
arch_flag = "-DGPU_COMPUTE_VER=75"
|
||||
}
|
||||
// Use only 4 CPU cores
|
||||
def docker_extra_params = "CI_DOCKER_EXTRA_PARAMS_INIT='--cpuset-cpus 0-3'"
|
||||
sh """
|
||||
${docker_extra_params} ${dockerRun} ${container_type} ${docker_binary} ${docker_args} tests/ci_build/build_jvm_packages.sh ${args.spark_version} -Duse.cuda=ON $arch_flag
|
||||
"""
|
||||
echo "Stashing XGBoost4J JAR with CUDA ${args.cuda_version} ..."
|
||||
stash name: 'xgboost4j_jar_gpu', includes: "jvm-packages/xgboost4j/target/*.jar,jvm-packages/xgboost4j-spark/target/*.jar,jvm-packages/xgboost4j-example/target/*.jar"
|
||||
deleteDir()
|
||||
}
|
||||
}
|
||||
|
||||
def BuildJVMPackages(args) {
|
||||
node('linux && cpu') {
|
||||
unstash name: 'srcs'
|
||||
@ -386,6 +410,24 @@ def TestCppGPU(args) {
|
||||
}
|
||||
}
|
||||
|
||||
def CrossTestJVMwithJDKGPU(args) {
|
||||
def nodeReq = 'linux && mgpu'
|
||||
node(nodeReq) {
|
||||
unstash name: "xgboost4j_jar_gpu"
|
||||
unstash name: 'srcs'
|
||||
if (args.spark_version != null) {
|
||||
echo "Test XGBoost4J on a machine with JDK ${args.jdk_version}, Spark ${args.spark_version}, CUDA ${args.host_cuda_version}"
|
||||
} else {
|
||||
echo "Test XGBoost4J on a machine with JDK ${args.jdk_version}, CUDA ${args.host_cuda_version}"
|
||||
}
|
||||
def container_type = "gpu_jvm"
|
||||
def docker_binary = "nvidia-docker"
|
||||
def docker_args = "--build-arg CUDA_VERSION=${args.host_cuda_version}"
|
||||
sh "${dockerRun} ${container_type} ${docker_binary} ${docker_args} tests/ci_build/test_jvm_gpu_cross.sh"
|
||||
deleteDir()
|
||||
}
|
||||
}
|
||||
|
||||
def CrossTestJVMwithJDK(args) {
|
||||
node('linux && cpu') {
|
||||
unstash name: 'xgboost4j_jar'
|
||||
|
||||
@ -202,6 +202,14 @@ If you are on Mac OS and using a compiler that supports OpenMP, you need to go t
|
||||
|
||||
in order to get the benefit of multi-threading.
|
||||
|
||||
Building with GPU support
|
||||
-------------------------
|
||||
If you want to build XGBoost4J that supports distributed GPU training, run
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
mvn -Duse.cuda=ON install
|
||||
|
||||
********
|
||||
Contents
|
||||
********
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python
|
||||
import errno
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import shutil
|
||||
@ -7,7 +8,6 @@ import subprocess
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
|
||||
|
||||
# Monkey-patch the API inconsistency between Python2.X and 3.X.
|
||||
if sys.platform.startswith("linux"):
|
||||
sys.platform = "linux"
|
||||
@ -20,6 +20,7 @@ CONFIG = {
|
||||
"USE_S3": "OFF",
|
||||
|
||||
"USE_CUDA": "OFF",
|
||||
"USE_NCCL": "OFF",
|
||||
"JVM_BINDINGS": "ON"
|
||||
}
|
||||
|
||||
@ -68,6 +69,10 @@ def normpath(path):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--use-cuda', type=str, choices=['ON', 'OFF'], default='OFF')
|
||||
cli_args = parser.parse_args()
|
||||
|
||||
if sys.platform == "darwin":
|
||||
# Enable of your compiler supports OpenMP.
|
||||
CONFIG["USE_OPENMP"] = "OFF"
|
||||
@ -88,12 +93,21 @@ if __name__ == "__main__":
|
||||
else:
|
||||
maybe_parallel_build = ""
|
||||
|
||||
if cli_args.use_cuda == 'ON':
|
||||
CONFIG['USE_CUDA'] = 'ON'
|
||||
CONFIG['USE_NCCL'] = 'ON'
|
||||
|
||||
args = ["-D{0}:BOOL={1}".format(k, v) for k, v in CONFIG.items()]
|
||||
|
||||
# if enviorment set rabit_mock
|
||||
if os.getenv("RABIT_MOCK", None) is not None:
|
||||
args.append("-DRABIT_MOCK:BOOL=ON")
|
||||
|
||||
# if enviorment set GPU_ARCH_FLAG
|
||||
gpu_arch_flag = os.getenv("GPU_ARCH_FLAG", None)
|
||||
if gpu_arch_flag is not None:
|
||||
args.append("%s" % gpu_arch_flag)
|
||||
|
||||
run("cmake .. " + " ".join(args) + maybe_generator)
|
||||
run("cmake --build . --config Release" + maybe_parallel_build)
|
||||
|
||||
|
||||
@ -38,6 +38,7 @@
|
||||
<scala.version>2.12.8</scala.version>
|
||||
<scala.binary.version>2.12</scala.binary.version>
|
||||
<hadoop.version>2.7.3</hadoop.version>
|
||||
<use.cuda>OFF</use.cuda>
|
||||
</properties>
|
||||
<repositories>
|
||||
<repository>
|
||||
@ -52,7 +53,65 @@
|
||||
<module>xgboost4j-spark</module>
|
||||
<module>xgboost4j-flink</module>
|
||||
</modules>
|
||||
|
||||
<profiles>
|
||||
<profile>
|
||||
<!-- default active profile excluding gpu related test suites -->
|
||||
<id>default</id>
|
||||
<activation>
|
||||
<activeByDefault>true</activeByDefault>
|
||||
</activation>
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.scalatest</groupId>
|
||||
<artifactId>scalatest-maven-plugin</artifactId>
|
||||
<configuration>
|
||||
<tagsToExclude>ml.dmlc.xgboost4j.java.GpuTestSuite</tagsToExclude>
|
||||
</configuration>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
</profile>
|
||||
|
||||
<!-- gpu profile with both cpu and gpu test suites -->
|
||||
<profile>
|
||||
<id>gpu</id>
|
||||
<activation>
|
||||
<property>
|
||||
<name>use.cuda</name>
|
||||
<value>ON</value>
|
||||
</property>
|
||||
</activation>
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.scalatest</groupId>
|
||||
<artifactId>scalatest-maven-plugin</artifactId>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
</profile>
|
||||
|
||||
<!-- gpu-with-gpu-tests profile with only gpu test suites -->
|
||||
<profile>
|
||||
<id>gpu-with-gpu-tests</id>
|
||||
<properties>
|
||||
<use.cuda>ON</use.cuda>
|
||||
</properties>
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.scalatest</groupId>
|
||||
<artifactId>scalatest-maven-plugin</artifactId>
|
||||
<configuration>
|
||||
<tagsToInclude>ml.dmlc.xgboost4j.java.GpuTestSuite</tagsToInclude>
