model dt tree function documentation improvement
This commit is contained in:
parent
c1b2d9cb86
commit
855be97011
@ -1,6 +1,6 @@
|
|||||||
#' Convert tree model dump to data.table
|
#' Parse boosted tree model text dump
|
||||||
#'
|
#'
|
||||||
#' Read a tree model text dump and return a data.table.
|
#' Parse a boosted tree model text dump and return a \code{data.table}.
|
||||||
#'
|
#'
|
||||||
#' @importFrom data.table data.table
|
#' @importFrom data.table data.table
|
||||||
#' @importFrom data.table set
|
#' @importFrom data.table set
|
||||||
@ -13,17 +13,19 @@
|
|||||||
#' @importFrom stringr str_extract
|
#' @importFrom stringr str_extract
|
||||||
#' @importFrom stringr str_split
|
#' @importFrom stringr str_split
|
||||||
#' @importFrom stringr str_trim
|
#' @importFrom stringr str_trim
|
||||||
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
|
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If the model already contains feature names, this argument should be \code{NULL} (default value).
|
||||||
#' @param model dump generated by the \code{xgb.train} function. Avoid the creation of a dump file.
|
#' @param model object created by the \code{xgb.train} function.
|
||||||
#' @param text dump generated by the \code{xgb.dump} function. Avoid the creation of a dump file. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).
|
#' @param text \code{character} vector generated by the \code{xgb.dump} function. Model dump must include the gain per feature and per tree (parameter \code{with.stats = TRUE} in function \code{xgb.dump}).
|
||||||
#' @param n_first_tree limit the plot to the n first trees. If \code{NULL}, all trees of the model are plotted. Performance can be low for huge models.
|
#' @param n_first_tree limit the plot to the \code{n} first trees. If set to \code{NULL}, all trees of the model are plotted. Performance can be low depending of the size of the model.
|
||||||
#'
|
#'
|
||||||
#' @return A \code{data.table} of the features used in the model with their gain, cover and few other thing.
|
#' @return A \code{data.table} of the features used in the model with their gain, cover and few other information.
|
||||||
#'
|
#'
|
||||||
#' @details
|
#' @details
|
||||||
#' General function to convert a text dump of tree model to a Matrix. The purpose is to help user to explore the model and get a better understanding of it.
|
#' General function to convert a text dump of tree model to a \code{data.table}.
|
||||||
#'
|
#'
|
||||||
#' The content of the \code{data.table} is organised that way:
|
#' The purpose is to help user to explore the model and get a better understanding of it.
|
||||||
|
#'
|
||||||
|
#' The columns of the \code{data.table} are:
|
||||||
#'
|
#'
|
||||||
#' \itemize{
|
#' \itemize{
|
||||||
#' \item \code{ID}: unique identifier of a node ;
|
#' \item \code{ID}: unique identifier of a node ;
|
||||||
@ -35,21 +37,16 @@
|
|||||||
#' \item \code{Quality}: it's the gain related to the split in this specific node ;
|
#' \item \code{Quality}: it's the gain related to the split in this specific node ;
|
||||||
#' \item \code{Cover}: metric to measure the number of observation affected by the split ;
|
#' \item \code{Cover}: metric to measure the number of observation affected by the split ;
|
||||||
#' \item \code{Tree}: ID of the tree. It is included in the main ID ;
|
#' \item \code{Tree}: ID of the tree. It is included in the main ID ;
|
||||||
#' \item \code{Yes.X} or \code{No.X}: data related to the pointer in \code{Yes} or \code{No} column ;
|
#' \item \code{Yes.Feature}, \code{No.Feature}, \code{Yes.Cover}, \code{No.Cover}, \code{Yes.Quality} and \code{No.Quality}: data related to the pointer in \code{Yes} or \code{No} column ;
|
||||||
#' }
|
#' }
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(agaricus.train, package='xgboost')
|
#' data(agaricus.train, package='xgboost')
|
||||||
#'
|
#'
|
||||||
#' #Both dataset are list with two items, a sparse matrix and labels
|
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max.depth = 2,
|
||||||
#' #(labels = outcome column which will be learned).
|
|
||||||
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
|
|
||||||
#' train <- agaricus.train
|
|
||||||
#'
|
|
||||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
|
||||||
#' eta = 1, nthread = 2, nround = 2,objective = "binary:logistic")
|
#' eta = 1, nthread = 2, nround = 2,objective = "binary:logistic")
|
||||||
#'
|
#'
|
||||||
#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix.
