[CI] Fix CRAN check (#6067)

This commit is contained in:
Philip Hyunsu Cho 2020-08-28 06:24:49 -07:00 committed by GitHub
parent 738786680b
commit 884098ec22
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 22 additions and 18 deletions

View File

@ -81,7 +81,7 @@ jobs:
run: |
cd R-package
R.exe CMD INSTALL .
Rscript.exe tests/run_lint.R
Rscript.exe tests/helper_scripts/run_lint.R
test-with-R:

View File

@ -133,15 +133,16 @@ Rpack: clean_all
sed -i -e 's/@BACKTRACE_LIB@//g' xgboost/src/Makevars.win
sed -i -e 's/@OPENMP_LIB@//g' xgboost/src/Makevars.win
rm -f xgboost/src/Makevars.win-e # OSX sed create this extra file; remove it
bash R-package/remove_warning_suppression_pragma.sh
bash xgboost/remove_warning_suppression_pragma.sh
rm xgboost/remove_warning_suppression_pragma.sh
rm -rfv xgboost/tests/helper_scripts/
Rbuild: Rpack
R CMD build --no-build-vignettes xgboost
rm -rf xgboost
Rcheck: Rbuild
R CMD check xgboost*.tar.gz
R CMD check --as-cran xgboost*.tar.gz
-include build/*.d
-include build/*/*.d

View File

@ -132,7 +132,7 @@
#' \itemize{
#' \item \code{rmse} root mean square error. \url{http://en.wikipedia.org/wiki/Root_mean_square_error}
#' \item \code{logloss} negative log-likelihood. \url{http://en.wikipedia.org/wiki/Log-likelihood}
#' \item \code{mlogloss} multiclass logloss. \url{http://wiki.fast.ai/index.php/Log_Loss}
#' \item \code{mlogloss} multiclass logloss. \url{https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html}
#' \item \code{error} Binary classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}.
#' By default, it uses the 0.5 threshold for predicted values to define negative and positive instances.
#' Different threshold (e.g., 0.) could be specified as "error@0."

View File

@ -217,7 +217,7 @@ The following is the list of built-in metrics for which Xgboost provides optimiz
\itemize{
\item \code{rmse} root mean square error. \url{http://en.wikipedia.org/wiki/Root_mean_square_error}
\item \code{logloss} negative log-likelihood. \url{http://en.wikipedia.org/wiki/Log-likelihood}
\item \code{mlogloss} multiclass logloss. \url{http://wiki.fast.ai/index.php/Log_Loss}
\item \code{mlogloss} multiclass logloss. \url{https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html}
\item \code{error} Binary classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}.
By default, it uses the 0.5 threshold for predicted values to define negative and positive instances.
Different threshold (e.g., 0.) could be specified as "error@0."

View File

@ -1,10 +0,0 @@
model_generator_metadata <- function() {
return (list(
kRounds = 2,
kRows = 1000,
kCols = 4,
kForests = 2,
kMaxDepth = 2,
kClasses = 3
))
}

View File

@ -5,7 +5,14 @@ library(Matrix)
source('./generate_models_params.R')
set.seed(0)
metadata <- model_generator_metadata()
metadata <- list(
kRounds = 2,
kRows = 1000,
kCols = 4,
kForests = 2,
kMaxDepth = 2,
kClasses = 3
)
X <- Matrix(data = rnorm(metadata$kRows * metadata$kCols), nrow = metadata$kRows,
ncol = metadata$kCols, sparse = TRUE)
w <- runif(metadata$kRows)

View File

@ -1,10 +1,16 @@
require(xgboost)
require(jsonlite)
source('../generate_models_params.R')
context("Models from previous versions of XGBoost can be loaded")
metadata <- model_generator_metadata()
metadata <- list(
kRounds = 2,
kRows = 1000,
kCols = 4,
kForests = 2,
kMaxDepth = 2,
kClasses = 3
)
run_model_param_check <- function (config) {
testthat::expect_equal(config$learner$learner_model_param$num_feature, '4')