|
||||
</configuration>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
</profile>
|
||||
|
||||
<profile>
|
||||
<id>release</id>
|
||||
<build>
|
||||
@ -242,6 +301,25 @@
|
||||
<filtering>true</filtering>
|
||||
</resource>
|
||||
</resources>
|
||||
|
||||
<pluginManagement>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.scalatest</groupId>
|
||||
<artifactId>scalatest-maven-plugin</artifactId>
|
||||
<version>1.0</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>test</id>
|
||||
<goals>
|
||||
<goal>test</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</pluginManagement>
|
||||
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.scalastyle</groupId>
|
||||
@ -336,15 +414,6 @@
|
||||
<plugin>
|
||||
<groupId>org.scalatest</groupId>
|
||||
<artifactId>scalatest-maven-plugin</artifactId>
|
||||
<version>1.0</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>test</id>
|
||||
<goals>
|
||||
<goal>test</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
<extensions>
|
||||
|
||||
@ -31,8 +31,9 @@ object SparkMLlibPipeline {
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
|
||||
if (args.length != 3) {
|
||||
println("Usage: SparkMLlibPipeline input_path native_model_path pipeline_model_path")
|
||||
if (args.length != 3 && args.length != 4) {
|
||||
println("Usage: SparkMLlibPipeline input_path native_model_path pipeline_model_path " +
|
||||
"[cpu|gpu]")
|
||||
sys.exit(1)
|
||||
}
|
||||
|
||||
@ -40,6 +41,10 @@ object SparkMLlibPipeline {
|
||||
val nativeModelPath = args(1)
|
||||
val pipelineModelPath = args(2)
|
||||
|
||||
val (treeMethod, numWorkers) = if (args.length == 4 && args(3) == "gpu") {
|
||||
("gpu_hist", 1)
|
||||
} else ("auto", 2)
|
||||
|
||||
val spark = SparkSession
|
||||
.builder()
|
||||
.appName("XGBoost4J-Spark Pipeline Example")
|
||||
@ -76,7 +81,8 @@ object SparkMLlibPipeline {
|
||||
"objective" -> "multi:softprob",
|
||||
"num_class" -> 3,
|
||||
"num_round" -> 100,
|
||||
"num_workers" -> 2
|
||||
"num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod
|
||||
)
|
||||
)
|
||||
booster.setFeaturesCol("features")
|
||||
|
||||
@ -28,9 +28,14 @@ object SparkTraining {
|
||||
def main(args: Array[String]): Unit = {
|
||||
if (args.length < 1) {
|
||||
// scalastyle:off
|
||||
println("Usage: program input_path")
|
||||
println("Usage: program input_path [cpu|gpu]")
|
||||
sys.exit(1)
|
||||
}
|
||||
|
||||
val (treeMethod, numWorkers) = if (args.length == 2 && args(1) == "gpu") {
|
||||
("gpu_hist", 1)
|
||||
} else ("auto", 2)
|
||||
|
||||
val spark = SparkSession.builder().getOrCreate()
|
||||
val inputPath = args(0)
|
||||
val schema = new StructType(Array(
|
||||
@ -68,7 +73,8 @@ object SparkTraining {
|
||||
"objective" -> "multi:softprob",
|
||||
"num_class" -> 3,
|
||||
"num_round" -> 100,
|
||||
"num_workers" -> 2,
|
||||
"num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod,
|
||||
"eval_sets" -> Map("eval1" -> eval1, "eval2" -> eval2))
|
||||
val xgbClassifier = new XGBoostClassifier(xgbParam).
|
||||
setFeaturesCol("features").
|
||||
|
||||
@ -22,7 +22,6 @@ import java.nio.file.Files
|
||||
import scala.collection.{AbstractIterator, mutable}
|
||||
import scala.util.Random
|
||||
import scala.collection.JavaConverters._
|
||||
|
||||
import ml.dmlc.xgboost4j.java.{IRabitTracker, Rabit, XGBoostError, RabitTracker => PyRabitTracker}
|
||||
import ml.dmlc.xgboost4j.scala.rabit.RabitTracker
|
||||
import ml.dmlc.xgboost4j.scala.spark.params.LearningTaskParams
|
||||
@ -32,7 +31,6 @@ import ml.dmlc.xgboost4j.{LabeledPoint => XGBLabeledPoint}
|
||||
import org.apache.commons.io.FileUtils
|
||||
import org.apache.commons.logging.LogFactory
|
||||
import org.apache.hadoop.fs.FileSystem
|
||||
|
||||
import org.apache.spark.rdd.RDD
|
||||
import org.apache.spark.{SparkContext, SparkParallelismTracker, TaskContext, TaskFailedListener}
|
||||
import org.apache.spark.sql.SparkSession
|
||||
@ -76,7 +74,9 @@ private[this] case class XGBoostExecutionParams(
|
||||
checkpointParam: Option[ExternalCheckpointParams],
|
||||
xgbInputParams: XGBoostExecutionInputParams,
|
||||
earlyStoppingParams: XGBoostExecutionEarlyStoppingParams,
|
||||
cacheTrainingSet: Boolean) {
|
||||
cacheTrainingSet: Boolean,
|
||||
treeMethod: Option[String],
|
||||
isLocal: Boolean) {
|
||||
|
||||
private var rawParamMap: Map[String, Any] = _
|
||||
|
||||
@ -93,6 +93,8 @@ private[this] class XGBoostExecutionParamsFactory(rawParams: Map[String, Any], s
|
||||
|
||||
private val logger = LogFactory.getLog("XGBoostSpark")
|
||||
|
||||
private val isLocal = sc.isLocal
|
||||
|
||||
private val overridedParams = overrideParams(rawParams, sc)
|
||||
|
||||
/**
|
||||
@ -168,11 +170,14 @@ private[this] class XGBoostExecutionParamsFactory(rawParams: Map[String, Any], s
|
||||
.getOrElse("allow_non_zero_for_missing", false)
|
||||
.asInstanceOf[Boolean]
|
||||
validateSparkSslConf
|
||||
var treeMethod: Option[String] = None
|
||||
if (overridedParams.contains("tree_method")) {
|
||||
require(overridedParams("tree_method") == "hist" ||
|
||||
overridedParams("tree_method") == "approx" ||
|
||||
overridedParams("tree_method") == "auto", "xgboost4j-spark only supports tree_method as" +
|
||||
" 'hist', 'approx' and 'auto'")
|
||||
overridedParams("tree_method") == "auto" ||
|
||||
overridedParams("tree_method") == "gpu_hist", "xgboost4j-spark only supports tree_method" +
|
||||
" as 'hist', 'approx', 'gpu_hist', and 'auto'")
|
||||
treeMethod = Some(overridedParams("tree_method").asInstanceOf[String])
|
||||
