[LEARNER] Init learner interface

This commit is contained in:
tqchen 2016-01-03 05:16:05 -08:00
parent 084f5f4715
commit 82ceb4de0a
6 changed files with 191 additions and 7 deletions

View File

@ -89,7 +89,7 @@ lint:
clean: clean:
$(RM) -r build lib bin *~ */*~ */*/*~ */*/*/*~ $(RM) -r build lib bin *~ */*~ */*/*~ */*/*/*~
clean: clean_all clean_all: clean
cd $(DMLC_CORE); make clean; cd - cd $(DMLC_CORE); make clean; cd -
cd $(RABIT); make clean; cd - cd $(RABIT); make clean; cd -

View File

@ -118,12 +118,12 @@ class GradientBooster {
std::vector<float>* out_preds, std::vector<float>* out_preds,
unsigned ntree_limit = 0) = 0; unsigned ntree_limit = 0) = 0;
/*! /*!
* \brief dump the model in text format * \brief dump the model to text format
* \param fmap feature map that may help give interpretations of feature * \param fmap feature map that may help give interpretations of feature
* \param option extra option of the dump model * \param option extra option of the dump model
* \return a vector of dump for boosters. * \return a vector of dump for boosters.
*/ */
virtual std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) = 0; virtual std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) const = 0;
/*! /*!
* \breif create a gradient booster from given name * \breif create a gradient booster from given name
* \param name name of gradient booster * \param name name of gradient booster

155
include/xgboost/learner.h Normal file
View File

@ -0,0 +1,155 @@
/*!
* Copyright 2015 by Contributors
* \file learner.h
* \brief Learner interface that integrates objective, gbm and evaluation together.
* This is the user facing XGBoost training module.
* \author Tianqi Chen
*/
#ifndef XGBOOST_LEARNER_H_
#define XGBOOST_LEARNER_H_
#include <rabit.h>
#include <utility>
#include <string>
#include <vector>
#include "./base.h"
#include "./gbm.h"
#include "./meric.h"
#include "./objective.h"
namespace xgboost {
/*!
* \brief Learner class that do trainig and prediction.
* This is the user facing module of xgboost training.
* The Load/Save function corresponds to the model used in python/R.
* \code
*
* std::unique_ptr<Learner> learner(new Learner::Create(cache_mats));
* learner.Configure(configs);
*
* for (int iter = 0; iter < max_iter; ++i) {
* learner->UpdateOneIter(iter, train_mat);
* LOG(INFO) << learner->EvalOneIter(iter, data_sets, data_names);
* }
*
* \endcode
*/
class Learner : public rabit::Serializable {
public:
/*!
* \brief Set the configuration of gradient boosting.
* User must call configure once before InitModel and Training.
*
* \param cfg configurations on both training and model parameters.
*/
virtual void Configure(const std::vector<std::pair<std::string, std::string> >& cfg) = 0;
/*!
* \brief load model from stream
* \param fi input stream.
*/
virtual void Load(dmlc::Stream* fi) = 0;
/*!
* \brief save model to stream.
* \param fo output stream
*/
virtual void Save(dmlc::Stream* fo) const = 0;
/*!
* \brief update the model for one iteration
* With the specified objective function.
* \param iter current iteration number
* \param train reference to the data matrix.
*/
void UpdateOneIter(int iter, DMatrix* train);
/*!
* \brief Do customized gradient boosting with in_gpair.
* in_gair can be mutated after this call.
* \param iter current iteration number
* \param train reference to the data matrix.
* \param in_gpair The input gradient statistics.
*/
void BoostOneIter(int iter,
DMatrix* train,
std::vector<bst_gpair>* in_gpair);
/*!
* \brief evaluate the model for specific iteration using the configured metrics.
* \param iter iteration number
* \param data_sets datasets to be evaluated.
* \param data_names name of each dataset
* \return a string corresponding to the evaluation result
*/
std::string EvalOneIter(int iter,
const std::vector<DMatrix*>& data_sets,
const std::vector<std::string>& data_names);
/*!
* \brief get prediction given the model.
* \param data input data
* \param output_margin whether to only predict margin value instead of transformed prediction
* \param out_preds output vector that stores the prediction
* \param ntree_limit limit number of trees used for boosted tree
* predictor, when it equals 0, this means we are using all the trees
* \param pred_leaf whether to only predict the leaf index of each tree in a boosted tree predictor
*/
void Predict(DMatrix* data,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit = 0,
bool pred_leaf = false) const;
/*!
* \return whether the model allow lazy checkpoint in rabit.
*/
bool AllowLazyCheckPoint() const;
/*!
* \brief dump the model in text format
* \param fmap feature map that may help give interpretations of feature
* \param option extra option of the dump model
* \return a vector of dump for boosters.
*/
std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) const;
/*!
* \brief online prediction function, predict score for one instance at a time
* NOTE: use the batch prediction interface if possible, batch prediction is usually
* more efficient than online prediction
* This function is NOT threadsafe, make sure you only call from one thread.
*
* \param inst the instance you want to predict
* \param output_margin whether to only predict margin value instead of transformed prediction
* \param out_preds output vector to hold the predictions
* \param ntree_limit limit the number of trees used in prediction
*/
inline void Predict(const SparseBatch::Inst &inst,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit = 0) const;
/*!
* \brief Create a new instance of learner.
* \param cache_data The matrix to cache the prediction.
* \return Created learner.
*/
static Learner* Create(const std::vector<DMatrix*>& cache_data);
protected:
/*! \brief internal base score of the model */
bst_float base_score_;
/*! \brief objective function */
std::unique_ptr<ObjFunction> obj_;
/*! \brief The gradient boosted used by the model*/
std::unique_ptr<GradientBooster> gbm_;
/*! \brief The evaluation metrics used to evaluate the model. */
std::vector<std::unique_ptr<Metric> > metrics_;
};
// implementation of inline functions.
inline void Learner::Predict(const SparseBatch::Inst& inst,
bool output_margin,
std::vector<float>* out_preds,
unsigned ntree_limit) const {
gbm_->Predict(inst, out_preds, ntree_limit);
if (out_preds->size() == 1) {
(*out_preds)[0] += base_score_;
}
if (!output_margin) {
obj_->PredTransform(out_preds);
}
}
} // namespace xgboost
#endif // XGBOOST_LEARNER_H_

