[Doc] Fix typos in AFT tutorial
This commit is contained in:
parent
115e4c3360
commit
882b966536
@ -35,7 +35,7 @@ There are four kinds of censoring:
|
|||||||
|
|
||||||
* **Uncensored**: the label is not censored and given as a single number.
|
* **Uncensored**: the label is not censored and given as a single number.
|
||||||
* **Right-censored**: the label is of form :math:`[a, +\infty)`, where :math:`a` is the lower bound.
|
* **Right-censored**: the label is of form :math:`[a, +\infty)`, where :math:`a` is the lower bound.
|
||||||
* **Left-censored**: the label is of form :math:`(-\infty, b]`, where :math:`b` is the upper bound.
|
* **Left-censored**: the label is of form :math:`[0, b]`, where :math:`b` is the upper bound.
|
||||||
* **Interval-censored**: the label is of form :math:`[a, b]`, where :math:`a` and :math:`b` are the lower and upper bounds, respectively.
|
* **Interval-censored**: the label is of form :math:`[a, b]`, where :math:`a` and :math:`b` are the lower and upper bounds, respectively.
|
||||||
|
|
||||||
Right-censoring is the most commonly used.
|
Right-censoring is the most commonly used.
|
||||||
@ -83,7 +83,7 @@ Censoring type Interval form Lower bound finite? Upper bound finite?
|
|||||||
================= ==================== =================== ===================
|
================= ==================== =================== ===================
|
||||||
Uncensored :math:`[a, a]` |tick| |tick|
|
Uncensored :math:`[a, a]` |tick| |tick|
|
||||||
Right-censored :math:`[a, +\infty)` |tick| |cross|
|
Right-censored :math:`[a, +\infty)` |tick| |cross|
|
||||||
Left-censored :math:`(-\infty, b]` |cross| |tick|
|
Left-censored :math:`[0, b]` |tick| |tick|
|
||||||
Interval-censored :math:`[a, b]` |tick| |tick|
|
Interval-censored :math:`[a, b]` |tick| |tick|
|
||||||
================= ==================== =================== ===================
|
================= ==================== =================== ===================
|
||||||
|
|
||||||
@ -102,7 +102,7 @@ Collect the lower bound numbers in one array (let's call it ``y_lower_bound``) a
|
|||||||
# Associate ranged labels with the data matrix.
|
# Associate ranged labels with the data matrix.
|
||||||
# This example shows each kind of censored labels.
|
# This example shows each kind of censored labels.
|
||||||
# uncensored right left interval
|
# uncensored right left interval
|
||||||
y_lower_bound = np.array([ 2.0, 3.0, -np.inf, 4.0])
|
y_lower_bound = np.array([ 2.0, 3.0, 0.0, 4.0])
|
||||||
y_upper_bound = np.array([ 2.0, +np.inf, 4.0, 5.0])
|
y_upper_bound = np.array([ 2.0, +np.inf, 4.0, 5.0])
|
||||||
dtrain.set_float_info('label_lower_bound', y_lower_bound)
|
dtrain.set_float_info('label_lower_bound', y_lower_bound)
|
||||||
dtrain.set_float_info('label_upper_bound', y_upper_bound)
|
dtrain.set_float_info('label_upper_bound', y_upper_bound)
|
||||||
@ -120,7 +120,7 @@ Collect the lower bound numbers in one array (let's call it ``y_lower_bound``) a
|
|||||||
# Associate ranged labels with the data matrix.
|
# Associate ranged labels with the data matrix.
|
||||||
# This example shows each kind of censored labels.
|
# This example shows each kind of censored labels.
|
||||||
# uncensored right left interval
|
# uncensored right left interval
|
||||||
y_lower_bound <- c( 2., 3., -Inf, 4.)
|
y_lower_bound <- c( 2., 3., 0., 4.)
|
||||||
y_upper_bound <- c( 2., +Inf, 4., 5.)
|
y_upper_bound <- c( 2., +Inf, 4., 5.)
|
||||||
setinfo(dtrain, 'label_lower_bound', y_lower_bound)
|
setinfo(dtrain, 'label_lower_bound', y_lower_bound)
|
||||||
setinfo(dtrain, 'label_upper_bound', y_upper_bound)
|
setinfo(dtrain, 'label_upper_bound', y_upper_bound)
|
||||||
@ -136,7 +136,7 @@ Now we are ready to invoke the training API:
|
|||||||
'aft_loss_distribution_scale': 1.20,
|
'aft_loss_distribution_scale': 1.20,
|
||||||
'tree_method': 'hist', 'learning_rate': 0.05, 'max_depth': 2}
|
'tree_method': 'hist', 'learning_rate': 0.05, 'max_depth': 2}
|
||||||
bst = xgb.train(params, dtrain, num_boost_round=5,
|
bst = xgb.train(params, dtrain, num_boost_round=5,
|
||||||
evals=[(dtrain, 'train'), (dvalid, 'valid')])
|
evals=[(dtrain, 'train')])
|
||||||
|
|
||||||
.. code-block:: r
|
.. code-block:: r
|
||||||
:caption: R
|
:caption: R
|
||||||
@ -165,4 +165,4 @@ Currently, you can choose from three probability distributions for ``aft_loss_di
|
|||||||
``extreme`` :math:`e^z e^{-\exp{z}}`
|
``extreme`` :math:`e^z e^{-\exp{z}}`
|
||||||
========================= ===========================================
|
========================= ===========================================
|
||||||
|
|
||||||
Note that it is not yet possible to set the ranged label using the scikit-learn interface (e.g. :class:`xgboost.XGBRegressor`). For now, you should use :class:`xgboost.train` with :class:`xgboost.DMatrix`.
|
Note that it is not yet possible to set the ranged label using the scikit-learn interface (e.g. :class:`xgboost.XGBRegressor`). For now, you should use :class:`xgboost.train` with :class:`xgboost.DMatrix`.
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user