}
|
||||
if (overridedParams.contains("train_test_ratio")) {
|
||||
logger.warn("train_test_ratio is deprecated since XGBoost 0.82, we recommend to explicitly" +
|
||||
@ -221,7 +226,9 @@ private[this] class XGBoostExecutionParamsFactory(rawParams: Map[String, Any], s
|
||||
checkpointParam,
|
||||
inputParams,
|
||||
xgbExecEarlyStoppingParams,
|
||||
cacheTrainingSet)
|
||||
cacheTrainingSet,
|
||||
treeMethod,
|
||||
isLocal)
|
||||
xgbExecParam.setRawParamMap(overridedParams)
|
||||
xgbExecParam
|
||||
}
|
||||
@ -335,6 +342,26 @@ object XGBoost extends Serializable {
|
||||
}
|
||||
}
|
||||
|
||||
private def getGPUAddrFromResources: Int = {
|
||||
val tc = TaskContext.get()
|
||||
if (tc == null) {
|
||||
throw new RuntimeException("Something wrong for task context")
|
||||
}
|
||||
val resources = tc.resources()
|
||||
if (resources.contains("gpu")) {
|
||||
val addrs = resources("gpu").addresses
|
||||
if (addrs.size > 1) {
|
||||
// TODO should we throw exception ?
|
||||
logger.warn("XGBoost only supports 1 gpu per worker")
|
||||
}
|
||||
// take the first one
|
||||
addrs.head.toInt
|
||||
} else {
|
||||
throw new RuntimeException("gpu is not allocated by spark, " +
|
||||
"please check if gpu scheduling is enabled")
|
||||
}
|
||||
}
|
||||
|
||||
private def buildDistributedBooster(
|
||||
watches: Watches,
|
||||
xgbExecutionParam: XGBoostExecutionParams,
|
||||
@ -362,13 +389,25 @@ object XGBoost extends Serializable {
|
||||
val numEarlyStoppingRounds = xgbExecutionParam.earlyStoppingParams.numEarlyStoppingRounds
|
||||
val metrics = Array.tabulate(watches.size)(_ => Array.ofDim[Float](numRounds))
|
||||
val externalCheckpointParams = xgbExecutionParam.checkpointParam
|
||||
|
||||
var params = xgbExecutionParam.toMap
|
||||
if (xgbExecutionParam.treeMethod.exists(m => m == "gpu_hist")) {
|
||||
val gpuId = if (xgbExecutionParam.isLocal) {
|
||||
// For local mode, force gpu id to primary device
|
||||
0
|
||||
} else {
|
||||
getGPUAddrFromResources
|
||||
}
|
||||
logger.info("Leveraging gpu device " + gpuId + " to train")
|
||||
params = params + ("gpu_id" -> gpuId)
|
||||
}
|
||||
val booster = if (makeCheckpoint) {
|
||||
SXGBoost.trainAndSaveCheckpoint(
|
||||
watches.toMap("train"), xgbExecutionParam.toMap, numRounds,
|
||||
watches.toMap("train"), params, numRounds,
|
||||
watches.toMap, metrics, obj, eval,
|
||||
earlyStoppingRound = numEarlyStoppingRounds, prevBooster, externalCheckpointParams)
|
||||
} else {
|
||||
SXGBoost.train(watches.toMap("train"), xgbExecutionParam.toMap, numRounds,
|
||||
SXGBoost.train(watches.toMap("train"), params, numRounds,
|
||||
watches.toMap, metrics, obj, eval,
|
||||
earlyStoppingRound = numEarlyStoppingRounds, prevBooster)
|
||||
}
|
||||
|
||||
@ -145,11 +145,12 @@ private[spark] trait BoosterParams extends Params {
|
||||
final def getAlpha: Double = $(alpha)
|
||||
|
||||
/**
|
||||
* The tree construction algorithm used in XGBoost. options: {'auto', 'exact', 'approx'}
|
||||
* [default='auto']
|
||||
* The tree construction algorithm used in XGBoost. options:
|
||||
* {'auto', 'exact', 'approx','gpu_hist'} [default='auto']
|
||||
*/
|
||||
final val treeMethod = new Param[String](this, "treeMethod",
|
||||
"The tree construction algorithm used in XGBoost, options: {'auto', 'exact', 'approx', 'hist'}",
|
||||
"The tree construction algorithm used in XGBoost, options: " +
|
||||
"{'auto', 'exact', 'approx', 'hist', 'gpu_hist'}",
|
||||
(value: String) => BoosterParams.supportedTreeMethods.contains(value))
|
||||
|
||||
final def getTreeMethod: String = $(treeMethod)
|
||||
@ -292,7 +293,7 @@ private[spark] object BoosterParams {
|
||||
|
||||
val supportedBoosters = HashSet("gbtree", "gblinear", "dart")
|
||||
|
||||
val supportedTreeMethods = HashSet("auto", "exact", "approx", "hist")
|
||||
val supportedTreeMethods = HashSet("auto", "exact", "approx", "hist", "gpu_hist")
|
||||
|
||||
val supportedGrowthPolicies = HashSet("depthwise", "lossguide")
|
||||
|
||||
|
||||
@ -261,10 +261,10 @@ private[spark] trait ParamMapFuncs extends Params {
|
||||
for ((paramName, paramValue) <- xgboostParams) {
|
||||
if ((paramName == "booster" && paramValue != "gbtree") ||
|
||||
(paramName == "updater" && paramValue != "grow_histmaker,prune" &&
|
||||
paramValue != "hist")) {
|
||||
paramValue != "grow_quantile_histmaker" && paramValue != "grow_gpu_hist")) {
|
||||
throw new IllegalArgumentException(s"you specified $paramName as $paramValue," +
|
||||
s" XGBoost-Spark only supports gbtree as booster type" +
|
||||
" and grow_histmaker,prune or hist as the updater type")
|
||||
s" XGBoost-Spark only supports gbtree as booster type and grow_histmaker,prune or" +
|
||||
s" grow_quantile_histmaker or grow_gpu_hist as the updater type")
|
||||
}
|
||||
val name = CaseFormat.LOWER_UNDERSCORE.to(CaseFormat.LOWER_CAMEL, paramName)
|
||||
params.find(_.name == name).foreach {
|
||||
|
||||
@ -16,14 +16,193 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.java.GpuTestSuite
|
||||
import ml.dmlc.xgboost4j.scala.{DMatrix, XGBoost => ScalaXGBoost}
|
||||
import org.apache.spark.ml.linalg._
|
||||
import org.apache.spark.sql._
|
||||
import org.scalatest.FunSuite
|
||||
import org.apache.spark.Partitioner
|
||||
|
||||
class XGBoostClassifierSuite extends FunSuite with PerTest {
|
||||
abstract class XGBoostClassifierSuiteBase extends FunSuite with PerTest {
|
||||
|
||||
protected val treeMethod: String = "auto"
|
||||
|
||||
test("Set params in XGBoost and MLlib way should produce same model") {
|
||||