View File

@ -206,7 +206,7 @@ class GBLinear : public GradientBooster {
LOG(FATAL) << "gblinear does not support predict leaf index"; LOG(FATAL) << "gblinear does not support predict leaf index";
} }
std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) override { std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) const override {
std::stringstream fo(""); std::stringstream fo("");
fo << "bias:\n"; fo << "bias:\n";
for (int i = 0; i < model.param.num_output_group; ++i) { for (int i = 0; i < model.param.num_output_group; ++i) {
@ -258,13 +258,19 @@ class GBLinear : public GradientBooster {
fi->Read(&weight); fi->Read(&weight);
} }
// model bias // model bias
inline float* bias(void) { inline float* bias() {
return &weight[param.num_feature * param.num_output_group];
}
inline const float* bias() const {
return &weight[param.num_feature * param.num_output_group]; return &weight[param.num_feature * param.num_output_group];
} }
// get i-th weight // get i-th weight
inline float* operator[](size_t i) { inline float* operator[](size_t i) {
return &weight[i * param.num_output_group]; return &weight[i * param.num_output_group];
} }
inline const float* operator[](size_t i) const {
return &weight[i * param.num_output_group];
}
}; };
// model field // model field
Model model; Model model;

View File

@ -113,7 +113,11 @@ class GBTree : public GradientBooster {
for (const auto& up : updaters) { for (const auto& up : updaters) {
up->Init(cfg); up->Init(cfg);
} }
if (tparam.nthread != 0) {
omp_set_num_threads(tparam.nthread);
}
} }
void LoadModel(dmlc::Stream* fi) override { void LoadModel(dmlc::Stream* fi) override {
CHECK_EQ(fi->Read(&mparam, sizeof(mparam)), sizeof(mparam)) CHECK_EQ(fi->Read(&mparam, sizeof(mparam)), sizeof(mparam))
<< "GBTree: invalid model file"; << "GBTree: invalid model file";
@ -130,6 +134,7 @@ class GBTree : public GradientBooster {
} }
this->ResetPredBuffer(0); this->ResetPredBuffer(0);
} }
void SaveModel(dmlc::Stream* fo) const override { void SaveModel(dmlc::Stream* fo) const override {
CHECK_EQ(mparam.num_trees, static_cast<int>(trees.size())); CHECK_EQ(mparam.num_trees, static_cast<int>(trees.size()));
// not save predict buffer. // not save predict buffer.
@ -143,6 +148,7 @@ class GBTree : public GradientBooster {
fo->Write(dmlc::BeginPtr(tree_info), sizeof(int) * tree_info.size()); fo->Write(dmlc::BeginPtr(tree_info), sizeof(int) * tree_info.size());
} }
} }
void InitModel() override { void InitModel() override {
CHECK(mparam.num_trees == 0 && trees.size() == 0) CHECK(mparam.num_trees == 0 && trees.size() == 0)
<< "Model has already been initialized."; << "Model has already been initialized.";
@ -151,6 +157,7 @@ class GBTree : public GradientBooster {
pred_buffer.resize(mparam.PredBufferSize(), 0.0f); pred_buffer.resize(mparam.PredBufferSize(), 0.0f);
pred_counter.resize(mparam.PredBufferSize(), 0); pred_counter.resize(mparam.PredBufferSize(), 0);
} }
void ResetPredBuffer(size_t num_pbuffer) override { void ResetPredBuffer(size_t num_pbuffer) override {
