[CI] Fix CRAN check (#6067)
This commit is contained in:
parent
738786680b
commit
884098ec22
2
.github/workflows/main.yml
vendored
2
.github/workflows/main.yml
vendored
@ -81,7 +81,7 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
cd R-package
|
cd R-package
|
||||||
R.exe CMD INSTALL .
|
R.exe CMD INSTALL .
|
||||||
Rscript.exe tests/run_lint.R
|
Rscript.exe tests/helper_scripts/run_lint.R
|
||||||
|
|
||||||
|
|
||||||
test-with-R:
|
test-with-R:
|
||||||
|
|||||||
5
Makefile
5
Makefile
@ -133,15 +133,16 @@ Rpack: clean_all
|
|||||||
sed -i -e 's/@BACKTRACE_LIB@//g' xgboost/src/Makevars.win
|
sed -i -e 's/@BACKTRACE_LIB@//g' xgboost/src/Makevars.win
|
||||||
sed -i -e 's/@OPENMP_LIB@//g' xgboost/src/Makevars.win
|
sed -i -e 's/@OPENMP_LIB@//g' xgboost/src/Makevars.win
|
||||||
rm -f xgboost/src/Makevars.win-e # OSX sed create this extra file; remove it
|
rm -f xgboost/src/Makevars.win-e # OSX sed create this extra file; remove it
|
||||||
bash R-package/remove_warning_suppression_pragma.sh
|
bash xgboost/remove_warning_suppression_pragma.sh
|
||||||
rm xgboost/remove_warning_suppression_pragma.sh
|
rm xgboost/remove_warning_suppression_pragma.sh
|
||||||
|
rm -rfv xgboost/tests/helper_scripts/
|
||||||
|
|
||||||
Rbuild: Rpack
|
Rbuild: Rpack
|
||||||
R CMD build --no-build-vignettes xgboost
|
R CMD build --no-build-vignettes xgboost
|
||||||
rm -rf xgboost
|
rm -rf xgboost
|
||||||
|
|
||||||
Rcheck: Rbuild
|
Rcheck: Rbuild
|
||||||
R CMD check xgboost*.tar.gz
|
R CMD check --as-cran xgboost*.tar.gz
|
||||||
|
|
||||||
-include build/*.d
|
-include build/*.d
|
||||||
-include build/*/*.d
|
-include build/*/*.d
|
||||||
|
|||||||
@ -132,7 +132,7 @@
|
|||||||
#' \itemize{
|
#' \itemize{
|
||||||
#' \item \code{rmse} root mean square error. \url{http://en.wikipedia.org/wiki/Root_mean_square_error}
|
#' \item \code{rmse} root mean square error. \url{http://en.wikipedia.org/wiki/Root_mean_square_error}
|
||||||
#' \item \code{logloss} negative log-likelihood. \url{http://en.wikipedia.org/wiki/Log-likelihood}
|
#' \item \code{logloss} negative log-likelihood. \url{http://en.wikipedia.org/wiki/Log-likelihood}
|
||||||
#' \item \code{mlogloss} multiclass logloss. \url{http://wiki.fast.ai/index.php/Log_Loss}
|
#' \item \code{mlogloss} multiclass logloss. \url{https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html}
|
||||||
#' \item \code{error} Binary classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}.
|
#' \item \code{error} Binary classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}.
|
||||||
#' By default, it uses the 0.5 threshold for predicted values to define negative and positive instances.
|
#' By default, it uses the 0.5 threshold for predicted values to define negative and positive instances.
|
||||||
#' Different threshold (e.g., 0.) could be specified as "error@0."
|
#' Different threshold (e.g., 0.) could be specified as "error@0."
|
||||||
|
|||||||
@ -217,7 +217,7 @@ The following is the list of built-in metrics for which Xgboost provides optimiz
|
|||||||
\itemize{
|
\itemize{
|
||||||
\item \code{rmse} root mean square error. \url{http://en.wikipedia.org/wiki/Root_mean_square_error}
|
\item \code{rmse} root mean square error. \url{http://en.wikipedia.org/wiki/Root_mean_square_error}
|
||||||
\item \code{logloss} negative log-likelihood. \url{http://en.wikipedia.org/wiki/Log-likelihood}
|
\item \code{logloss} negative log-likelihood. \url{http://en.wikipedia.org/wiki/Log-likelihood}
|
||||||
\item \code{mlogloss} multiclass logloss. \url{http://wiki.fast.ai/index.php/Log_Loss}
|
\item \code{mlogloss} multiclass logloss. \url{https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html}
|
||||||
\item \code{error} Binary classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}.
|
\item \code{error} Binary classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}.
|
||||||
By default, it uses the 0.5 threshold for predicted values to define negative and positive instances.
|
By default, it uses the 0.5 threshold for predicted values to define negative and positive instances.
|
||||||
Different threshold (e.g., 0.) could be specified as "error@0."
|
Different threshold (e.g., 0.) could be specified as "error@0."
|
||||||
|
|||||||
@ -1,10 +0,0 @@
|
|||||||
model_generator_metadata <- function() {
|
|
||||||
return (list(
|
|
||||||
kRounds = 2,
|
|
||||||
kRows = 1000,
|
|
||||||
kCols = 4,
|
|
||||||
kForests = 2,
|
|
||||||
kMaxDepth = 2,
|
|
||||||
kClasses = 3
|
|
||||||
))
|
|
||||||
}
|
|
||||||
@ -5,7 +5,14 @@ library(Matrix)
|
|||||||
source('./generate_models_params.R')
|
source('./generate_models_params.R')
|
||||||
|
|
||||||
set.seed(0)
|
set.seed(0)
|
||||||
metadata <- model_generator_metadata()
|
metadata <- list(
|
||||||
|
kRounds = 2,
|
||||||
|
kRows = 1000,
|
||||||
|
kCols = 4,
|
||||||
|
kForests = 2,
|
||||||
|
kMaxDepth = 2,
|
||||||
|
kClasses = 3
|
||||||
|
)
|
||||||
X <- Matrix(data = rnorm(metadata$kRows * metadata$kCols), nrow = metadata$kRows,
|
X <- Matrix(data = rnorm(metadata$kRows * metadata$kCols), nrow = metadata$kRows,
|
||||||
ncol = metadata$kCols, sparse = TRUE)
|
ncol = metadata$kCols, sparse = TRUE)
|
||||||
w <- runif(metadata$kRows)
|
w <- runif(metadata$kRows)
|
||||||
@ -1,10 +1,16 @@
|
|||||||
require(xgboost)
|
require(xgboost)
|
||||||
require(jsonlite)
|
require(jsonlite)
|
||||||
source('../generate_models_params.R')
|
|
||||||
|
|
||||||
context("Models from previous versions of XGBoost can be loaded")
|
context("Models from previous versions of XGBoost can be loaded")
|
||||||
|
|
||||||
metadata <- model_generator_metadata()
|
metadata <- list(
|
||||||
|
kRounds = 2,
|
||||||
|
kRows = 1000,
|
||||||
|
kCols = 4,
|
||||||
|
kForests = 2,
|
||||||
|
kMaxDepth = 2,
|
||||||
|
kClasses = 3
|
||||||
|
)
|
||||||
|
|
||||||
run_model_param_check <- function (config) {
|
run_model_param_check <- function (config) {
|
||||||
testthat::expect_equal(config$learner$learner_model_param$num_feature, '4')
|
testthat::expect_equal(config$learner$learner_model_param$num_feature, '4')
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user