val trainingDF = buildDataFrame(Classification.train)
|
||||
val testDF = buildDataFrame(Classification.test)
|
||||
val round = 5
|
||||
|
||||
val paramMap = Map(
|
||||
"eta" -> "1",
|
||||
"max_depth" -> "6",
|
||||
"silent" -> "1",
|
||||
"objective" -> "binary:logistic",
|
||||
"num_round" -> round,
|
||||
"tree_method" -> treeMethod,
|
||||
"num_workers" -> numWorkers)
|
||||
|
||||
// Set params in XGBoost way
|
||||
val model1 = new XGBoostClassifier(paramMap).fit(trainingDF)
|
||||
// Set params in MLlib way
|
||||
val model2 = new XGBoostClassifier()
|
||||
.setEta(1)
|
||||
.setMaxDepth(6)
|
||||
.setSilent(1)
|
||||
.setObjective("binary:logistic")
|
||||
.setNumRound(round)
|
||||
.setNumWorkers(numWorkers)
|
||||
.fit(trainingDF)
|
||||
|
||||
val prediction1 = model1.transform(testDF).select("prediction").collect()
|
||||
val prediction2 = model2.transform(testDF).select("prediction").collect()
|
||||
|
||||
prediction1.zip(prediction2).foreach { case (Row(p1: Double), Row(p2: Double)) =>
|
||||
assert(p1 === p2)
|
||||
}
|
||||
}
|
||||
|
||||
test("test schema of XGBoostClassificationModel") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "num_round" -> 5, "num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod)
|
||||
val trainingDF = buildDataFrame(Classification.train)
|
||||
val testDF = buildDataFrame(Classification.test)
|
||||
|
||||
val model = new XGBoostClassifier(paramMap).fit(trainingDF)
|
||||
|
||||
model.setRawPredictionCol("raw_prediction")
|
||||
.setProbabilityCol("probability_prediction")
|
||||
.setPredictionCol("final_prediction")
|
||||
var predictionDF = model.transform(testDF)
|
||||
assert(predictionDF.columns.contains("id"))
|
||||
assert(predictionDF.columns.contains("features"))
|
||||
assert(predictionDF.columns.contains("label"))
|
||||
assert(predictionDF.columns.contains("raw_prediction"))
|
||||
assert(predictionDF.columns.contains("probability_prediction"))
|
||||
assert(predictionDF.columns.contains("final_prediction"))
|
||||
model.setRawPredictionCol("").setPredictionCol("final_prediction")
|
||||
predictionDF = model.transform(testDF)
|
||||
assert(predictionDF.columns.contains("raw_prediction") === false)
|
||||
assert(predictionDF.columns.contains("final_prediction"))
|
||||
model.setRawPredictionCol("raw_prediction").setPredictionCol("")
|
||||
predictionDF = model.transform(testDF)
|
||||
assert(predictionDF.columns.contains("raw_prediction"))
|
||||
assert(predictionDF.columns.contains("final_prediction") === false)
|
||||
|
||||
assert(model.summary.trainObjectiveHistory.length === 5)
|
||||
assert(model.summary.validationObjectiveHistory.isEmpty)
|
||||
}
|
||||
|
||||
test("multi class classification") {
|
||||
val paramMap = Map("eta" -> "0.1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "multi:softmax", "num_class" -> "6", "num_round" -> 5,
|
||||
"num_workers" -> numWorkers, "tree_method" -> treeMethod)
|
||||
val trainingDF = buildDataFrame(MultiClassification.train)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(trainingDF)
|
||||
assert(model.getEta == 0.1)
|
||||
assert(model.getMaxDepth == 6)
|
||||
assert(model.numClasses == 6)
|
||||
}
|
||||
|
||||
test("use base margin") {
|
||||
val training1 = buildDataFrame(Classification.train)
|
||||
val training2 = training1.withColumn("margin", functions.rand())
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "1.0",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers, "tree_method" -> treeMethod)
|
||||
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model1 = xgb.fit(training1)
|
||||
val model2 = xgb.setBaseMarginCol("margin").fit(training2)
|
||||
val prediction1 = model1.transform(test).select(model1.getProbabilityCol)
|
||||
.collect().map(row => row.getAs[Vector](0))
|
||||
val prediction2 = model2.transform(test).select(model2.getProbabilityCol)
|
||||
.collect().map(row => row.getAs[Vector](0))
|
||||
var count = 0
|
||||
for ((r1, r2) <- prediction1.zip(prediction2)) {
|
||||
if (!r1.equals(r2)) count = count + 1
|
||||
}
|
||||
assert(count != 0)
|
||||
}
|
||||
|
||||
test("test predictionLeaf") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers, "tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val groundTruth = test.count()
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setLeafPredictionCol("predictLeaf")
|
||||
val resultDF = model.transform(test)
|
||||
assert(resultDF.count == groundTruth)
|
||||
assert(resultDF.columns.contains("predictLeaf"))
|
||||
}
|
||||
|
||||
test("test predictionLeaf with empty column name") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers, "tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setLeafPredictionCol("")
|
||||
val resultDF = model.transform(test)
|
||||
assert(!resultDF.columns.contains("predictLeaf"))
|
||||
}
|
||||
|
||||
test("test predictionContrib") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers, "tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val groundTruth = test.count()
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setContribPredictionCol("predictContrib")
|
||||
val resultDF = model.transform(buildDataFrame(Classification.test))
|
||||
assert(resultDF.count == groundTruth)
|
||||
assert(resultDF.columns.contains("predictContrib"))
|
||||
}
|
||||
|
||||
test("test predictionContrib with empty column name") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers, "tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setContribPredictionCol("")
|
||||
val resultDF = model.transform(test)
|
||||
assert(!resultDF.columns.contains("predictContrib"))