mparam.num_pbuffer = static_cast<int64_t>(num_pbuffer); mparam.num_pbuffer = static_cast<int64_t>(num_pbuffer);
pred_buffer.clear(); pred_buffer.clear();
@ -158,10 +165,12 @@ class GBTree : public GradientBooster {
pred_buffer.resize(mparam.PredBufferSize(), 0.0f); pred_buffer.resize(mparam.PredBufferSize(), 0.0f);
pred_counter.resize(mparam.PredBufferSize(), 0); pred_counter.resize(mparam.PredBufferSize(), 0);
} }
bool AllowLazyCheckPoint() const override { bool AllowLazyCheckPoint() const override {
return mparam.num_output_group == 1 || return mparam.num_output_group == 1 ||
tparam.updater_seq.find("distcol") != std::string::npos; tparam.updater_seq.find("distcol") != std::string::npos;
} }
void DoBoost(DMatrix* p_fmat, void DoBoost(DMatrix* p_fmat,
int64_t buffer_offset, int64_t buffer_offset,
std::vector<bst_gpair>* in_gpair) override { std::vector<bst_gpair>* in_gpair) override {
@ -191,6 +200,7 @@ class GBTree : public GradientBooster {
this->CommitModel(std::move(new_trees[gid]), gid); this->CommitModel(std::move(new_trees[gid]), gid);
} }
} }
void Predict(DMatrix* p_fmat, void Predict(DMatrix* p_fmat,
int64_t buffer_offset, int64_t buffer_offset,
std::vector<float>* out_preds, std::vector<float>* out_preds,
@ -230,6 +240,7 @@ class GBTree : public GradientBooster {
} }
} }
} }
void Predict(const SparseBatch::Inst& inst, void Predict(const SparseBatch::Inst& inst,
std::vector<float>* out_preds, std::vector<float>* out_preds,
unsigned ntree_limit, unsigned ntree_limit,
@ -246,9 +257,10 @@ class GBTree : public GradientBooster {
ntree_limit); ntree_limit);
} }
} }
void PredictLeaf(DMatrix* p_fmat, void PredictLeaf(DMatrix* p_fmat,
std::vector<float>* out_preds, std::vector<float>* out_preds,
unsigned ntree_limit) { unsigned ntree_limit) override {
int nthread; int nthread;
#pragma omp parallel #pragma omp parallel
{ {
@ -257,7 +269,8 @@ class GBTree : public GradientBooster {
InitThreadTemp(nthread); InitThreadTemp(nthread);
this->PredPath(p_fmat, out_preds, ntree_limit); this->PredPath(p_fmat, out_preds, ntree_limit);
} }
std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) {
std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) const override {
std::vector<std::string> dump; std::vector<std::string> dump;
for (size_t i = 0; i < trees.size(); i++) { for (size_t i = 0; i < trees.size(); i++) {
dump.push_back(trees[i]->Dump2Text(fmap, option & 1)); dump.push_back(trees[i]->Dump2Text(fmap, option & 1));

View File

@ -21,6 +21,16 @@
namespace xgboost { namespace xgboost {
/*! \brief namespace for learning algorithm */ /*! \brief namespace for learning algorithm */
namespace learner { namespace learner {
inline bool Learner::AllowLazyCheckPoint() const {
return gbm_->AllowLazyCheckPoint();
}
inline std::vector<std::string>
Learner::Dump2Text(const FeatureMap& fmap, int option) const {
return gbm_->Dump2Text(fmap, option);
}
/*! /*!
* \brief learner that performs gradient boosting for a specific objective function. * \brief learner that performs gradient boosting for a specific objective function.
* It does training and prediction. * It does training and prediction.