Removed trailing whitespaces and Change Error to XGBoostError
This commit is contained in:
parent
edf4595bc1
commit
82c2ba4c44
@ -203,11 +203,11 @@ class XGBModel(XGBModelBase):
|
||||
# pylint: disable=missing-docstring,invalid-name
|
||||
test_dmatrix = DMatrix(data, missing=self.missing)
|
||||
return self.booster().predict(test_dmatrix)
|
||||
|
||||
|
||||
def evals_result(self):
|
||||
"""Return the evaluation results.
|
||||
|
||||
If eval_set is passed to the `fit` function, you can call evals_result() to
|
||||
If eval_set is passed to the `fit` function, you can call evals_result() to
|
||||
get evaluation results for all passed eval_sets. When eval_metric is also
|
||||
passed to the `fit` function, the evals_result will contain the eval_metrics
|
||||
passed to the `fit` function
|
||||
@ -215,27 +215,28 @@ class XGBModel(XGBModelBase):
|
||||
Returns
|
||||
-------
|
||||
evals_result : dictionary
|
||||
|
||||
|
||||
Example
|
||||
-------
|
||||
param_dist = {'objective':'binary:logistic', 'n_estimators':2}
|
||||
|
||||
|
||||
clf = xgb.XGBModel(**param_dist)
|
||||
|
||||
clf.fit(X_train, y_train,
|
||||
eval_set=[(X_train, y_train), (X_test, y_test)],
|
||||
eval_set=[(X_train, y_train), (X_test, y_test)],
|
||||
eval_metric='logloss',
|
||||
verbose=True)
|
||||
|
||||
|
||||
evals_result = clf.evals_result()
|
||||
|
||||
The variable evals_result will contain:
|
||||
{'validation_0': {'logloss': ['0.604835', '0.531479']}, 'validation_1': {'logloss': ['0.41965', '0.17686']}}
|
||||
|
||||
The variable evals_result will contain:
|
||||
{'validation_0': {'logloss': ['0.604835', '0.531479']},
|
||||
'validation_1': {'logloss': ['0.41965', '0.17686']}}
|
||||
"""
|
||||
if self.evals_result_:
|
||||
evals_result = self.evals_result_
|
||||
else:
|
||||
raise Error('No results.')
|
||||
raise XGBoostError('No results.')
|
||||
|
||||
return evals_result
|
||||
|
||||
@ -373,7 +374,7 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
def evals_result(self):
|
||||
"""Return the evaluation results.
|
||||
|
||||
If eval_set is passed to the `fit` function, you can call evals_result() to
|
||||
If eval_set is passed to the `fit` function, you can call evals_result() to
|
||||
get evaluation results for all passed eval_sets. When eval_metric is also
|
||||
passed to the `fit` function, the evals_result will contain the eval_metrics
|
||||
passed to the `fit` function
|
||||
@ -381,27 +382,28 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
Returns
|
||||
-------
|
||||
evals_result : dictionary
|
||||
|
||||
|
||||
Example
|
||||
-------
|
||||
param_dist = {'objective':'binary:logistic', 'n_estimators':2}
|
||||
|
||||
|
||||
clf = xgb.XGBClassifier(**param_dist)
|
||||
|
||||
clf.fit(X_train, y_train,
|
||||
eval_set=[(X_train, y_train), (X_test, y_test)],
|
||||
eval_set=[(X_train, y_train), (X_test, y_test)],
|
||||
eval_metric='logloss',
|
||||
verbose=True)
|
||||
|
||||
|
||||
evals_result = clf.evals_result()
|
||||
|
||||
The variable evals_result will contain:
|
||||
{'validation_0': {'logloss': ['0.604835', '0.531479']}, 'validation_1': {'logloss': ['0.41965', '0.17686']}}
|
||||
|
||||
The variable evals_result will contain:
|
||||
{'validation_0': {'logloss': ['0.604835', '0.531479']},
|
||||
'validation_1': {'logloss': ['0.41965', '0.17686']}}
|
||||
"""
|
||||
if self.evals_result_:
|
||||
evals_result = self.evals_result_
|
||||
else:
|
||||
raise Error('No results.')
|
||||
raise XGBoostError('No results.')
|
||||
|
||||
return evals_result
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user