|
||||
}
|
||||
|
||||
test("test predictionLeaf and predictionContrib") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers, "tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val groundTruth = test.count()
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setLeafPredictionCol("predictLeaf")
|
||||
model.setContribPredictionCol("predictContrib")
|
||||
val resultDF = model.transform(buildDataFrame(Classification.test))
|
||||
assert(resultDF.count == groundTruth)
|
||||
assert(resultDF.columns.contains("predictLeaf"))
|
||||
assert(resultDF.columns.contains("predictContrib"))
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
class XGBoostCpuClassifierSuite extends XGBoostClassifierSuiteBase {
|
||||
test("XGBoost-Spark XGBoostClassifier output should match XGBoost4j") {
|
||||
val trainingDM = new DMatrix(Classification.train.iterator)
|
||||
val testDM = new DMatrix(Classification.test.iterator)
|
||||
@ -50,7 +229,9 @@ class XGBoostClassifierSuite extends FunSuite with PerTest {
|
||||
"eta" -> "1",
|
||||
"max_depth" -> "6",
|
||||
"silent" -> "1",
|
||||
"objective" -> "binary:logistic")
|
||||
"objective" -> "binary:logistic",
|
||||
"tree_method" -> treeMethod,
|
||||
"max_bin" -> 16)
|
||||
|
||||
val model1 = ScalaXGBoost.train(trainingDM, paramMap, round)
|
||||
val prediction1 = model1.predict(testDM)
|
||||
@ -93,177 +274,6 @@ class XGBoostClassifierSuite extends FunSuite with PerTest {
|
||||
assert(prediction5 === prediction6)
|
||||
}
|
||||
|
||||
test("Set params in XGBoost and MLlib way should produce same model") {
|
||||
val trainingDF = buildDataFrame(Classification.train)
|
||||
val testDF = buildDataFrame(Classification.test)
|
||||
val round = 5
|
||||
|
||||
val paramMap = Map(
|
||||
"eta" -> "1",
|
||||
"max_depth" -> "6",
|
||||
"silent" -> "1",
|
||||
"objective" -> "binary:logistic",
|
||||
"num_round" -> round,
|
||||
"num_workers" -> numWorkers)
|
||||
|
||||
// Set params in XGBoost way
|
||||
val model1 = new XGBoostClassifier(paramMap).fit(trainingDF)
|
||||
// Set params in MLlib way
|
||||
val model2 = new XGBoostClassifier()
|
||||
.setEta(1)
|
||||
.setMaxDepth(6)
|
||||
.setSilent(1)
|
||||
.setObjective("binary:logistic")
|
||||
.setNumRound(round)
|
||||
.setNumWorkers(numWorkers)
|
||||
.fit(trainingDF)
|
||||
|
||||
val prediction1 = model1.transform(testDF).select("prediction").collect()
|
||||
val prediction2 = model2.transform(testDF).select("prediction").collect()
|
||||
|
||||
prediction1.zip(prediction2).foreach { case (Row(p1: Double), Row(p2: Double)) =>
|
||||
assert(p1 === p2)
|
||||
}
|
||||
}
|
||||
|
||||
test("test schema of XGBoostClassificationModel") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "num_round" -> 5, "num_workers" -> numWorkers)
|
||||
val trainingDF = buildDataFrame(Classification.train)
|
||||
val testDF = buildDataFrame(Classification.test)
|
||||
|
||||
val model = new XGBoostClassifier(paramMap).fit(trainingDF)
|
||||
|
||||
model.setRawPredictionCol("raw_prediction")
|
||||
.setProbabilityCol("probability_prediction")
|
||||
.setPredictionCol("final_prediction")
|
||||
var predictionDF = model.transform(testDF)
|
||||
assert(predictionDF.columns.contains("id"))
|
||||
assert(predictionDF.columns.contains("features"))
|
||||
assert(predictionDF.columns.contains("label"))
|
||||
assert(predictionDF.columns.contains("raw_prediction"))
|
||||
assert(predictionDF.columns.contains("probability_prediction"))
|
||||
assert(predictionDF.columns.contains("final_prediction"))
|
||||
model.setRawPredictionCol("").setPredictionCol("final_prediction")
|
||||
predictionDF = model.transform(testDF)
|
||||
assert(predictionDF.columns.contains("raw_prediction") === false)
|
||||
assert(predictionDF.columns.contains("final_prediction"))
|
||||
model.setRawPredictionCol("raw_prediction").setPredictionCol("")
|
||||
predictionDF = model.transform(testDF)
|
||||
assert(predictionDF.columns.contains("raw_prediction"))
|
||||
assert(predictionDF.columns.contains("final_prediction") === false)
|
||||
|
||||
assert(model.summary.trainObjectiveHistory.length === 5)
|
||||
assert(model.summary.validationObjectiveHistory.isEmpty)
|
||||
}
|
||||
|
||||
test("multi class classification") {
|
||||
val paramMap = Map("eta" -> "0.1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "multi:softmax", "num_class" -> "6", "num_round" -> 5,
|
||||
"num_workers" -> numWorkers)
|
||||
val trainingDF = buildDataFrame(MultiClassification.train)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(trainingDF)
|
||||
assert(model.getEta == 0.1)
|
||||
assert(model.getMaxDepth == 6)
|
||||
assert(model.numClasses == 6)
|
||||
}
|
||||
|
||||
test("use base margin") {
|
||||
val training1 = buildDataFrame(Classification.train)
|
||||
val training2 = training1.withColumn("margin", functions.rand())
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "1.0",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers)
|
||||
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model1 = xgb.fit(training1)
|
||||
val model2 = xgb.setBaseMarginCol("margin").fit(training2)
|
||||
val prediction1 = model1.transform(test).select(model1.getProbabilityCol)
|
||||
.collect().map(row => row.getAs[Vector](0))
|
||||
val prediction2 = model2.transform(test).select(model2.getProbabilityCol)
|
||||
.collect().map(row => row.getAs[Vector](0))
|
||||
var count = 0
|
||||
for ((r1, r2) <- prediction1.zip(prediction2)) {
|
||||
if (!r1.equals(r2)) count = count + 1
|
||||
}
|
||||
assert(count != 0)
|
||||
}
|
||||
|
||||