|
#' # agaricus.train$data@@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||||
#' xgb.model.dt.tree(feature_names = agaricus.train$data@@Dimnames[[2]], model = bst)
|
#' xgb.model.dt.tree(feature_names = agaricus.train$data@@Dimnames[[2]], model = bst)
|
||||||
#'
|
#'
|
||||||
#' @export
|
#' @export
|
||||||
|
|||||||
@ -2,30 +2,32 @@
|
|||||||
% Please edit documentation in R/xgb.model.dt.tree.R
|
% Please edit documentation in R/xgb.model.dt.tree.R
|
||||||
\name{xgb.model.dt.tree}
|
\name{xgb.model.dt.tree}
|
||||||
\alias{xgb.model.dt.tree}
|
\alias{xgb.model.dt.tree}
|
||||||
\title{Convert tree model dump to data.table}
|
\title{Parse boosted tree model text dump}
|
||||||
\usage{
|
\usage{
|
||||||
xgb.model.dt.tree(feature_names = NULL, model = NULL, text = NULL,
|
xgb.model.dt.tree(feature_names = NULL, model = NULL, text = NULL,
|
||||||
n_first_tree = NULL)
|
n_first_tree = NULL)
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
\item{feature_names}{names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.}
|
\item{feature_names}{names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If the model already contains feature names, this argument should be \code{NULL} (default value).}
|
||||||
|
|
||||||
\item{model}{dump generated by the \code{xgb.train} function. Avoid the creation of a dump file.}
|
\item{model}{object created by the \code{xgb.train} function.}
|
||||||
|
|
||||||
\item{text}{dump generated by the \code{xgb.dump} function. Avoid the creation of a dump file. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).}
|
\item{text}{\code{character} vector generated by the \code{xgb.dump} function. Model dump must include the gain per feature and per tree (parameter \code{with.stats = TRUE} in function \code{xgb.dump}).}
|
||||||
|
|
||||||
\item{n_first_tree}{limit the plot to the n first trees. If \code{NULL}, all trees of the model are plotted. Performance can be low for huge models.}
|
\item{n_first_tree}{limit the plot to the \code{n} first trees. If set to \code{NULL}, all trees of the model are plotted. Performance can be low depending of the size of the model.}
|
||||||
}
|
}
|
||||||
\value{
|
\value{
|
||||||
A \code{data.table} of the features used in the model with their gain, cover and few other thing.
|
A \code{data.table} of the features used in the model with their gain, cover and few other information.
|
||||||
}
|
}
|
||||||
\description{
|
\description{
|
||||||
Read a tree model text dump and return a data.table.
|
Parse a boosted tree model text dump and return a \code{data.table}.
|
||||||
}
|
}
|
||||||
\details{
|
\details{
|
||||||
General function to convert a text dump of tree model to a Matrix. The purpose is to help user to explore the model and get a better understanding of it.
|
General function to convert a text dump of tree model to a \code{data.table}.
|
||||||
|
|
||||||
The content of the \code{data.table} is organised that way:
|
The purpose is to help user to explore the model and get a better understanding of it.
|
||||||
|
|
||||||
|
The columns of the \code{data.table} are:
|
||||||
|
|
||||||
\itemize{
|
\itemize{
|
||||||
\item \code{ID}: unique identifier of a node ;
|
\item \code{ID}: unique identifier of a node ;
|
||||||
@ -37,21 +39,16 @@ The content of the \code{data.table} is organised that way:
|
|||||||
\item \code{Quality}: it's the gain related to the split in this specific node ;
|
\item \code{Quality}: it's the gain related to the split in this specific node ;
|
||||||
\item \code{Cover}: metric to measure the number of observation affected by the split ;
|
\item \code{Cover}: metric to measure the number of observation affected by the split ;
|
||||||
\item \code{Tree}: ID of the tree. It is included in the main ID ;
|
\item \code{Tree}: ID of the tree. It is included in the main ID ;
|
||||||
\item \code{Yes.X} or \code{No.X}: data related to the pointer in \code{Yes} or \code{No} column ;
|
\item \code{Yes.Feature}, \code{No.Feature}, \code{Yes.Cover}, \code{No.Cover}, \code{Yes.Quality} and \code{No.Quality}: data related to the pointer in \code{Yes} or \code{No} column ;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(agaricus.train, package='xgboost')
|
data(agaricus.train, package='xgboost')
|
||||||
|
|
||||||
#Both dataset are list with two items, a sparse matrix and labels
|
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max.depth = 2,
|
||||||
#(labels = outcome column which will be learned).
|
|
||||||
#Each column of the sparse Matrix is a feature in one hot encoding format.
|
|
||||||
train <- agaricus.train
|
|
||||||
|
|
||||||
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
|
||||||
eta = 1, nthread = 2, nround = 2,objective = "binary:logistic")
|
eta = 1, nthread = 2, nround = 2,objective = "binary:logistic")
|
||||||
|
|
||||||
#agaricus.test$data@Dimnames[[2]] represents the column names of the sparse matrix.
|
# agaricus.train$data@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||||
xgb.model.dt.tree(feature_names = agaricus.train$data@Dimnames[[2]], model = bst)
|
xgb.model.dt.tree(feature_names = agaricus.train$data@Dimnames[[2]], model = bst)
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user