test("test predictionLeaf") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val groundTruth = test.count()
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setLeafPredictionCol("predictLeaf")
|
||||
val resultDF = model.transform(test)
|
||||
assert(resultDF.count == groundTruth)
|
||||
assert(resultDF.columns.contains("predictLeaf"))
|
||||
}
|
||||
|
||||
test("test predictionLeaf with empty column name") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setLeafPredictionCol("")
|
||||
val resultDF = model.transform(test)
|
||||
assert(!resultDF.columns.contains("predictLeaf"))
|
||||
}
|
||||
|
||||
test("test predictionContrib") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val groundTruth = test.count()
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setContribPredictionCol("predictContrib")
|
||||
val resultDF = model.transform(buildDataFrame(Classification.test))
|
||||
assert(resultDF.count == groundTruth)
|
||||
assert(resultDF.columns.contains("predictContrib"))
|
||||
}
|
||||
|
||||
test("test predictionContrib with empty column name") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setContribPredictionCol("")
|
||||
val resultDF = model.transform(test)
|
||||
assert(!resultDF.columns.contains("predictContrib"))
|
||||
}
|
||||
|
||||
test("test predictionLeaf and predictionContrib") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic", "train_test_ratio" -> "0.5",
|
||||
"num_round" -> 5, "num_workers" -> numWorkers)
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val test = buildDataFrame(Classification.test)
|
||||
val groundTruth = test.count()
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(training)
|
||||
model.setLeafPredictionCol("predictLeaf")
|
||||
model.setContribPredictionCol("predictContrib")
|
||||
val resultDF = model.transform(buildDataFrame(Classification.test))
|
||||
assert(resultDF.count == groundTruth)
|
||||
assert(resultDF.columns.contains("predictLeaf"))
|
||||
assert(resultDF.columns.contains("predictContrib"))
|
||||
}
|
||||
|
||||
test("infrequent features") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic",
|
||||
@ -305,5 +315,10 @@ class XGBoostClassifierSuite extends FunSuite with PerTest {
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
xgb.fit(repartitioned)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@GpuTestSuite
|
||||
class XGBoostGpuClassifierSuite extends XGBoostClassifierSuiteBase {
|
||||
override protected val treeMethod: String = "gpu_hist"
|
||||
override protected val numWorkers: Int = 1
|
||||
}
|
||||
|
||||
@ -16,6 +16,7 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.java.GpuTestSuite
|
||||
import ml.dmlc.xgboost4j.scala.{DMatrix, XGBoost => ScalaXGBoost}
|
||||
import org.apache.spark.ml.linalg.Vector
|
||||
import org.apache.spark.sql.functions._
|
||||
@ -23,7 +24,8 @@ import org.apache.spark.sql.{DataFrame, Row}
|
||||
import org.apache.spark.sql.types._
|
||||
import org.scalatest.FunSuite
|
||||
|
||||
class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
abstract class XGBoostRegressorSuiteBase extends FunSuite with PerTest {
|
||||
protected val treeMethod: String = "auto"
|
||||
|
||||
test("XGBoost-Spark XGBoostRegressor output should match XGBoost4j") {
|
||||
val trainingDM = new DMatrix(Regression.train.iterator)
|
||||
@ -51,7 +53,9 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
"eta" -> "1",
|
||||
"max_depth" -> "6",
|
||||
"silent" -> "1",
|
||||
"objective" -> "reg:squarederror")
|
||||
"objective" -> "reg:squarederror",
|
||||
"max_bin" -> 16,
|
||||
"tree_method" -> treeMethod)
|
||||
|
||||
val model1 = ScalaXGBoost.train(trainingDM, paramMap, round)
|
||||
val prediction1 = model1.predict(testDM)
|
||||
@ -88,6 +92,7 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
"silent" -> "1",
|
||||
"objective" -> "reg:squarederror",
|
||||
"num_round" -> round,
|
||||
"tree_method" -> treeMethod,
|
||||
"num_workers" -> numWorkers)
|
||||
|
||||
// Set params in XGBoost way
|
||||
@ -99,6 +104,7 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
.setSilent(1)
|
||||
.setObjective("reg:squarederror")
|
||||
.setNumRound(round)
|
||||
.setTreeMethod(treeMethod)
|
||||
.setNumWorkers(numWorkers)
|
||||
.fit(trainingDF)
|
||||
|
||||
@ -113,7 +119,7 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
test("ranking: use group data") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "rank:pairwise", "num_workers" -> numWorkers, "num_round" -> 5,
|
||||
"group_col" -> "group")
|
||||
"group_col" -> "group", "tree_method" -> treeMethod)
|
||||
|
||||
val trainingDF = buildDataFrameWithGroup(Ranking.train)
|
||||
val testDF = buildDataFrame(Ranking.test)
|
||||
@ -125,7 +131,8 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
|
||||
test("use weight") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers)
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod)
|
||||
|
||||
val getWeightFromId = udf({id: Int => if (id == 0) 1.0f else 0.001f})
|
||||
val trainingDF = buildDataFrame(Regression.train)
|
||||
@ -140,7 +147,8 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
|
||||
test("test predictionLeaf") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers)
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Regression.train)
|
||||
val testDF = buildDataFrame(Regression.test)
|
||||
val groundTruth = testDF.count()
|
||||
@ -154,7 +162,8 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
|
||||
test("test predictionLeaf with empty column name") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers)
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Regression.train)
|
||||
val testDF = buildDataFrame(Regression.test)
|
||||
val xgb = new XGBoostRegressor(paramMap)
|
||||
@ -166,7 +175,8 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
|
||||
test("test predictionContrib") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers)
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Regression.train)
|
||||
val testDF = buildDataFrame(Regression.test)
|
||||
val groundTruth = testDF.count()
|
||||
@ -180,7 +190,8 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
|
||||
test("test predictionContrib with empty column name") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers)
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Regression.train)
|
||||
val testDF = buildDataFrame(Regression.test)
|
||||
val xgb = new XGBoostRegressor(paramMap)
|
||||
@ -192,7 +203,8 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
|
||||
test("test predictionLeaf and predictionContrib") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers)
|
||||
"objective" -> "reg:squarederror", "num_round" -> 5, "num_workers" -> numWorkers,
|
||||
"tree_method" -> treeMethod)
|
||||
val training = buildDataFrame(Regression.train)
|
||||
val testDF = buildDataFrame(Regression.test)
|
||||
val groundTruth = testDF.count()
|
||||
@ -206,3 +218,13 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
assert(resultDF.columns.contains("predictContrib"))
|
||||
}
|
||||
}
|
||||
|
||||
class XGBoostCpuRegressorSuite extends XGBoostRegressorSuiteBase {
|
||||
|
||||
}
|
||||
|
||||
@GpuTestSuite
|
||||
class XGBoostGpuRegressorSuite extends XGBoostRegressorSuiteBase {
|
||||
override protected val treeMethod: String = "gpu_hist"
|
||||
override protected val numWorkers: Int = 1
|
||||
}
|
||||
|
||||
@ -43,6 +43,12 @@
|
||||
<version>2.5.23</version>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.scalatest</groupId>
|
||||
<artifactId>scalatest_${scala.binary.version}</artifactId>
|
||||
<version>3.0.5</version>
|
||||
<scope>compile</scope>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<build>
|
||||
@ -78,6 +84,8 @@
|
||||
<executable>python</executable>
|
||||
<arguments>
|
||||
<argument>create_jni.py</argument>
|
||||
<argument>--use-cuda</argument>
|
||||
<argument>${use.cuda}</argument>
|
||||
</arguments>
|
||||
<workingDirectory>${user.dir}</workingDirectory>
|
||||
</configuration>
|
||||
|
||||
@ -0,0 +1,28 @@
|
||||
/*
|
||||
Copyright (c) 2020 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
package ml.dmlc.xgboost4j.java;
|
||||
|
||||
import java.lang.annotation.ElementType;
|
||||
import java.lang.annotation.Retention;
|
||||
import java.lang.annotation.RetentionPolicy;
|
||||
import java.lang.annotation.Target;
|
||||
|
||||
import org.scalatest.TagAnnotation;
|
||||
|
||||
@TagAnnotation
|
||||
@Retention(RetentionPolicy.RUNTIME)
|
||||
@Target({ElementType.METHOD, ElementType.TYPE})
|
||||
public @interface GpuTestSuite {}
|
||||
@ -46,6 +46,7 @@ object XGBoost {
|
||||
} else {
|
||||
prevBooster.booster
|
||||
}
|
||||
|
||||
val xgboostInJava = checkpointParams.
|
||||
map(cp => {
|
||||
JXGBoost.trainAndSaveCheckpoint(
|
||||
|
||||
51
tests/ci_build/Dockerfile.gpu_jvm
Normal file
51
tests/ci_build/Dockerfile.gpu_jvm
Normal file
@ -0,0 +1,51 @@
|
||||
ARG CUDA_VERSION
|
||||
FROM nvidia/cuda:$CUDA_VERSION-runtime-ubuntu16.04
|
||||
ARG JDK_VERSION=8
|
||||
ARG SPARK_VERSION=3.0.0
|
||||
|
||||
# Environment
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
|
||||
# Install all basic requirements
|
||||
RUN \
|
||||
apt-get update && \
|
||||
apt-get install -y software-properties-common && \
|
||||
add-apt-repository ppa:openjdk-r/ppa && \
|
||||
apt-get update && \
|
||||
apt-get install -y tar unzip wget openjdk-$JDK_VERSION-jdk libgomp1 && \
|
||||
# Python
|
||||
wget -O Miniconda3.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
|
||||
bash Miniconda3.sh -b -p /opt/python && \
|
||||
/opt/python/bin/pip install awscli && \
|
||||
# Maven
|
||||
wget https://archive.apache.org/dist/maven/maven-3/3.6.1/binaries/apache-maven-3.6.1-bin.tar.gz && \
|
||||
tar xvf apache-maven-3.6.1-bin.tar.gz -C /opt && \
|
||||
ln -s /opt/apache-maven-3.6.1/ /opt/maven && \
|
||||
# Spark
|
||||
wget https://archive.apache.org/dist/spark/spark-$SPARK_VERSION/spark-$SPARK_VERSION-bin-hadoop2.7.tgz && \
|
||||
tar xvf spark-$SPARK_VERSION-bin-hadoop2.7.tgz -C /opt && \
|
||||
ln -s /opt/spark-$SPARK_VERSION-bin-hadoop2.7 /opt/spark
|
||||
|
||||
ENV PATH=/opt/python/bin:/opt/spark/bin:/opt/maven/bin:$PATH
|
||||
|
||||
# Install Python packages
|
||||
RUN \
|
||||
pip install numpy scipy pandas scikit-learn
|
||||
|
||||
ENV GOSU_VERSION 1.10
|
||||
|
||||
# Install lightweight sudo (not bound to TTY)
|
||||
RUN set -ex; \
|
||||
wget -O /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-amd64" && \
|
||||
chmod +x /usr/local/bin/gosu && \
|
||||
gosu nobody true
|
||||
|
||||
# Set default JDK version
|
||||
RUN update-java-alternatives -v -s java-1.$JDK_VERSION.0-openjdk-amd64
|
||||
|
||||
# Default entry-point to use if running locally
|
||||
# It will preserve attributes of created files
|
||||
COPY entrypoint.sh /scripts/
|
||||
|
||||
WORKDIR /workspace
|
||||
ENTRYPOINT ["/scripts/entrypoint.sh"]
|
||||
63
tests/ci_build/Dockerfile.jvm_gpu_build
Normal file
63
tests/ci_build/Dockerfile.jvm_gpu_build
Normal file
@ -0,0 +1,63 @@
|
||||
ARG CUDA_VERSION
|
||||
FROM nvidia/cuda:$CUDA_VERSION-devel-centos6
|
||||
ARG CUDA_VERSION
|
||||
|
||||
# Environment
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
ENV DEVTOOLSET_URL_ROOT http://vault.centos.org/6.9/sclo/x86_64/rh/devtoolset-4/
|
||||
|
||||
# Install all basic requirements
|
||||
RUN \
|
||||
yum -y update && \
|
||||
yum install -y tar unzip wget xz git centos-release-scl yum-utils java-1.8.0-openjdk-devel && \
|
||||
yum-config-manager --enable centos-sclo-rh-testing && \
|
||||
yum -y update && \
|
||||
yum install -y $DEVTOOLSET_URL_ROOT/devtoolset-4-gcc-5.3.1-6.1.el6.x86_64.rpm \
|
||||
$DEVTOOLSET_URL_ROOT/devtoolset-4-gcc-c++-5.3.1-6.1.el6.x86_64.rpm \
|
||||
$DEVTOOLSET_URL_ROOT/devtoolset-4-binutils-2.25.1-8.el6.x86_64.rpm \
|
||||
$DEVTOOLSET_URL_ROOT/devtoolset-4-runtime-4.1-3.sc1.el6.x86_64.rpm \
|
||||
$DEVTOOLSET_URL_ROOT/devtoolset-4-libstdc++-devel-5.3.1-6.1.el6.x86_64.rpm && \
|
||||
# Python
|
||||
wget -O Miniconda3.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
|
||||
bash Miniconda3.sh -b -p /opt/python && \
|
||||
# CMake
|
||||
wget -nv -nc https://cmake.org/files/v3.13/cmake-3.13.0-Linux-x86_64.sh --no-check-certificate && \
|
||||
bash cmake-3.13.0-Linux-x86_64.sh --skip-license --prefix=/usr && \
|
||||
# Maven
|
||||
wget https://archive.apache.org/dist/maven/maven-3/3.6.1/binaries/apache-maven-3.6.1-bin.tar.gz && \
|
||||
tar xvf apache-maven-3.6.1-bin.tar.gz -C /opt && \
|
||||
ln -s /opt/apache-maven-3.6.1/ /opt/maven
|
||||
|
||||
# NCCL2 (License: https://docs.nvidia.com/deeplearning/sdk/nccl-sla/index.html)
|
||||
RUN \
|
||||
export CUDA_SHORT=`echo $CUDA_VERSION | egrep -o '[0-9]+\.[0-9]'` && \
|
||||
export NCCL_VERSION=2.4.8-1 && \
|
||||
wget https://developer.download.nvidia.com/compute/machine-learning/repos/rhel7/x86_64/nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm && \
|
||||
rpm -i nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm && \
|
||||
yum -y update && \
|
||||
yum install -y libnccl-${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-devel-${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-static-${NCCL_VERSION}+cuda${CUDA_SHORT} && \
|
||||
rm -f nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm;
|
||||
|
||||
ENV PATH=/opt/python/bin:/opt/maven/bin:$PATH
|
||||
ENV CC=/opt/rh/devtoolset-4/root/usr/bin/gcc
|
||||
ENV CXX=/opt/rh/devtoolset-4/root/usr/bin/c++
|
||||
ENV CPP=/opt/rh/devtoolset-4/root/usr/bin/cpp
|
||||
|
||||
# Install Python packages
|
||||
RUN \
|
||||
pip install numpy pytest scipy scikit-learn wheel kubernetes urllib3==1.22 awscli
|
||||
|
||||
ENV GOSU_VERSION 1.10
|
||||
|
||||
# Install lightweight sudo (not bound to TTY)
|
||||
RUN set -ex; \
|
||||
wget -O /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-amd64" && \
|
||||
chmod +x /usr/local/bin/gosu && \
|
||||
gosu nobody true
|
||||
|
||||
# Default entry-point to use if running locally
|
||||
# It will preserve attributes of created files
|
||||
COPY entrypoint.sh /scripts/
|
||||
|
||||
WORKDIR /workspace
|
||||
ENTRYPOINT ["/scripts/entrypoint.sh"]
|
||||
@ -3,12 +3,15 @@
|
||||
set -e
|
||||
set -x
|
||||
|
||||
if [ $# -ne 1 ]; then
|
||||
echo "Usage: $0 [spark version]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
spark_version=$1
|
||||
use_cuda=$2
|
||||
gpu_arch=$3
|
||||
|
||||
gpu_options=""
|
||||
if [ "x$use_cuda" == "x-Duse.cuda=ON" ]; then
|
||||
# Since building jvm for CPU will do unit tests, choose gpu-with-gpu-tests profile to build
|
||||
gpu_options=" -Pgpu-with-gpu-tests "
|
||||
fi
|
||||
|
||||
# Initialize local Maven repository
|
||||
./tests/ci_build/initialize_maven.sh
|
||||
@ -16,7 +19,11 @@ spark_version=$1
|
||||
rm -rf build/
|
||||
cd jvm-packages
|
||||
export RABIT_MOCK=ON
|
||||
mvn --no-transfer-progress package -Dspark.version=${spark_version}
|
||||
|
||||
if [ "x$gpu_arch" != "x" ]; then
|
||||
export GPU_ARCH_FLAG=$gpu_arch
|
||||
fi
|
||||
mvn --no-transfer-progress package -Dspark.version=${spark_version} $gpu_options
|
||||
|
||||
set +x
|
||||
set +e
|
||||
|
||||
40
tests/ci_build/test_jvm_gpu_cross.sh
Executable file
40
tests/ci_build/test_jvm_gpu_cross.sh
Executable file
@ -0,0 +1,40 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
set -x
|
||||
|
||||
|
||||
nvidia-smi
|
||||
|
||||
ls /usr/local/
|
||||
|
||||
# Initialize local Maven repository
|
||||
./tests/ci_build/initialize_maven.sh
|
||||
|
||||
# Get version number of XGBoost4J and other auxiliary information
|
||||
cd jvm-packages
|
||||
xgboost4j_version=$(mvn help:evaluate -Dexpression=project.version -q -DforceStdout)
|
||||
scala_binary_version=$(mvn help:evaluate -Dexpression=scala.binary.version -q -DforceStdout)
|
||||
|
||||
python3 xgboost4j-tester/get_iris.py
|
||||
xgb_jars="./xgboost4j/target/xgboost4j_${scala_binary_version}-${xgboost4j_version}.jar,./xgboost4j-spark/target/xgboost4j-spark_${scala_binary_version}-${xgboost4j_version}.jar"
|
||||
example_jar="./xgboost4j-example/target/xgboost4j-example_${scala_binary_version}-${xgboost4j_version}.jar"
|
||||
|
||||
echo "Run SparkTraining locally ... "
|
||||
spark-submit \
|
||||
--master 'local[1]' \
|
||||
--class ml.dmlc.xgboost4j.scala.example.spark.SparkTraining \
|
||||
--jars $xgb_jars \
|
||||
$example_jar \
|
||||
${PWD}/iris.csv gpu \
|
||||
|
||||
echo "Run SparkMLlibPipeline locally ... "
|
||||
spark-submit \
|
||||
--master 'local[1]' \
|
||||
--class ml.dmlc.xgboost4j.scala.example.spark.SparkMLlibPipeline \
|
||||
--jars $xgb_jars \
|
||||
$example_jar \
|
||||
${PWD}/iris.csv ${PWD}/native_model ${PWD}/pipeline_model gpu \
|
||||
|
||||
set +x
|
||||
set +e
|
||||
Loading…
x
Reference in New Issue
Block a user